1//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with C++ code generation of classes
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "TargetInfo.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/Support/SaveAndRestore.h"
32#include "llvm/Transforms/Utils/SanitizerStats.h"
33#include <optional>
34
35using namespace clang;
36using namespace CodeGen;
37
38/// Return the best known alignment for an unknown pointer to a
39/// particular class.
40CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41  if (!RD->hasDefinition())
42    return CharUnits::One(); // Hopefully won't be used anywhere.
43
44  auto &layout = getContext().getASTRecordLayout(RD);
45
46  // If the class is final, then we know that the pointer points to an
47  // object of that type and can use the full alignment.
48  if (RD->isEffectivelyFinal())
49    return layout.getAlignment();
50
51  // Otherwise, we have to assume it could be a subclass.
52  return layout.getNonVirtualAlignment();
53}
54
55/// Return the smallest possible amount of storage that might be allocated
56/// starting from the beginning of an object of a particular class.
57///
58/// This may be smaller than sizeof(RD) if RD has virtual base classes.
59CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60  if (!RD->hasDefinition())
61    return CharUnits::One();
62
63  auto &layout = getContext().getASTRecordLayout(RD);
64
65  // If the class is final, then we know that the pointer points to an
66  // object of that type and can use the full alignment.
67  if (RD->isEffectivelyFinal())
68    return layout.getSize();
69
70  // Otherwise, we have to assume it could be a subclass.
71  return std::max(layout.getNonVirtualSize(), CharUnits::One());
72}
73
74/// Return the best known alignment for a pointer to a virtual base,
75/// given the alignment of a pointer to the derived class.
76CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77                                           const CXXRecordDecl *derivedClass,
78                                           const CXXRecordDecl *vbaseClass) {
79  // The basic idea here is that an underaligned derived pointer might
80  // indicate an underaligned base pointer.
81
82  assert(vbaseClass->isCompleteDefinition());
83  auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84  CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85
86  return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87                                   expectedVBaseAlign);
88}
89
90CharUnits
91CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92                                         const CXXRecordDecl *baseDecl,
93                                         CharUnits expectedTargetAlign) {
94  // If the base is an incomplete type (which is, alas, possible with
95  // member pointers), be pessimistic.
96  if (!baseDecl->isCompleteDefinition())
97    return std::min(actualBaseAlign, expectedTargetAlign);
98
99  auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100  CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101
102  // If the class is properly aligned, assume the target offset is, too.
103  //
104  // This actually isn't necessarily the right thing to do --- if the
105  // class is a complete object, but it's only properly aligned for a
106  // base subobject, then the alignments of things relative to it are
107  // probably off as well.  (Note that this requires the alignment of
108  // the target to be greater than the NV alignment of the derived
109  // class.)
110  //
111  // However, our approach to this kind of under-alignment can only
112  // ever be best effort; after all, we're never going to propagate
113  // alignments through variables or parameters.  Note, in particular,
114  // that constructing a polymorphic type in an address that's less
115  // than pointer-aligned will generally trap in the constructor,
116  // unless we someday add some sort of attribute to change the
117  // assumed alignment of 'this'.  So our goal here is pretty much
118  // just to allow the user to explicitly say that a pointer is
119  // under-aligned and then safely access its fields and vtables.
120  if (actualBaseAlign >= expectedBaseAlign) {
121    return expectedTargetAlign;
122  }
123
124  // Otherwise, we might be offset by an arbitrary multiple of the
125  // actual alignment.  The correct adjustment is to take the min of
126  // the two alignments.
127  return std::min(actualBaseAlign, expectedTargetAlign);
128}
129
130Address CodeGenFunction::LoadCXXThisAddress() {
131  assert(CurFuncDecl && "loading 'this' without a func declaration?");
132  auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
133
134  // Lazily compute CXXThisAlignment.
135  if (CXXThisAlignment.isZero()) {
136    // Just use the best known alignment for the parent.
137    // TODO: if we're currently emitting a complete-object ctor/dtor,
138    // we can always use the complete-object alignment.
139    CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
140  }
141
142  llvm::Type *Ty = ConvertType(MD->getFunctionObjectParameterType());
143  return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull);
144}
145
146/// Emit the address of a field using a member data pointer.
147///
148/// \param E Only used for emergency diagnostics
149Address
150CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
151                                                 llvm::Value *memberPtr,
152                                      const MemberPointerType *memberPtrType,
153                                                 LValueBaseInfo *BaseInfo,
154                                                 TBAAAccessInfo *TBAAInfo) {
155  // Ask the ABI to compute the actual address.
156  llvm::Value *ptr =
157    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
158                                                 memberPtr, memberPtrType);
159
160  QualType memberType = memberPtrType->getPointeeType();
161  CharUnits memberAlign =
162      CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
163  memberAlign =
164    CGM.getDynamicOffsetAlignment(base.getAlignment(),
165                            memberPtrType->getClass()->getAsCXXRecordDecl(),
166                                  memberAlign);
167  return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
168                 memberAlign);
169}
170
171CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
172    const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
173    CastExpr::path_const_iterator End) {
174  CharUnits Offset = CharUnits::Zero();
175
176  const ASTContext &Context = getContext();
177  const CXXRecordDecl *RD = DerivedClass;
178
179  for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
180    const CXXBaseSpecifier *Base = *I;
181    assert(!Base->isVirtual() && "Should not see virtual bases here!");
182
183    // Get the layout.
184    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
185
186    const auto *BaseDecl =
187        cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
188
189    // Add the offset.
190    Offset += Layout.getBaseClassOffset(BaseDecl);
191
192    RD = BaseDecl;
193  }
194
195  return Offset;
196}
197
198llvm::Constant *
199CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
200                                   CastExpr::path_const_iterator PathBegin,
201                                   CastExpr::path_const_iterator PathEnd) {
202  assert(PathBegin != PathEnd && "Base path should not be empty!");
203
204  CharUnits Offset =
205      computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
206  if (Offset.isZero())
207    return nullptr;
208
209  llvm::Type *PtrDiffTy =
210  Types.ConvertType(getContext().getPointerDiffType());
211
212  return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
213}
214
215/// Gets the address of a direct base class within a complete object.
216/// This should only be used for (1) non-virtual bases or (2) virtual bases
217/// when the type is known to be complete (e.g. in complete destructors).
218///
219/// The object pointed to by 'This' is assumed to be non-null.
220Address
221CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
222                                                   const CXXRecordDecl *Derived,
223                                                   const CXXRecordDecl *Base,
224                                                   bool BaseIsVirtual) {
225  // 'this' must be a pointer (in some address space) to Derived.
226  assert(This.getElementType() == ConvertType(Derived));
227
228  // Compute the offset of the virtual base.
229  CharUnits Offset;
230  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
231  if (BaseIsVirtual)
232    Offset = Layout.getVBaseClassOffset(Base);
233  else
234    Offset = Layout.getBaseClassOffset(Base);
235
236  // Shift and cast down to the base type.
237  // TODO: for complete types, this should be possible with a GEP.
238  Address V = This;
239  if (!Offset.isZero()) {
240    V = V.withElementType(Int8Ty);
241    V = Builder.CreateConstInBoundsByteGEP(V, Offset);
242  }
243  return V.withElementType(ConvertType(Base));
244}
245
246static Address
247ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
248                                CharUnits nonVirtualOffset,
249                                llvm::Value *virtualOffset,
250                                const CXXRecordDecl *derivedClass,
251                                const CXXRecordDecl *nearestVBase) {
252  // Assert that we have something to do.
253  assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
254
255  // Compute the offset from the static and dynamic components.
256  llvm::Value *baseOffset;
257  if (!nonVirtualOffset.isZero()) {
258    llvm::Type *OffsetType =
259        (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
260         CGF.CGM.getItaniumVTableContext().isRelativeLayout())
261            ? CGF.Int32Ty
262            : CGF.PtrDiffTy;
263    baseOffset =
264        llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
265    if (virtualOffset) {
266      baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
267    }
268  } else {
269    baseOffset = virtualOffset;
270  }
271
272  // Apply the base offset.
273  llvm::Value *ptr = addr.getPointer();
274  ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
275
276  // If we have a virtual component, the alignment of the result will
277  // be relative only to the known alignment of that vbase.
278  CharUnits alignment;
279  if (virtualOffset) {
280    assert(nearestVBase && "virtual offset without vbase?");
281    alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282                                          derivedClass, nearestVBase);
283  } else {
284    alignment = addr.getAlignment();
285  }
286  alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287
288  return Address(ptr, CGF.Int8Ty, alignment);
289}
290
291Address CodeGenFunction::GetAddressOfBaseClass(
292    Address Value, const CXXRecordDecl *Derived,
293    CastExpr::path_const_iterator PathBegin,
294    CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295    SourceLocation Loc) {
296  assert(PathBegin != PathEnd && "Base path should not be empty!");
297
298  CastExpr::path_const_iterator Start = PathBegin;
299  const CXXRecordDecl *VBase = nullptr;
300
301  // Sema has done some convenient canonicalization here: if the
302  // access path involved any virtual steps, the conversion path will
303  // *start* with a step down to the correct virtual base subobject,
304  // and hence will not require any further steps.
305  if ((*Start)->isVirtual()) {
306    VBase = cast<CXXRecordDecl>(
307        (*Start)->getType()->castAs<RecordType>()->getDecl());
308    ++Start;
309  }
310
311  // Compute the static offset of the ultimate destination within its
312  // allocating subobject (the virtual base, if there is one, or else
313  // the "complete" object that we see).
314  CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315      VBase ? VBase : Derived, Start, PathEnd);
316
317  // If there's a virtual step, we can sometimes "devirtualize" it.
318  // For now, that's limited to when the derived type is final.
319  // TODO: "devirtualize" this for accesses to known-complete objects.
320  if (VBase && Derived->hasAttr<FinalAttr>()) {
321    const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322    CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323    NonVirtualOffset += vBaseOffset;
324    VBase = nullptr; // we no longer have a virtual step
325  }
326
327  // Get the base pointer type.
328  llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
329  llvm::Type *PtrTy = llvm::PointerType::get(
330      CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
331
332  QualType DerivedTy = getContext().getRecordType(Derived);
333  CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334
335  // If the static offset is zero and we don't have a virtual step,
336  // just do a bitcast; null checks are unnecessary.
337  if (NonVirtualOffset.isZero() && !VBase) {
338    if (sanitizePerformTypeCheck()) {
339      SanitizerSet SkippedChecks;
340      SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341      EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342                    DerivedTy, DerivedAlign, SkippedChecks);
343    }
344    return Value.withElementType(BaseValueTy);
345  }
346
347  llvm::BasicBlock *origBB = nullptr;
348  llvm::BasicBlock *endBB = nullptr;
349
350  // Skip over the offset (and the vtable load) if we're supposed to
351  // null-check the pointer.
352  if (NullCheckValue) {
353    origBB = Builder.GetInsertBlock();
354    llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355    endBB = createBasicBlock("cast.end");
356
357    llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358    Builder.CreateCondBr(isNull, endBB, notNullBB);
359    EmitBlock(notNullBB);
360  }
361
362  if (sanitizePerformTypeCheck()) {
363    SanitizerSet SkippedChecks;
364    SkippedChecks.set(SanitizerKind::Null, true);
365    EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366                  Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
367  }
368
369  // Compute the virtual offset.
370  llvm::Value *VirtualOffset = nullptr;
371  if (VBase) {
372    VirtualOffset =
373      CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
374  }
375
376  // Apply both offsets.
377  Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378                                          VirtualOffset, Derived, VBase);
379
380  // Cast to the destination type.
381  Value = Value.withElementType(BaseValueTy);
382
383  // Build a phi if we needed a null check.
384  if (NullCheckValue) {
385    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386    Builder.CreateBr(endBB);
387    EmitBlock(endBB);
388
389    llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
390    PHI->addIncoming(Value.getPointer(), notNullBB);
391    PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
392    Value = Value.withPointer(PHI, NotKnownNonNull);
393  }
394
395  return Value;
396}
397
398Address
399CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400                                          const CXXRecordDecl *Derived,
401                                        CastExpr::path_const_iterator PathBegin,
402                                          CastExpr::path_const_iterator PathEnd,
403                                          bool NullCheckValue) {
404  assert(PathBegin != PathEnd && "Base path should not be empty!");
405
406  QualType DerivedTy =
407      getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408  llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
409
410  llvm::Value *NonVirtualOffset =
411    CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
412
413  if (!NonVirtualOffset) {
414    // No offset, we can just cast back.
415    return BaseAddr.withElementType(DerivedValueTy);
416  }
417
418  llvm::BasicBlock *CastNull = nullptr;
419  llvm::BasicBlock *CastNotNull = nullptr;
420  llvm::BasicBlock *CastEnd = nullptr;
421
422  if (NullCheckValue) {
423    CastNull = createBasicBlock("cast.null");
424    CastNotNull = createBasicBlock("cast.notnull");
425    CastEnd = createBasicBlock("cast.end");
426
427    llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
428    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
429    EmitBlock(CastNotNull);
430  }
431
432  // Apply the offset.
433  llvm::Value *Value = BaseAddr.getPointer();
434  Value = Builder.CreateInBoundsGEP(
435      Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
436
437  // Produce a PHI if we had a null-check.
438  if (NullCheckValue) {
439    Builder.CreateBr(CastEnd);
440    EmitBlock(CastNull);
441    Builder.CreateBr(CastEnd);
442    EmitBlock(CastEnd);
443
444    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
445    PHI->addIncoming(Value, CastNotNull);
446    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
447    Value = PHI;
448  }
449
450  return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
451}
452
453llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
454                                              bool ForVirtualBase,
455                                              bool Delegating) {
456  if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
457    // This constructor/destructor does not need a VTT parameter.
458    return nullptr;
459  }
460
461  const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
462  const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
463
464  uint64_t SubVTTIndex;
465
466  if (Delegating) {
467    // If this is a delegating constructor call, just load the VTT.
468    return LoadCXXVTT();
469  } else if (RD == Base) {
470    // If the record matches the base, this is the complete ctor/dtor
471    // variant calling the base variant in a class with virtual bases.
472    assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
473           "doing no-op VTT offset in base dtor/ctor?");
474    assert(!ForVirtualBase && "Can't have same class as virtual base!");
475    SubVTTIndex = 0;
476  } else {
477    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
478    CharUnits BaseOffset = ForVirtualBase ?
479      Layout.getVBaseClassOffset(Base) :
480      Layout.getBaseClassOffset(Base);
481
482    SubVTTIndex =
483      CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
484    assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
485  }
486
487  if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
488    // A VTT parameter was passed to the constructor, use it.
489    llvm::Value *VTT = LoadCXXVTT();
490    return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
491  } else {
492    // We're the complete constructor, so get the VTT by name.
493    llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
494    return Builder.CreateConstInBoundsGEP2_64(
495        VTT->getValueType(), VTT, 0, SubVTTIndex);
496  }
497}
498
499namespace {
500  /// Call the destructor for a direct base class.
501  struct CallBaseDtor final : EHScopeStack::Cleanup {
502    const CXXRecordDecl *BaseClass;
503    bool BaseIsVirtual;
504    CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
505      : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
506
507    void Emit(CodeGenFunction &CGF, Flags flags) override {
508      const CXXRecordDecl *DerivedClass =
509        cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
510
511      const CXXDestructorDecl *D = BaseClass->getDestructor();
512      // We are already inside a destructor, so presumably the object being
513      // destroyed should have the expected type.
514      QualType ThisTy = D->getFunctionObjectParameterType();
515      Address Addr =
516        CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
517                                                  DerivedClass, BaseClass,
518                                                  BaseIsVirtual);
519      CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
520                                /*Delegating=*/false, Addr, ThisTy);
521    }
522  };
523
524  /// A visitor which checks whether an initializer uses 'this' in a
525  /// way which requires the vtable to be properly set.
526  struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
527    typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
528
529    bool UsesThis;
530
531    DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
532
533    // Black-list all explicit and implicit references to 'this'.
534    //
535    // Do we need to worry about external references to 'this' derived
536    // from arbitrary code?  If so, then anything which runs arbitrary
537    // external code might potentially access the vtable.
538    void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
539  };
540} // end anonymous namespace
541
542static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
543  DynamicThisUseChecker Checker(C);
544  Checker.Visit(Init);
545  return Checker.UsesThis;
546}
547
548static void EmitBaseInitializer(CodeGenFunction &CGF,
549                                const CXXRecordDecl *ClassDecl,
550                                CXXCtorInitializer *BaseInit) {
551  assert(BaseInit->isBaseInitializer() &&
552         "Must have base initializer!");
553
554  Address ThisPtr = CGF.LoadCXXThisAddress();
555
556  const Type *BaseType = BaseInit->getBaseClass();
557  const auto *BaseClassDecl =
558      cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
559
560  bool isBaseVirtual = BaseInit->isBaseVirtual();
561
562  // If the initializer for the base (other than the constructor
563  // itself) accesses 'this' in any way, we need to initialize the
564  // vtables.
565  if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
566    CGF.InitializeVTablePointers(ClassDecl);
567
568  // We can pretend to be a complete class because it only matters for
569  // virtual bases, and we only do virtual bases for complete ctors.
570  Address V =
571    CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
572                                              BaseClassDecl,
573                                              isBaseVirtual);
574  AggValueSlot AggSlot =
575      AggValueSlot::forAddr(
576          V, Qualifiers(),
577          AggValueSlot::IsDestructed,
578          AggValueSlot::DoesNotNeedGCBarriers,
579          AggValueSlot::IsNotAliased,
580          CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
581
582  CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
583
584  if (CGF.CGM.getLangOpts().Exceptions &&
585      !BaseClassDecl->hasTrivialDestructor())
586    CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
587                                          isBaseVirtual);
588}
589
590static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
591  auto *CD = dyn_cast<CXXConstructorDecl>(D);
592  if (!(CD && CD->isCopyOrMoveConstructor()) &&
593      !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
594    return false;
595
596  // We can emit a memcpy for a trivial copy or move constructor/assignment.
597  if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
598    return true;
599
600  // We *must* emit a memcpy for a defaulted union copy or move op.
601  if (D->getParent()->isUnion() && D->isDefaulted())
602    return true;
603
604  return false;
605}
606
607static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
608                                                CXXCtorInitializer *MemberInit,
609                                                LValue &LHS) {
610  FieldDecl *Field = MemberInit->getAnyMember();
611  if (MemberInit->isIndirectMemberInitializer()) {
612    // If we are initializing an anonymous union field, drill down to the field.
613    IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
614    for (const auto *I : IndirectField->chain())
615      LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
616  } else {
617    LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
618  }
619}
620
621static void EmitMemberInitializer(CodeGenFunction &CGF,
622                                  const CXXRecordDecl *ClassDecl,
623                                  CXXCtorInitializer *MemberInit,
624                                  const CXXConstructorDecl *Constructor,
625                                  FunctionArgList &Args) {
626  ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
627  assert(MemberInit->isAnyMemberInitializer() &&
628         "Must have member initializer!");
629  assert(MemberInit->getInit() && "Must have initializer!");
630
631  // non-static data member initializers.
632  FieldDecl *Field = MemberInit->getAnyMember();
633  QualType FieldType = Field->getType();
634
635  llvm::Value *ThisPtr = CGF.LoadCXXThis();
636  QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
637  LValue LHS;
638
639  // If a base constructor is being emitted, create an LValue that has the
640  // non-virtual alignment.
641  if (CGF.CurGD.getCtorType() == Ctor_Base)
642    LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
643  else
644    LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
645
646  EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
647
648  // Special case: if we are in a copy or move constructor, and we are copying
649  // an array of PODs or classes with trivial copy constructors, ignore the
650  // AST and perform the copy we know is equivalent.
651  // FIXME: This is hacky at best... if we had a bit more explicit information
652  // in the AST, we could generalize it more easily.
653  const ConstantArrayType *Array
654    = CGF.getContext().getAsConstantArrayType(FieldType);
655  if (Array && Constructor->isDefaulted() &&
656      Constructor->isCopyOrMoveConstructor()) {
657    QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
658    CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
659    if (BaseElementTy.isPODType(CGF.getContext()) ||
660        (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
661      unsigned SrcArgIndex =
662          CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
663      llvm::Value *SrcPtr
664        = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
665      LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
666      LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
667
668      // Copy the aggregate.
669      CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
670                            LHS.isVolatileQualified());
671      // Ensure that we destroy the objects if an exception is thrown later in
672      // the constructor.
673      QualType::DestructionKind dtorKind = FieldType.isDestructedType();
674      if (CGF.needsEHCleanup(dtorKind))
675        CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
676      return;
677    }
678  }
679
680  CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
681}
682
683void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
684                                              Expr *Init) {
685  QualType FieldType = Field->getType();
686  switch (getEvaluationKind(FieldType)) {
687  case TEK_Scalar:
688    if (LHS.isSimple()) {
689      EmitExprAsInit(Init, Field, LHS, false);
690    } else {
691      RValue RHS = RValue::get(EmitScalarExpr(Init));
692      EmitStoreThroughLValue(RHS, LHS);
693    }
694    break;
695  case TEK_Complex:
696    EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
697    break;
698  case TEK_Aggregate: {
699    AggValueSlot Slot = AggValueSlot::forLValue(
700        LHS, *this, AggValueSlot::IsDestructed,
701        AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
702        getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
703        // Checks are made by the code that calls constructor.
704        AggValueSlot::IsSanitizerChecked);
705    EmitAggExpr(Init, Slot);
706    break;
707  }
708  }
709
710  // Ensure that we destroy this object if an exception is thrown
711  // later in the constructor.
712  QualType::DestructionKind dtorKind = FieldType.isDestructedType();
713  if (needsEHCleanup(dtorKind))
714    pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
715}
716
717/// Checks whether the given constructor is a valid subject for the
718/// complete-to-base constructor delegation optimization, i.e.
719/// emitting the complete constructor as a simple call to the base
720/// constructor.
721bool CodeGenFunction::IsConstructorDelegationValid(
722    const CXXConstructorDecl *Ctor) {
723
724  // Currently we disable the optimization for classes with virtual
725  // bases because (1) the addresses of parameter variables need to be
726  // consistent across all initializers but (2) the delegate function
727  // call necessarily creates a second copy of the parameter variable.
728  //
729  // The limiting example (purely theoretical AFAIK):
730  //   struct A { A(int &c) { c++; } };
731  //   struct B : virtual A {
732  //     B(int count) : A(count) { printf("%d\n", count); }
733  //   };
734  // ...although even this example could in principle be emitted as a
735  // delegation since the address of the parameter doesn't escape.
736  if (Ctor->getParent()->getNumVBases()) {
737    // TODO: white-list trivial vbase initializers.  This case wouldn't
738    // be subject to the restrictions below.
739
740    // TODO: white-list cases where:
741    //  - there are no non-reference parameters to the constructor
742    //  - the initializers don't access any non-reference parameters
743    //  - the initializers don't take the address of non-reference
744    //    parameters
745    //  - etc.
746    // If we ever add any of the above cases, remember that:
747    //  - function-try-blocks will always exclude this optimization
748    //  - we need to perform the constructor prologue and cleanup in
749    //    EmitConstructorBody.
750
751    return false;
752  }
753
754  // We also disable the optimization for variadic functions because
755  // it's impossible to "re-pass" varargs.
756  if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
757    return false;
758
759  // FIXME: Decide if we can do a delegation of a delegating constructor.
760  if (Ctor->isDelegatingConstructor())
761    return false;
762
763  return true;
764}
765
766// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767// to poison the extra field paddings inserted under
768// -fsanitize-address-field-padding=1|2.
769void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
770  ASTContext &Context = getContext();
771  const CXXRecordDecl *ClassDecl =
772      Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
773               : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
774  if (!ClassDecl->mayInsertExtraPadding()) return;
775
776  struct SizeAndOffset {
777    uint64_t Size;
778    uint64_t Offset;
779  };
780
781  unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
782  const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
783
784  // Populate sizes and offsets of fields.
785  SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
786  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
787    SSV[i].Offset =
788        Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
789
790  size_t NumFields = 0;
791  for (const auto *Field : ClassDecl->fields()) {
792    const FieldDecl *D = Field;
793    auto FieldInfo = Context.getTypeInfoInChars(D->getType());
794    CharUnits FieldSize = FieldInfo.Width;
795    assert(NumFields < SSV.size());
796    SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
797    NumFields++;
798  }
799  assert(NumFields == SSV.size());
800  if (SSV.size() <= 1) return;
801
802  // We will insert calls to __asan_* run-time functions.
803  // LLVM AddressSanitizer pass may decide to inline them later.
804  llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
805  llvm::FunctionType *FTy =
806      llvm::FunctionType::get(CGM.VoidTy, Args, false);
807  llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
808      FTy, Prologue ? "__asan_poison_intra_object_redzone"
809                    : "__asan_unpoison_intra_object_redzone");
810
811  llvm::Value *ThisPtr = LoadCXXThis();
812  ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
813  uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
814  // For each field check if it has sufficient padding,
815  // if so (un)poison it with a call.
816  for (size_t i = 0; i < SSV.size(); i++) {
817    uint64_t AsanAlignment = 8;
818    uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
819    uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
820    uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
821    if (PoisonSize < AsanAlignment || !SSV[i].Size ||
822        (NextField % AsanAlignment) != 0)
823      continue;
824    Builder.CreateCall(
825        F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
826            Builder.getIntN(PtrSize, PoisonSize)});
827  }
828}
829
830/// EmitConstructorBody - Emits the body of the current constructor.
831void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
832  EmitAsanPrologueOrEpilogue(true);
833  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
834  CXXCtorType CtorType = CurGD.getCtorType();
835
836  assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
837          CtorType == Ctor_Complete) &&
838         "can only generate complete ctor for this ABI");
839
840  // Before we go any further, try the complete->base constructor
841  // delegation optimization.
842  if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
843      CGM.getTarget().getCXXABI().hasConstructorVariants()) {
844    EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
845    return;
846  }
847
848  const FunctionDecl *Definition = nullptr;
849  Stmt *Body = Ctor->getBody(Definition);
850  assert(Definition == Ctor && "emitting wrong constructor body");
851
852  // Enter the function-try-block before the constructor prologue if
853  // applicable.
854  bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
855  if (IsTryBody)
856    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
857
858  incrementProfileCounter(Body);
859  maybeCreateMCDCCondBitmap();
860
861  RunCleanupsScope RunCleanups(*this);
862
863  // TODO: in restricted cases, we can emit the vbase initializers of
864  // a complete ctor and then delegate to the base ctor.
865
866  // Emit the constructor prologue, i.e. the base and member
867  // initializers.
868  EmitCtorPrologue(Ctor, CtorType, Args);
869
870  // Emit the body of the statement.
871  if (IsTryBody)
872    EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
873  else if (Body)
874    EmitStmt(Body);
875
876  // Emit any cleanup blocks associated with the member or base
877  // initializers, which includes (along the exceptional path) the
878  // destructors for those members and bases that were fully
879  // constructed.
880  RunCleanups.ForceCleanup();
881
882  if (IsTryBody)
883    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
884}
885
886namespace {
887  /// RAII object to indicate that codegen is copying the value representation
888  /// instead of the object representation. Useful when copying a struct or
889  /// class which has uninitialized members and we're only performing
890  /// lvalue-to-rvalue conversion on the object but not its members.
891  class CopyingValueRepresentation {
892  public:
893    explicit CopyingValueRepresentation(CodeGenFunction &CGF)
894        : CGF(CGF), OldSanOpts(CGF.SanOpts) {
895      CGF.SanOpts.set(SanitizerKind::Bool, false);
896      CGF.SanOpts.set(SanitizerKind::Enum, false);
897    }
898    ~CopyingValueRepresentation() {
899      CGF.SanOpts = OldSanOpts;
900    }
901  private:
902    CodeGenFunction &CGF;
903    SanitizerSet OldSanOpts;
904  };
905} // end anonymous namespace
906
907namespace {
908  class FieldMemcpyizer {
909  public:
910    FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
911                    const VarDecl *SrcRec)
912      : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
913        RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
914        FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
915        LastFieldOffset(0), LastAddedFieldIndex(0) {}
916
917    bool isMemcpyableField(FieldDecl *F) const {
918      // Never memcpy fields when we are adding poisoned paddings.
919      if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
920        return false;
921      Qualifiers Qual = F->getType().getQualifiers();
922      if (Qual.hasVolatile() || Qual.hasObjCLifetime())
923        return false;
924      return true;
925    }
926
927    void addMemcpyableField(FieldDecl *F) {
928      if (F->isZeroSize(CGF.getContext()))
929        return;
930      if (!FirstField)
931        addInitialField(F);
932      else
933        addNextField(F);
934    }
935
936    CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
937      ASTContext &Ctx = CGF.getContext();
938      unsigned LastFieldSize =
939          LastField->isBitField()
940              ? LastField->getBitWidthValue(Ctx)
941              : Ctx.toBits(
942                    Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
943      uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
944                                FirstByteOffset + Ctx.getCharWidth() - 1;
945      CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
946      return MemcpySize;
947    }
948
949    void emitMemcpy() {
950      // Give the subclass a chance to bail out if it feels the memcpy isn't
951      // worth it (e.g. Hasn't aggregated enough data).
952      if (!FirstField) {
953        return;
954      }
955
956      uint64_t FirstByteOffset;
957      if (FirstField->isBitField()) {
958        const CGRecordLayout &RL =
959          CGF.getTypes().getCGRecordLayout(FirstField->getParent());
960        const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
961        // FirstFieldOffset is not appropriate for bitfields,
962        // we need to use the storage offset instead.
963        FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
964      } else {
965        FirstByteOffset = FirstFieldOffset;
966      }
967
968      CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
969      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
970      Address ThisPtr = CGF.LoadCXXThisAddress();
971      LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
972      LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
973      llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
974      LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
975      LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
976
977      emitMemcpyIR(
978          Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
979          Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
980          MemcpySize);
981      reset();
982    }
983
984    void reset() {
985      FirstField = nullptr;
986    }
987
988  protected:
989    CodeGenFunction &CGF;
990    const CXXRecordDecl *ClassDecl;
991
992  private:
993    void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
994      DestPtr = DestPtr.withElementType(CGF.Int8Ty);
995      SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
996      CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
997    }
998
999    void addInitialField(FieldDecl *F) {
1000      FirstField = F;
1001      LastField = F;
1002      FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1003      LastFieldOffset = FirstFieldOffset;
1004      LastAddedFieldIndex = F->getFieldIndex();
1005    }
1006
1007    void addNextField(FieldDecl *F) {
1008      // For the most part, the following invariant will hold:
1009      //   F->getFieldIndex() == LastAddedFieldIndex + 1
1010      // The one exception is that Sema won't add a copy-initializer for an
1011      // unnamed bitfield, which will show up here as a gap in the sequence.
1012      assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1013             "Cannot aggregate fields out of order.");
1014      LastAddedFieldIndex = F->getFieldIndex();
1015
1016      // The 'first' and 'last' fields are chosen by offset, rather than field
1017      // index. This allows the code to support bitfields, as well as regular
1018      // fields.
1019      uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1020      if (FOffset < FirstFieldOffset) {
1021        FirstField = F;
1022        FirstFieldOffset = FOffset;
1023      } else if (FOffset >= LastFieldOffset) {
1024        LastField = F;
1025        LastFieldOffset = FOffset;
1026      }
1027    }
1028
1029    const VarDecl *SrcRec;
1030    const ASTRecordLayout &RecLayout;
1031    FieldDecl *FirstField;
1032    FieldDecl *LastField;
1033    uint64_t FirstFieldOffset, LastFieldOffset;
1034    unsigned LastAddedFieldIndex;
1035  };
1036
1037  class ConstructorMemcpyizer : public FieldMemcpyizer {
1038  private:
1039    /// Get source argument for copy constructor. Returns null if not a copy
1040    /// constructor.
1041    static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1042                                               const CXXConstructorDecl *CD,
1043                                               FunctionArgList &Args) {
1044      if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1045        return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1046      return nullptr;
1047    }
1048
1049    // Returns true if a CXXCtorInitializer represents a member initialization
1050    // that can be rolled into a memcpy.
1051    bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1052      if (!MemcpyableCtor)
1053        return false;
1054      FieldDecl *Field = MemberInit->getMember();
1055      assert(Field && "No field for member init.");
1056      QualType FieldType = Field->getType();
1057      CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1058
1059      // Bail out on non-memcpyable, not-trivially-copyable members.
1060      if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1061          !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1062            FieldType->isReferenceType()))
1063        return false;
1064
1065      // Bail out on volatile fields.
1066      if (!isMemcpyableField(Field))
1067        return false;
1068
1069      // Otherwise we're good.
1070      return true;
1071    }
1072
1073  public:
1074    ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1075                          FunctionArgList &Args)
1076      : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1077        ConstructorDecl(CD),
1078        MemcpyableCtor(CD->isDefaulted() &&
1079                       CD->isCopyOrMoveConstructor() &&
1080                       CGF.getLangOpts().getGC() == LangOptions::NonGC),
1081        Args(Args) { }
1082
1083    void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1084      if (isMemberInitMemcpyable(MemberInit)) {
1085        AggregatedInits.push_back(MemberInit);
1086        addMemcpyableField(MemberInit->getMember());
1087      } else {
1088        emitAggregatedInits();
1089        EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1090                              ConstructorDecl, Args);
1091      }
1092    }
1093
1094    void emitAggregatedInits() {
1095      if (AggregatedInits.size() <= 1) {
1096        // This memcpy is too small to be worthwhile. Fall back on default
1097        // codegen.
1098        if (!AggregatedInits.empty()) {
1099          CopyingValueRepresentation CVR(CGF);
1100          EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1101                                AggregatedInits[0], ConstructorDecl, Args);
1102          AggregatedInits.clear();
1103        }
1104        reset();
1105        return;
1106      }
1107
1108      pushEHDestructors();
1109      emitMemcpy();
1110      AggregatedInits.clear();
1111    }
1112
1113    void pushEHDestructors() {
1114      Address ThisPtr = CGF.LoadCXXThisAddress();
1115      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1116      LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1117
1118      for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1119        CXXCtorInitializer *MemberInit = AggregatedInits[i];
1120        QualType FieldType = MemberInit->getAnyMember()->getType();
1121        QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1122        if (!CGF.needsEHCleanup(dtorKind))
1123          continue;
1124        LValue FieldLHS = LHS;
1125        EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1126        CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1127      }
1128    }
1129
1130    void finish() {
1131      emitAggregatedInits();
1132    }
1133
1134  private:
1135    const CXXConstructorDecl *ConstructorDecl;
1136    bool MemcpyableCtor;
1137    FunctionArgList &Args;
1138    SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1139  };
1140
1141  class AssignmentMemcpyizer : public FieldMemcpyizer {
1142  private:
1143    // Returns the memcpyable field copied by the given statement, if one
1144    // exists. Otherwise returns null.
1145    FieldDecl *getMemcpyableField(Stmt *S) {
1146      if (!AssignmentsMemcpyable)
1147        return nullptr;
1148      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1149        // Recognise trivial assignments.
1150        if (BO->getOpcode() != BO_Assign)
1151          return nullptr;
1152        MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1153        if (!ME)
1154          return nullptr;
1155        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1156        if (!Field || !isMemcpyableField(Field))
1157          return nullptr;
1158        Stmt *RHS = BO->getRHS();
1159        if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1160          RHS = EC->getSubExpr();
1161        if (!RHS)
1162          return nullptr;
1163        if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1164          if (ME2->getMemberDecl() == Field)
1165            return Field;
1166        }
1167        return nullptr;
1168      } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1169        CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1170        if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1171          return nullptr;
1172        MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1173        if (!IOA)
1174          return nullptr;
1175        FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1176        if (!Field || !isMemcpyableField(Field))
1177          return nullptr;
1178        MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1179        if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1180          return nullptr;
1181        return Field;
1182      } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1183        FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1184        if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1185          return nullptr;
1186        Expr *DstPtr = CE->getArg(0);
1187        if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1188          DstPtr = DC->getSubExpr();
1189        UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1190        if (!DUO || DUO->getOpcode() != UO_AddrOf)
1191          return nullptr;
1192        MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1193        if (!ME)
1194          return nullptr;
1195        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1196        if (!Field || !isMemcpyableField(Field))
1197          return nullptr;
1198        Expr *SrcPtr = CE->getArg(1);
1199        if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1200          SrcPtr = SC->getSubExpr();
1201        UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1202        if (!SUO || SUO->getOpcode() != UO_AddrOf)
1203          return nullptr;
1204        MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1205        if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1206          return nullptr;
1207        return Field;
1208      }
1209
1210      return nullptr;
1211    }
1212
1213    bool AssignmentsMemcpyable;
1214    SmallVector<Stmt*, 16> AggregatedStmts;
1215
1216  public:
1217    AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1218                         FunctionArgList &Args)
1219      : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1220        AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1221      assert(Args.size() == 2);
1222    }
1223
1224    void emitAssignment(Stmt *S) {
1225      FieldDecl *F = getMemcpyableField(S);
1226      if (F) {
1227        addMemcpyableField(F);
1228        AggregatedStmts.push_back(S);
1229      } else {
1230        emitAggregatedStmts();
1231        CGF.EmitStmt(S);
1232      }
1233    }
1234
1235    void emitAggregatedStmts() {
1236      if (AggregatedStmts.size() <= 1) {
1237        if (!AggregatedStmts.empty()) {
1238          CopyingValueRepresentation CVR(CGF);
1239          CGF.EmitStmt(AggregatedStmts[0]);
1240        }
1241        reset();
1242      }
1243
1244      emitMemcpy();
1245      AggregatedStmts.clear();
1246    }
1247
1248    void finish() {
1249      emitAggregatedStmts();
1250    }
1251  };
1252} // end anonymous namespace
1253
1254static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1255  const Type *BaseType = BaseInit->getBaseClass();
1256  const auto *BaseClassDecl =
1257      cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1258  return BaseClassDecl->isDynamicClass();
1259}
1260
1261/// EmitCtorPrologue - This routine generates necessary code to initialize
1262/// base classes and non-static data members belonging to this constructor.
1263void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1264                                       CXXCtorType CtorType,
1265                                       FunctionArgList &Args) {
1266  if (CD->isDelegatingConstructor())
1267    return EmitDelegatingCXXConstructorCall(CD, Args);
1268
1269  const CXXRecordDecl *ClassDecl = CD->getParent();
1270
1271  CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1272                                          E = CD->init_end();
1273
1274  // Virtual base initializers first, if any. They aren't needed if:
1275  // - This is a base ctor variant
1276  // - There are no vbases
1277  // - The class is abstract, so a complete object of it cannot be constructed
1278  //
1279  // The check for an abstract class is necessary because sema may not have
1280  // marked virtual base destructors referenced.
1281  bool ConstructVBases = CtorType != Ctor_Base &&
1282                         ClassDecl->getNumVBases() != 0 &&
1283                         !ClassDecl->isAbstract();
1284
1285  // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1286  // constructor of a class with virtual bases takes an additional parameter to
1287  // conditionally construct the virtual bases. Emit that check here.
1288  llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1289  if (ConstructVBases &&
1290      !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1291    BaseCtorContinueBB =
1292        CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1293    assert(BaseCtorContinueBB);
1294  }
1295
1296  for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1297    if (!ConstructVBases)
1298      continue;
1299    SaveAndRestore ThisRAII(CXXThisValue);
1300    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1301        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1302        isInitializerOfDynamicClass(*B))
1303      CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1304    EmitBaseInitializer(*this, ClassDecl, *B);
1305  }
1306
1307  if (BaseCtorContinueBB) {
1308    // Complete object handler should continue to the remaining initializers.
1309    Builder.CreateBr(BaseCtorContinueBB);
1310    EmitBlock(BaseCtorContinueBB);
1311  }
1312
1313  // Then, non-virtual base initializers.
1314  for (; B != E && (*B)->isBaseInitializer(); B++) {
1315    assert(!(*B)->isBaseVirtual());
1316    SaveAndRestore ThisRAII(CXXThisValue);
1317    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1318        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1319        isInitializerOfDynamicClass(*B))
1320      CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1321    EmitBaseInitializer(*this, ClassDecl, *B);
1322  }
1323
1324  InitializeVTablePointers(ClassDecl);
1325
1326  // And finally, initialize class members.
1327  FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1328  ConstructorMemcpyizer CM(*this, CD, Args);
1329  for (; B != E; B++) {
1330    CXXCtorInitializer *Member = (*B);
1331    assert(!Member->isBaseInitializer());
1332    assert(Member->isAnyMemberInitializer() &&
1333           "Delegating initializer on non-delegating constructor");
1334    CM.addMemberInitializer(Member);
1335  }
1336  CM.finish();
1337}
1338
1339static bool
1340FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1341
1342static bool
1343HasTrivialDestructorBody(ASTContext &Context,
1344                         const CXXRecordDecl *BaseClassDecl,
1345                         const CXXRecordDecl *MostDerivedClassDecl)
1346{
1347  // If the destructor is trivial we don't have to check anything else.
1348  if (BaseClassDecl->hasTrivialDestructor())
1349    return true;
1350
1351  if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1352    return false;
1353
1354  // Check fields.
1355  for (const auto *Field : BaseClassDecl->fields())
1356    if (!FieldHasTrivialDestructorBody(Context, Field))
1357      return false;
1358
1359  // Check non-virtual bases.
1360  for (const auto &I : BaseClassDecl->bases()) {
1361    if (I.isVirtual())
1362      continue;
1363
1364    const CXXRecordDecl *NonVirtualBase =
1365      cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1366    if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1367                                  MostDerivedClassDecl))
1368      return false;
1369  }
1370
1371  if (BaseClassDecl == MostDerivedClassDecl) {
1372    // Check virtual bases.
1373    for (const auto &I : BaseClassDecl->vbases()) {
1374      const CXXRecordDecl *VirtualBase =
1375        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1376      if (!HasTrivialDestructorBody(Context, VirtualBase,
1377                                    MostDerivedClassDecl))
1378        return false;
1379    }
1380  }
1381
1382  return true;
1383}
1384
1385static bool
1386FieldHasTrivialDestructorBody(ASTContext &Context,
1387                                          const FieldDecl *Field)
1388{
1389  QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1390
1391  const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1392  if (!RT)
1393    return true;
1394
1395  CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1396
1397  // The destructor for an implicit anonymous union member is never invoked.
1398  if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1399    return false;
1400
1401  return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1402}
1403
1404/// CanSkipVTablePointerInitialization - Check whether we need to initialize
1405/// any vtable pointers before calling this destructor.
1406static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1407                                               const CXXDestructorDecl *Dtor) {
1408  const CXXRecordDecl *ClassDecl = Dtor->getParent();
1409  if (!ClassDecl->isDynamicClass())
1410    return true;
1411
1412  // For a final class, the vtable pointer is known to already point to the
1413  // class's vtable.
1414  if (ClassDecl->isEffectivelyFinal())
1415    return true;
1416
1417  if (!Dtor->hasTrivialBody())
1418    return false;
1419
1420  // Check the fields.
1421  for (const auto *Field : ClassDecl->fields())
1422    if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1423      return false;
1424
1425  return true;
1426}
1427
1428/// EmitDestructorBody - Emits the body of the current destructor.
1429void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1430  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1431  CXXDtorType DtorType = CurGD.getDtorType();
1432
1433  // For an abstract class, non-base destructors are never used (and can't
1434  // be emitted in general, because vbase dtors may not have been validated
1435  // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1436  // in fact emit references to them from other compilations, so emit them
1437  // as functions containing a trap instruction.
1438  if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1439    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1440    TrapCall->setDoesNotReturn();
1441    TrapCall->setDoesNotThrow();
1442    Builder.CreateUnreachable();
1443    Builder.ClearInsertionPoint();
1444    return;
1445  }
1446
1447  Stmt *Body = Dtor->getBody();
1448  if (Body) {
1449    incrementProfileCounter(Body);
1450    maybeCreateMCDCCondBitmap();
1451  }
1452
1453  // The call to operator delete in a deleting destructor happens
1454  // outside of the function-try-block, which means it's always
1455  // possible to delegate the destructor body to the complete
1456  // destructor.  Do so.
1457  if (DtorType == Dtor_Deleting) {
1458    RunCleanupsScope DtorEpilogue(*this);
1459    EnterDtorCleanups(Dtor, Dtor_Deleting);
1460    if (HaveInsertPoint()) {
1461      QualType ThisTy = Dtor->getFunctionObjectParameterType();
1462      EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1463                            /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1464    }
1465    return;
1466  }
1467
1468  // If the body is a function-try-block, enter the try before
1469  // anything else.
1470  bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1471  if (isTryBody)
1472    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1473  EmitAsanPrologueOrEpilogue(false);
1474
1475  // Enter the epilogue cleanups.
1476  RunCleanupsScope DtorEpilogue(*this);
1477
1478  // If this is the complete variant, just invoke the base variant;
1479  // the epilogue will destruct the virtual bases.  But we can't do
1480  // this optimization if the body is a function-try-block, because
1481  // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1482  // always delegate because we might not have a definition in this TU.
1483  switch (DtorType) {
1484  case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1485  case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1486
1487  case Dtor_Complete:
1488    assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1489           "can't emit a dtor without a body for non-Microsoft ABIs");
1490
1491    // Enter the cleanup scopes for virtual bases.
1492    EnterDtorCleanups(Dtor, Dtor_Complete);
1493
1494    if (!isTryBody) {
1495      QualType ThisTy = Dtor->getFunctionObjectParameterType();
1496      EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1497                            /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1498      break;
1499    }
1500
1501    // Fallthrough: act like we're in the base variant.
1502    [[fallthrough]];
1503
1504  case Dtor_Base:
1505    assert(Body);
1506
1507    // Enter the cleanup scopes for fields and non-virtual bases.
1508    EnterDtorCleanups(Dtor, Dtor_Base);
1509
1510    // Initialize the vtable pointers before entering the body.
1511    if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1512      // Insert the llvm.launder.invariant.group intrinsic before initializing
1513      // the vptrs to cancel any previous assumptions we might have made.
1514      if (CGM.getCodeGenOpts().StrictVTablePointers &&
1515          CGM.getCodeGenOpts().OptimizationLevel > 0)
1516        CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1517      InitializeVTablePointers(Dtor->getParent());
1518    }
1519
1520    if (isTryBody)
1521      EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1522    else if (Body)
1523      EmitStmt(Body);
1524    else {
1525      assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1526      // nothing to do besides what's in the epilogue
1527    }
1528    // -fapple-kext must inline any call to this dtor into
1529    // the caller's body.
1530    if (getLangOpts().AppleKext)
1531      CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1532
1533    break;
1534  }
1535
1536  // Jump out through the epilogue cleanups.
1537  DtorEpilogue.ForceCleanup();
1538
1539  // Exit the try if applicable.
1540  if (isTryBody)
1541    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1542}
1543
1544void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1545  const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1546  const Stmt *RootS = AssignOp->getBody();
1547  assert(isa<CompoundStmt>(RootS) &&
1548         "Body of an implicit assignment operator should be compound stmt.");
1549  const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1550
1551  LexicalScope Scope(*this, RootCS->getSourceRange());
1552
1553  incrementProfileCounter(RootCS);
1554  maybeCreateMCDCCondBitmap();
1555  AssignmentMemcpyizer AM(*this, AssignOp, Args);
1556  for (auto *I : RootCS->body())
1557    AM.emitAssignment(I);
1558  AM.finish();
1559}
1560
1561namespace {
1562  llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1563                                     const CXXDestructorDecl *DD) {
1564    if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1565      return CGF.EmitScalarExpr(ThisArg);
1566    return CGF.LoadCXXThis();
1567  }
1568
1569  /// Call the operator delete associated with the current destructor.
1570  struct CallDtorDelete final : EHScopeStack::Cleanup {
1571    CallDtorDelete() {}
1572
1573    void Emit(CodeGenFunction &CGF, Flags flags) override {
1574      const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1575      const CXXRecordDecl *ClassDecl = Dtor->getParent();
1576      CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1577                         LoadThisForDtorDelete(CGF, Dtor),
1578                         CGF.getContext().getTagDeclType(ClassDecl));
1579    }
1580  };
1581
1582  void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1583                                     llvm::Value *ShouldDeleteCondition,
1584                                     bool ReturnAfterDelete) {
1585    llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1586    llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1587    llvm::Value *ShouldCallDelete
1588      = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1589    CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1590
1591    CGF.EmitBlock(callDeleteBB);
1592    const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1593    const CXXRecordDecl *ClassDecl = Dtor->getParent();
1594    CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1595                       LoadThisForDtorDelete(CGF, Dtor),
1596                       CGF.getContext().getTagDeclType(ClassDecl));
1597    assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1598               ReturnAfterDelete &&
1599           "unexpected value for ReturnAfterDelete");
1600    if (ReturnAfterDelete)
1601      CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1602    else
1603      CGF.Builder.CreateBr(continueBB);
1604
1605    CGF.EmitBlock(continueBB);
1606  }
1607
1608  struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1609    llvm::Value *ShouldDeleteCondition;
1610
1611  public:
1612    CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1613        : ShouldDeleteCondition(ShouldDeleteCondition) {
1614      assert(ShouldDeleteCondition != nullptr);
1615    }
1616
1617    void Emit(CodeGenFunction &CGF, Flags flags) override {
1618      EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1619                                    /*ReturnAfterDelete*/false);
1620    }
1621  };
1622
1623  class DestroyField  final : public EHScopeStack::Cleanup {
1624    const FieldDecl *field;
1625    CodeGenFunction::Destroyer *destroyer;
1626    bool useEHCleanupForArray;
1627
1628  public:
1629    DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1630                 bool useEHCleanupForArray)
1631        : field(field), destroyer(destroyer),
1632          useEHCleanupForArray(useEHCleanupForArray) {}
1633
1634    void Emit(CodeGenFunction &CGF, Flags flags) override {
1635      // Find the address of the field.
1636      Address thisValue = CGF.LoadCXXThisAddress();
1637      QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1638      LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1639      LValue LV = CGF.EmitLValueForField(ThisLV, field);
1640      assert(LV.isSimple());
1641
1642      CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1643                      flags.isForNormalCleanup() && useEHCleanupForArray);
1644    }
1645  };
1646
1647  class DeclAsInlineDebugLocation {
1648    CGDebugInfo *DI;
1649    llvm::MDNode *InlinedAt;
1650    std::optional<ApplyDebugLocation> Location;
1651
1652  public:
1653    DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1654        : DI(CGF.getDebugInfo()) {
1655      if (!DI)
1656        return;
1657      InlinedAt = DI->getInlinedAt();
1658      DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1659      Location.emplace(CGF, Decl.getLocation());
1660    }
1661
1662    ~DeclAsInlineDebugLocation() {
1663      if (!DI)
1664        return;
1665      Location.reset();
1666      DI->setInlinedAt(InlinedAt);
1667    }
1668  };
1669
1670  static void EmitSanitizerDtorCallback(
1671      CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1672      std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1673    CodeGenFunction::SanitizerScope SanScope(&CGF);
1674    // Pass in void pointer and size of region as arguments to runtime
1675    // function
1676    SmallVector<llvm::Value *, 2> Args = {Ptr};
1677    SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1678
1679    if (PoisonSize.has_value()) {
1680      Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1681      ArgTypes.emplace_back(CGF.SizeTy);
1682    }
1683
1684    llvm::FunctionType *FnType =
1685        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1686    llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1687
1688    CGF.EmitNounwindRuntimeCall(Fn, Args);
1689  }
1690
1691  static void
1692  EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1693                                  CharUnits::QuantityType PoisonSize) {
1694    EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1695                              PoisonSize);
1696  }
1697
1698  /// Poison base class with a trivial destructor.
1699  struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1700    const CXXRecordDecl *BaseClass;
1701    bool BaseIsVirtual;
1702    SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1703        : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1704
1705    void Emit(CodeGenFunction &CGF, Flags flags) override {
1706      const CXXRecordDecl *DerivedClass =
1707          cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1708
1709      Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1710          CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1711
1712      const ASTRecordLayout &BaseLayout =
1713          CGF.getContext().getASTRecordLayout(BaseClass);
1714      CharUnits BaseSize = BaseLayout.getSize();
1715
1716      if (!BaseSize.isPositive())
1717        return;
1718
1719      // Use the base class declaration location as inline DebugLocation. All
1720      // fields of the class are destroyed.
1721      DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1722      EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1723                                      BaseSize.getQuantity());
1724
1725      // Prevent the current stack frame from disappearing from the stack trace.
1726      CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1727    }
1728  };
1729
1730  class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1731    const CXXDestructorDecl *Dtor;
1732    unsigned StartIndex;
1733    unsigned EndIndex;
1734
1735  public:
1736    SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1737                           unsigned EndIndex)
1738        : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1739
1740    // Generate function call for handling object poisoning.
1741    // Disables tail call elimination, to prevent the current stack frame
1742    // from disappearing from the stack trace.
1743    void Emit(CodeGenFunction &CGF, Flags flags) override {
1744      const ASTContext &Context = CGF.getContext();
1745      const ASTRecordLayout &Layout =
1746          Context.getASTRecordLayout(Dtor->getParent());
1747
1748      // It's a first trivial field so it should be at the begining of a char,
1749      // still round up start offset just in case.
1750      CharUnits PoisonStart = Context.toCharUnitsFromBits(
1751          Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1752      llvm::ConstantInt *OffsetSizePtr =
1753          llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1754
1755      llvm::Value *OffsetPtr =
1756          CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1757
1758      CharUnits PoisonEnd;
1759      if (EndIndex >= Layout.getFieldCount()) {
1760        PoisonEnd = Layout.getNonVirtualSize();
1761      } else {
1762        PoisonEnd =
1763            Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1764      }
1765      CharUnits PoisonSize = PoisonEnd - PoisonStart;
1766      if (!PoisonSize.isPositive())
1767        return;
1768
1769      // Use the top field declaration location as inline DebugLocation.
1770      DeclAsInlineDebugLocation InlineHere(
1771          CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1772      EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1773
1774      // Prevent the current stack frame from disappearing from the stack trace.
1775      CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1776    }
1777  };
1778
1779 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1780    const CXXDestructorDecl *Dtor;
1781
1782  public:
1783    SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1784
1785    // Generate function call for handling vtable pointer poisoning.
1786    void Emit(CodeGenFunction &CGF, Flags flags) override {
1787      assert(Dtor->getParent()->isDynamicClass());
1788      (void)Dtor;
1789      // Poison vtable and vtable ptr if they exist for this class.
1790      llvm::Value *VTablePtr = CGF.LoadCXXThis();
1791
1792      // Pass in void pointer and size of region as arguments to runtime
1793      // function
1794      EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1795                                VTablePtr);
1796    }
1797 };
1798
1799 class SanitizeDtorCleanupBuilder {
1800   ASTContext &Context;
1801   EHScopeStack &EHStack;
1802   const CXXDestructorDecl *DD;
1803   std::optional<unsigned> StartIndex;
1804
1805 public:
1806   SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1807                              const CXXDestructorDecl *DD)
1808       : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1809   void PushCleanupForField(const FieldDecl *Field) {
1810     if (Field->isZeroSize(Context))
1811       return;
1812     unsigned FieldIndex = Field->getFieldIndex();
1813     if (FieldHasTrivialDestructorBody(Context, Field)) {
1814       if (!StartIndex)
1815         StartIndex = FieldIndex;
1816     } else if (StartIndex) {
1817       EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1818                                                   *StartIndex, FieldIndex);
1819       StartIndex = std::nullopt;
1820     }
1821   }
1822   void End() {
1823     if (StartIndex)
1824       EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1825                                                   *StartIndex, -1);
1826   }
1827 };
1828} // end anonymous namespace
1829
1830/// Emit all code that comes at the end of class's
1831/// destructor. This is to call destructors on members and base classes
1832/// in reverse order of their construction.
1833///
1834/// For a deleting destructor, this also handles the case where a destroying
1835/// operator delete completely overrides the definition.
1836void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1837                                        CXXDtorType DtorType) {
1838  assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1839         "Should not emit dtor epilogue for non-exported trivial dtor!");
1840
1841  // The deleting-destructor phase just needs to call the appropriate
1842  // operator delete that Sema picked up.
1843  if (DtorType == Dtor_Deleting) {
1844    assert(DD->getOperatorDelete() &&
1845           "operator delete missing - EnterDtorCleanups");
1846    if (CXXStructorImplicitParamValue) {
1847      // If there is an implicit param to the deleting dtor, it's a boolean
1848      // telling whether this is a deleting destructor.
1849      if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1850        EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1851                                      /*ReturnAfterDelete*/true);
1852      else
1853        EHStack.pushCleanup<CallDtorDeleteConditional>(
1854            NormalAndEHCleanup, CXXStructorImplicitParamValue);
1855    } else {
1856      if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1857        const CXXRecordDecl *ClassDecl = DD->getParent();
1858        EmitDeleteCall(DD->getOperatorDelete(),
1859                       LoadThisForDtorDelete(*this, DD),
1860                       getContext().getTagDeclType(ClassDecl));
1861        EmitBranchThroughCleanup(ReturnBlock);
1862      } else {
1863        EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1864      }
1865    }
1866    return;
1867  }
1868
1869  const CXXRecordDecl *ClassDecl = DD->getParent();
1870
1871  // Unions have no bases and do not call field destructors.
1872  if (ClassDecl->isUnion())
1873    return;
1874
1875  // The complete-destructor phase just destructs all the virtual bases.
1876  if (DtorType == Dtor_Complete) {
1877    // Poison the vtable pointer such that access after the base
1878    // and member destructors are invoked is invalid.
1879    if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1880        SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1881        ClassDecl->isPolymorphic())
1882      EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1883
1884    // We push them in the forward order so that they'll be popped in
1885    // the reverse order.
1886    for (const auto &Base : ClassDecl->vbases()) {
1887      auto *BaseClassDecl =
1888          cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1889
1890      if (BaseClassDecl->hasTrivialDestructor()) {
1891        // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1892        // memory. For non-trival base classes the same is done in the class
1893        // destructor.
1894        if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1895            SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1896          EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1897                                                       BaseClassDecl,
1898                                                       /*BaseIsVirtual*/ true);
1899      } else {
1900        EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1901                                          /*BaseIsVirtual*/ true);
1902      }
1903    }
1904
1905    return;
1906  }
1907
1908  assert(DtorType == Dtor_Base);
1909  // Poison the vtable pointer if it has no virtual bases, but inherits
1910  // virtual functions.
1911  if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1912      SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1913      ClassDecl->isPolymorphic())
1914    EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1915
1916  // Destroy non-virtual bases.
1917  for (const auto &Base : ClassDecl->bases()) {
1918    // Ignore virtual bases.
1919    if (Base.isVirtual())
1920      continue;
1921
1922    CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1923
1924    if (BaseClassDecl->hasTrivialDestructor()) {
1925      if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1926          SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1927        EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1928                                                     BaseClassDecl,
1929                                                     /*BaseIsVirtual*/ false);
1930    } else {
1931      EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1932                                        /*BaseIsVirtual*/ false);
1933    }
1934  }
1935
1936  // Poison fields such that access after their destructors are
1937  // invoked, and before the base class destructor runs, is invalid.
1938  bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1939                        SanOpts.has(SanitizerKind::Memory);
1940  SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1941
1942  // Destroy direct fields.
1943  for (const auto *Field : ClassDecl->fields()) {
1944    if (SanitizeFields)
1945      SanitizeBuilder.PushCleanupForField(Field);
1946
1947    QualType type = Field->getType();
1948    QualType::DestructionKind dtorKind = type.isDestructedType();
1949    if (!dtorKind)
1950      continue;
1951
1952    // Anonymous union members do not have their destructors called.
1953    const RecordType *RT = type->getAsUnionType();
1954    if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1955      continue;
1956
1957    CleanupKind cleanupKind = getCleanupKind(dtorKind);
1958    EHStack.pushCleanup<DestroyField>(
1959        cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1960  }
1961
1962  if (SanitizeFields)
1963    SanitizeBuilder.End();
1964}
1965
1966/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1967/// constructor for each of several members of an array.
1968///
1969/// \param ctor the constructor to call for each element
1970/// \param arrayType the type of the array to initialize
1971/// \param arrayBegin an arrayType*
1972/// \param zeroInitialize true if each element should be
1973///   zero-initialized before it is constructed
1974void CodeGenFunction::EmitCXXAggrConstructorCall(
1975    const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1976    Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1977    bool zeroInitialize) {
1978  QualType elementType;
1979  llvm::Value *numElements =
1980    emitArrayLength(arrayType, elementType, arrayBegin);
1981
1982  EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1983                             NewPointerIsChecked, zeroInitialize);
1984}
1985
1986/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1987/// constructor for each of several members of an array.
1988///
1989/// \param ctor the constructor to call for each element
1990/// \param numElements the number of elements in the array;
1991///   may be zero
1992/// \param arrayBase a T*, where T is the type constructed by ctor
1993/// \param zeroInitialize true if each element should be
1994///   zero-initialized before it is constructed
1995void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1996                                                 llvm::Value *numElements,
1997                                                 Address arrayBase,
1998                                                 const CXXConstructExpr *E,
1999                                                 bool NewPointerIsChecked,
2000                                                 bool zeroInitialize) {
2001  // It's legal for numElements to be zero.  This can happen both
2002  // dynamically, because x can be zero in 'new A[x]', and statically,
2003  // because of GCC extensions that permit zero-length arrays.  There
2004  // are probably legitimate places where we could assume that this
2005  // doesn't happen, but it's not clear that it's worth it.
2006  llvm::BranchInst *zeroCheckBranch = nullptr;
2007
2008  // Optimize for a constant count.
2009  llvm::ConstantInt *constantCount
2010    = dyn_cast<llvm::ConstantInt>(numElements);
2011  if (constantCount) {
2012    // Just skip out if the constant count is zero.
2013    if (constantCount->isZero()) return;
2014
2015  // Otherwise, emit the check.
2016  } else {
2017    llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2018    llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2019    zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2020    EmitBlock(loopBB);
2021  }
2022
2023  // Find the end of the array.
2024  llvm::Type *elementType = arrayBase.getElementType();
2025  llvm::Value *arrayBegin = arrayBase.getPointer();
2026  llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2027      elementType, arrayBegin, numElements, "arrayctor.end");
2028
2029  // Enter the loop, setting up a phi for the current location to initialize.
2030  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2031  llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2032  EmitBlock(loopBB);
2033  llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2034                                         "arrayctor.cur");
2035  cur->addIncoming(arrayBegin, entryBB);
2036
2037  // Inside the loop body, emit the constructor call on the array element.
2038
2039  // The alignment of the base, adjusted by the size of a single element,
2040  // provides a conservative estimate of the alignment of every element.
2041  // (This assumes we never start tracking offsetted alignments.)
2042  //
2043  // Note that these are complete objects and so we don't need to
2044  // use the non-virtual size or alignment.
2045  QualType type = getContext().getTypeDeclType(ctor->getParent());
2046  CharUnits eltAlignment =
2047    arrayBase.getAlignment()
2048             .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2049  Address curAddr = Address(cur, elementType, eltAlignment);
2050
2051  // Zero initialize the storage, if requested.
2052  if (zeroInitialize)
2053    EmitNullInitialization(curAddr, type);
2054
2055  // C++ [class.temporary]p4:
2056  // There are two contexts in which temporaries are destroyed at a different
2057  // point than the end of the full-expression. The first context is when a
2058  // default constructor is called to initialize an element of an array.
2059  // If the constructor has one or more default arguments, the destruction of
2060  // every temporary created in a default argument expression is sequenced
2061  // before the construction of the next array element, if any.
2062
2063  {
2064    RunCleanupsScope Scope(*this);
2065
2066    // Evaluate the constructor and its arguments in a regular
2067    // partial-destroy cleanup.
2068    if (getLangOpts().Exceptions &&
2069        !ctor->getParent()->hasTrivialDestructor()) {
2070      Destroyer *destroyer = destroyCXXObject;
2071      pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2072                                     *destroyer);
2073    }
2074    auto currAVS = AggValueSlot::forAddr(
2075        curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2076        AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2077        AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2078        NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2079                            : AggValueSlot::IsNotSanitizerChecked);
2080    EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2081                           /*Delegating=*/false, currAVS, E);
2082  }
2083
2084  // Go to the next element.
2085  llvm::Value *next = Builder.CreateInBoundsGEP(
2086      elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2087  cur->addIncoming(next, Builder.GetInsertBlock());
2088
2089  // Check whether that's the end of the loop.
2090  llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2091  llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2092  Builder.CreateCondBr(done, contBB, loopBB);
2093
2094  // Patch the earlier check to skip over the loop.
2095  if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2096
2097  EmitBlock(contBB);
2098}
2099
2100void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2101                                       Address addr,
2102                                       QualType type) {
2103  const RecordType *rtype = type->castAs<RecordType>();
2104  const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2105  const CXXDestructorDecl *dtor = record->getDestructor();
2106  assert(!dtor->isTrivial());
2107  CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2108                            /*Delegating=*/false, addr, type);
2109}
2110
2111void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2112                                             CXXCtorType Type,
2113                                             bool ForVirtualBase,
2114                                             bool Delegating,
2115                                             AggValueSlot ThisAVS,
2116                                             const CXXConstructExpr *E) {
2117  CallArgList Args;
2118  Address This = ThisAVS.getAddress();
2119  LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2120  LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2121  llvm::Value *ThisPtr = This.getPointer();
2122
2123  if (SlotAS != ThisAS) {
2124    unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2125    llvm::Type *NewType =
2126        llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2127    ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2128                                                    ThisAS, SlotAS, NewType);
2129  }
2130
2131  // Push the this ptr.
2132  Args.add(RValue::get(ThisPtr), D->getThisType());
2133
2134  // If this is a trivial constructor, emit a memcpy now before we lose
2135  // the alignment information on the argument.
2136  // FIXME: It would be better to preserve alignment information into CallArg.
2137  if (isMemcpyEquivalentSpecialMember(D)) {
2138    assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2139
2140    const Expr *Arg = E->getArg(0);
2141    LValue Src = EmitLValue(Arg);
2142    QualType DestTy = getContext().getTypeDeclType(D->getParent());
2143    LValue Dest = MakeAddrLValue(This, DestTy);
2144    EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2145    return;
2146  }
2147
2148  // Add the rest of the user-supplied arguments.
2149  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2150  EvaluationOrder Order = E->isListInitialization()
2151                              ? EvaluationOrder::ForceLeftToRight
2152                              : EvaluationOrder::Default;
2153  EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2154               /*ParamsToSkip*/ 0, Order);
2155
2156  EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2157                         ThisAVS.mayOverlap(), E->getExprLoc(),
2158                         ThisAVS.isSanitizerChecked());
2159}
2160
2161static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2162                                    const CXXConstructorDecl *Ctor,
2163                                    CXXCtorType Type, CallArgList &Args) {
2164  // We can't forward a variadic call.
2165  if (Ctor->isVariadic())
2166    return false;
2167
2168  if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2169    // If the parameters are callee-cleanup, it's not safe to forward.
2170    for (auto *P : Ctor->parameters())
2171      if (P->needsDestruction(CGF.getContext()))
2172        return false;
2173
2174    // Likewise if they're inalloca.
2175    const CGFunctionInfo &Info =
2176        CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2177    if (Info.usesInAlloca())
2178      return false;
2179  }
2180
2181  // Anything else should be OK.
2182  return true;
2183}
2184
2185void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2186                                             CXXCtorType Type,
2187                                             bool ForVirtualBase,
2188                                             bool Delegating,
2189                                             Address This,
2190                                             CallArgList &Args,
2191                                             AggValueSlot::Overlap_t Overlap,
2192                                             SourceLocation Loc,
2193                                             bool NewPointerIsChecked) {
2194  const CXXRecordDecl *ClassDecl = D->getParent();
2195
2196  if (!NewPointerIsChecked)
2197    EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2198                  getContext().getRecordType(ClassDecl), CharUnits::Zero());
2199
2200  if (D->isTrivial() && D->isDefaultConstructor()) {
2201    assert(Args.size() == 1 && "trivial default ctor with args");
2202    return;
2203  }
2204
2205  // If this is a trivial constructor, just emit what's needed. If this is a
2206  // union copy constructor, we must emit a memcpy, because the AST does not
2207  // model that copy.
2208  if (isMemcpyEquivalentSpecialMember(D)) {
2209    assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2210
2211    QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2212    Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2213                                      CGM.getNaturalTypeAlignment(SrcTy));
2214    LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2215    QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2216    LValue DestLVal = MakeAddrLValue(This, DestTy);
2217    EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2218    return;
2219  }
2220
2221  bool PassPrototypeArgs = true;
2222  // Check whether we can actually emit the constructor before trying to do so.
2223  if (auto Inherited = D->getInheritedConstructor()) {
2224    PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2225    if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2226      EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2227                                              Delegating, Args);
2228      return;
2229    }
2230  }
2231
2232  // Insert any ABI-specific implicit constructor arguments.
2233  CGCXXABI::AddedStructorArgCounts ExtraArgs =
2234      CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2235                                                 Delegating, Args);
2236
2237  // Emit the call.
2238  llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2239  const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2240      Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2241  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2242  EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2243
2244  // Generate vtable assumptions if we're constructing a complete object
2245  // with a vtable.  We don't do this for base subobjects for two reasons:
2246  // first, it's incorrect for classes with virtual bases, and second, we're
2247  // about to overwrite the vptrs anyway.
2248  // We also have to make sure if we can refer to vtable:
2249  // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2250  // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2251  // sure that definition of vtable is not hidden,
2252  // then we are always safe to refer to it.
2253  // FIXME: It looks like InstCombine is very inefficient on dealing with
2254  // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2255  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2256      ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2257      CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2258      CGM.getCodeGenOpts().StrictVTablePointers)
2259    EmitVTableAssumptionLoads(ClassDecl, This);
2260}
2261
2262void CodeGenFunction::EmitInheritedCXXConstructorCall(
2263    const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2264    bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2265  CallArgList Args;
2266  CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2267
2268  // Forward the parameters.
2269  if (InheritedFromVBase &&
2270      CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2271    // Nothing to do; this construction is not responsible for constructing
2272    // the base class containing the inherited constructor.
2273    // FIXME: Can we just pass undef's for the remaining arguments if we don't
2274    // have constructor variants?
2275    Args.push_back(ThisArg);
2276  } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2277    // The inheriting constructor was inlined; just inject its arguments.
2278    assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2279           "wrong number of parameters for inherited constructor call");
2280    Args = CXXInheritedCtorInitExprArgs;
2281    Args[0] = ThisArg;
2282  } else {
2283    // The inheriting constructor was not inlined. Emit delegating arguments.
2284    Args.push_back(ThisArg);
2285    const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2286    assert(OuterCtor->getNumParams() == D->getNumParams());
2287    assert(!OuterCtor->isVariadic() && "should have been inlined");
2288
2289    for (const auto *Param : OuterCtor->parameters()) {
2290      assert(getContext().hasSameUnqualifiedType(
2291          OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2292          Param->getType()));
2293      EmitDelegateCallArg(Args, Param, E->getLocation());
2294
2295      // Forward __attribute__(pass_object_size).
2296      if (Param->hasAttr<PassObjectSizeAttr>()) {
2297        auto *POSParam = SizeArguments[Param];
2298        assert(POSParam && "missing pass_object_size value for forwarding");
2299        EmitDelegateCallArg(Args, POSParam, E->getLocation());
2300      }
2301    }
2302  }
2303
2304  EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2305                         This, Args, AggValueSlot::MayOverlap,
2306                         E->getLocation(), /*NewPointerIsChecked*/true);
2307}
2308
2309void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2310    const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2311    bool Delegating, CallArgList &Args) {
2312  GlobalDecl GD(Ctor, CtorType);
2313  InlinedInheritingConstructorScope Scope(*this, GD);
2314  ApplyInlineDebugLocation DebugScope(*this, GD);
2315  RunCleanupsScope RunCleanups(*this);
2316
2317  // Save the arguments to be passed to the inherited constructor.
2318  CXXInheritedCtorInitExprArgs = Args;
2319
2320  FunctionArgList Params;
2321  QualType RetType = BuildFunctionArgList(CurGD, Params);
2322  FnRetTy = RetType;
2323
2324  // Insert any ABI-specific implicit constructor arguments.
2325  CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2326                                             ForVirtualBase, Delegating, Args);
2327
2328  // Emit a simplified prolog. We only need to emit the implicit params.
2329  assert(Args.size() >= Params.size() && "too few arguments for call");
2330  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2331    if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2332      const RValue &RV = Args[I].getRValue(*this);
2333      assert(!RV.isComplex() && "complex indirect params not supported");
2334      ParamValue Val = RV.isScalar()
2335                           ? ParamValue::forDirect(RV.getScalarVal())
2336                           : ParamValue::forIndirect(RV.getAggregateAddress());
2337      EmitParmDecl(*Params[I], Val, I + 1);
2338    }
2339  }
2340
2341  // Create a return value slot if the ABI implementation wants one.
2342  // FIXME: This is dumb, we should ask the ABI not to try to set the return
2343  // value instead.
2344  if (!RetType->isVoidType())
2345    ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2346
2347  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2348  CXXThisValue = CXXABIThisValue;
2349
2350  // Directly emit the constructor initializers.
2351  EmitCtorPrologue(Ctor, CtorType, Params);
2352}
2353
2354void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2355  llvm::Value *VTableGlobal =
2356      CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2357  if (!VTableGlobal)
2358    return;
2359
2360  // We can just use the base offset in the complete class.
2361  CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2362
2363  if (!NonVirtualOffset.isZero())
2364    This =
2365        ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2366                                        Vptr.VTableClass, Vptr.NearestVBase);
2367
2368  llvm::Value *VPtrValue =
2369      GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2370  llvm::Value *Cmp =
2371      Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2372  Builder.CreateAssumption(Cmp);
2373}
2374
2375void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2376                                                Address This) {
2377  if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2378    for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2379      EmitVTableAssumptionLoad(Vptr, This);
2380}
2381
2382void
2383CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2384                                                Address This, Address Src,
2385                                                const CXXConstructExpr *E) {
2386  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2387
2388  CallArgList Args;
2389
2390  // Push the this ptr.
2391  Args.add(RValue::get(This.getPointer()), D->getThisType());
2392
2393  // Push the src ptr.
2394  QualType QT = *(FPT->param_type_begin());
2395  llvm::Type *t = CGM.getTypes().ConvertType(QT);
2396  llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2397  Args.add(RValue::get(SrcVal), QT);
2398
2399  // Skip over first argument (Src).
2400  EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2401               /*ParamsToSkip*/ 1);
2402
2403  EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2404                         /*Delegating*/false, This, Args,
2405                         AggValueSlot::MayOverlap, E->getExprLoc(),
2406                         /*NewPointerIsChecked*/false);
2407}
2408
2409void
2410CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2411                                                CXXCtorType CtorType,
2412                                                const FunctionArgList &Args,
2413                                                SourceLocation Loc) {
2414  CallArgList DelegateArgs;
2415
2416  FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2417  assert(I != E && "no parameters to constructor");
2418
2419  // this
2420  Address This = LoadCXXThisAddress();
2421  DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2422  ++I;
2423
2424  // FIXME: The location of the VTT parameter in the parameter list is
2425  // specific to the Itanium ABI and shouldn't be hardcoded here.
2426  if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2427    assert(I != E && "cannot skip vtt parameter, already done with args");
2428    assert((*I)->getType()->isPointerType() &&
2429           "skipping parameter not of vtt type");
2430    ++I;
2431  }
2432
2433  // Explicit arguments.
2434  for (; I != E; ++I) {
2435    const VarDecl *param = *I;
2436    // FIXME: per-argument source location
2437    EmitDelegateCallArg(DelegateArgs, param, Loc);
2438  }
2439
2440  EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2441                         /*Delegating=*/true, This, DelegateArgs,
2442                         AggValueSlot::MayOverlap, Loc,
2443                         /*NewPointerIsChecked=*/true);
2444}
2445
2446namespace {
2447  struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2448    const CXXDestructorDecl *Dtor;
2449    Address Addr;
2450    CXXDtorType Type;
2451
2452    CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2453                           CXXDtorType Type)
2454      : Dtor(D), Addr(Addr), Type(Type) {}
2455
2456    void Emit(CodeGenFunction &CGF, Flags flags) override {
2457      // We are calling the destructor from within the constructor.
2458      // Therefore, "this" should have the expected type.
2459      QualType ThisTy = Dtor->getFunctionObjectParameterType();
2460      CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2461                                /*Delegating=*/true, Addr, ThisTy);
2462    }
2463  };
2464} // end anonymous namespace
2465
2466void
2467CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2468                                                  const FunctionArgList &Args) {
2469  assert(Ctor->isDelegatingConstructor());
2470
2471  Address ThisPtr = LoadCXXThisAddress();
2472
2473  AggValueSlot AggSlot =
2474    AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2475                          AggValueSlot::IsDestructed,
2476                          AggValueSlot::DoesNotNeedGCBarriers,
2477                          AggValueSlot::IsNotAliased,
2478                          AggValueSlot::MayOverlap,
2479                          AggValueSlot::IsNotZeroed,
2480                          // Checks are made by the code that calls constructor.
2481                          AggValueSlot::IsSanitizerChecked);
2482
2483  EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2484
2485  const CXXRecordDecl *ClassDecl = Ctor->getParent();
2486  if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2487    CXXDtorType Type =
2488      CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2489
2490    EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2491                                                ClassDecl->getDestructor(),
2492                                                ThisPtr, Type);
2493  }
2494}
2495
2496void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2497                                            CXXDtorType Type,
2498                                            bool ForVirtualBase,
2499                                            bool Delegating, Address This,
2500                                            QualType ThisTy) {
2501  CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2502                                     Delegating, This, ThisTy);
2503}
2504
2505namespace {
2506  struct CallLocalDtor final : EHScopeStack::Cleanup {
2507    const CXXDestructorDecl *Dtor;
2508    Address Addr;
2509    QualType Ty;
2510
2511    CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2512        : Dtor(D), Addr(Addr), Ty(Ty) {}
2513
2514    void Emit(CodeGenFunction &CGF, Flags flags) override {
2515      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2516                                /*ForVirtualBase=*/false,
2517                                /*Delegating=*/false, Addr, Ty);
2518    }
2519  };
2520} // end anonymous namespace
2521
2522void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2523                                            QualType T, Address Addr) {
2524  EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2525}
2526
2527void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2528  CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2529  if (!ClassDecl) return;
2530  if (ClassDecl->hasTrivialDestructor()) return;
2531
2532  const CXXDestructorDecl *D = ClassDecl->getDestructor();
2533  assert(D && D->isUsed() && "destructor not marked as used!");
2534  PushDestructorCleanup(D, T, Addr);
2535}
2536
2537void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2538  // Compute the address point.
2539  llvm::Value *VTableAddressPoint =
2540      CGM.getCXXABI().getVTableAddressPointInStructor(
2541          *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2542
2543  if (!VTableAddressPoint)
2544    return;
2545
2546  // Compute where to store the address point.
2547  llvm::Value *VirtualOffset = nullptr;
2548  CharUnits NonVirtualOffset = CharUnits::Zero();
2549
2550  if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2551    // We need to use the virtual base offset offset because the virtual base
2552    // might have a different offset in the most derived class.
2553
2554    VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2555        *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2556    NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2557  } else {
2558    // We can just use the base offset in the complete class.
2559    NonVirtualOffset = Vptr.Base.getBaseOffset();
2560  }
2561
2562  // Apply the offsets.
2563  Address VTableField = LoadCXXThisAddress();
2564  if (!NonVirtualOffset.isZero() || VirtualOffset)
2565    VTableField = ApplyNonVirtualAndVirtualOffset(
2566        *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2567        Vptr.NearestVBase);
2568
2569  // Finally, store the address point. Use the same LLVM types as the field to
2570  // support optimization.
2571  unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2572  llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2573  // vtable field is derived from `this` pointer, therefore they should be in
2574  // the same addr space. Note that this might not be LLVM address space 0.
2575  VTableField = VTableField.withElementType(PtrTy);
2576
2577  llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2578  TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2579  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2580  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2581      CGM.getCodeGenOpts().StrictVTablePointers)
2582    CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2583}
2584
2585CodeGenFunction::VPtrsVector
2586CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2587  CodeGenFunction::VPtrsVector VPtrsResult;
2588  VisitedVirtualBasesSetTy VBases;
2589  getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2590                    /*NearestVBase=*/nullptr,
2591                    /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2592                    /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2593                    VPtrsResult);
2594  return VPtrsResult;
2595}
2596
2597void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2598                                        const CXXRecordDecl *NearestVBase,
2599                                        CharUnits OffsetFromNearestVBase,
2600                                        bool BaseIsNonVirtualPrimaryBase,
2601                                        const CXXRecordDecl *VTableClass,
2602                                        VisitedVirtualBasesSetTy &VBases,
2603                                        VPtrsVector &Vptrs) {
2604  // If this base is a non-virtual primary base the address point has already
2605  // been set.
2606  if (!BaseIsNonVirtualPrimaryBase) {
2607    // Initialize the vtable pointer for this base.
2608    VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2609    Vptrs.push_back(Vptr);
2610  }
2611
2612  const CXXRecordDecl *RD = Base.getBase();
2613
2614  // Traverse bases.
2615  for (const auto &I : RD->bases()) {
2616    auto *BaseDecl =
2617        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2618
2619    // Ignore classes without a vtable.
2620    if (!BaseDecl->isDynamicClass())
2621      continue;
2622
2623    CharUnits BaseOffset;
2624    CharUnits BaseOffsetFromNearestVBase;
2625    bool BaseDeclIsNonVirtualPrimaryBase;
2626
2627    if (I.isVirtual()) {
2628      // Check if we've visited this virtual base before.
2629      if (!VBases.insert(BaseDecl).second)
2630        continue;
2631
2632      const ASTRecordLayout &Layout =
2633        getContext().getASTRecordLayout(VTableClass);
2634
2635      BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2636      BaseOffsetFromNearestVBase = CharUnits::Zero();
2637      BaseDeclIsNonVirtualPrimaryBase = false;
2638    } else {
2639      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2640
2641      BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2642      BaseOffsetFromNearestVBase =
2643        OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2644      BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2645    }
2646
2647    getVTablePointers(
2648        BaseSubobject(BaseDecl, BaseOffset),
2649        I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2650        BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2651  }
2652}
2653
2654void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2655  // Ignore classes without a vtable.
2656  if (!RD->isDynamicClass())
2657    return;
2658
2659  // Initialize the vtable pointers for this class and all of its bases.
2660  if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2661    for (const VPtr &Vptr : getVTablePointers(RD))
2662      InitializeVTablePointer(Vptr);
2663
2664  if (RD->getNumVBases())
2665    CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2666}
2667
2668llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2669                                           llvm::Type *VTableTy,
2670                                           const CXXRecordDecl *RD) {
2671  Address VTablePtrSrc = This.withElementType(VTableTy);
2672  llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2673  TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2674  CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2675
2676  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2677      CGM.getCodeGenOpts().StrictVTablePointers)
2678    CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2679
2680  return VTable;
2681}
2682
2683// If a class has a single non-virtual base and does not introduce or override
2684// virtual member functions or fields, it will have the same layout as its base.
2685// This function returns the least derived such class.
2686//
2687// Casting an instance of a base class to such a derived class is technically
2688// undefined behavior, but it is a relatively common hack for introducing member
2689// functions on class instances with specific properties (e.g. llvm::Operator)
2690// that works under most compilers and should not have security implications, so
2691// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2692static const CXXRecordDecl *
2693LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2694  if (!RD->field_empty())
2695    return RD;
2696
2697  if (RD->getNumVBases() != 0)
2698    return RD;
2699
2700  if (RD->getNumBases() != 1)
2701    return RD;
2702
2703  for (const CXXMethodDecl *MD : RD->methods()) {
2704    if (MD->isVirtual()) {
2705      // Virtual member functions are only ok if they are implicit destructors
2706      // because the implicit destructor will have the same semantics as the
2707      // base class's destructor if no fields are added.
2708      if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2709        continue;
2710      return RD;
2711    }
2712  }
2713
2714  return LeastDerivedClassWithSameLayout(
2715      RD->bases_begin()->getType()->getAsCXXRecordDecl());
2716}
2717
2718void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2719                                                   llvm::Value *VTable,
2720                                                   SourceLocation Loc) {
2721  if (SanOpts.has(SanitizerKind::CFIVCall))
2722    EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2723  else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2724           // Don't insert type test assumes if we are forcing public
2725           // visibility.
2726           !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2727    QualType Ty = QualType(RD->getTypeForDecl(), 0);
2728    llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2729    llvm::Value *TypeId =
2730        llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2731
2732    // If we already know that the call has hidden LTO visibility, emit
2733    // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2734    // will convert to @llvm.type.test() if we assert at link time that we have
2735    // whole program visibility.
2736    llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2737                                  ? llvm::Intrinsic::type_test
2738                                  : llvm::Intrinsic::public_type_test;
2739    llvm::Value *TypeTest =
2740        Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2741    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2742  }
2743}
2744
2745void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2746                                                llvm::Value *VTable,
2747                                                CFITypeCheckKind TCK,
2748                                                SourceLocation Loc) {
2749  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2750    RD = LeastDerivedClassWithSameLayout(RD);
2751
2752  EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2753}
2754
2755void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2756                                                bool MayBeNull,
2757                                                CFITypeCheckKind TCK,
2758                                                SourceLocation Loc) {
2759  if (!getLangOpts().CPlusPlus)
2760    return;
2761
2762  auto *ClassTy = T->getAs<RecordType>();
2763  if (!ClassTy)
2764    return;
2765
2766  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2767
2768  if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2769    return;
2770
2771  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2772    ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2773
2774  llvm::BasicBlock *ContBlock = nullptr;
2775
2776  if (MayBeNull) {
2777    llvm::Value *DerivedNotNull =
2778        Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2779
2780    llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2781    ContBlock = createBasicBlock("cast.cont");
2782
2783    Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2784
2785    EmitBlock(CheckBlock);
2786  }
2787
2788  llvm::Value *VTable;
2789  std::tie(VTable, ClassDecl) =
2790      CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2791
2792  EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2793
2794  if (MayBeNull) {
2795    Builder.CreateBr(ContBlock);
2796    EmitBlock(ContBlock);
2797  }
2798}
2799
2800void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2801                                         llvm::Value *VTable,
2802                                         CFITypeCheckKind TCK,
2803                                         SourceLocation Loc) {
2804  if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2805      !CGM.HasHiddenLTOVisibility(RD))
2806    return;
2807
2808  SanitizerMask M;
2809  llvm::SanitizerStatKind SSK;
2810  switch (TCK) {
2811  case CFITCK_VCall:
2812    M = SanitizerKind::CFIVCall;
2813    SSK = llvm::SanStat_CFI_VCall;
2814    break;
2815  case CFITCK_NVCall:
2816    M = SanitizerKind::CFINVCall;
2817    SSK = llvm::SanStat_CFI_NVCall;
2818    break;
2819  case CFITCK_DerivedCast:
2820    M = SanitizerKind::CFIDerivedCast;
2821    SSK = llvm::SanStat_CFI_DerivedCast;
2822    break;
2823  case CFITCK_UnrelatedCast:
2824    M = SanitizerKind::CFIUnrelatedCast;
2825    SSK = llvm::SanStat_CFI_UnrelatedCast;
2826    break;
2827  case CFITCK_ICall:
2828  case CFITCK_NVMFCall:
2829  case CFITCK_VMFCall:
2830    llvm_unreachable("unexpected sanitizer kind");
2831  }
2832
2833  std::string TypeName = RD->getQualifiedNameAsString();
2834  if (getContext().getNoSanitizeList().containsType(M, TypeName))
2835    return;
2836
2837  SanitizerScope SanScope(this);
2838  EmitSanitizerStatReport(SSK);
2839
2840  llvm::Metadata *MD =
2841      CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2842  llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2843
2844  llvm::Value *TypeTest = Builder.CreateCall(
2845      CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2846
2847  llvm::Constant *StaticData[] = {
2848      llvm::ConstantInt::get(Int8Ty, TCK),
2849      EmitCheckSourceLocation(Loc),
2850      EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2851  };
2852
2853  auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2854  if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2855    EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2856    return;
2857  }
2858
2859  if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2860    EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2861    return;
2862  }
2863
2864  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2865      CGM.getLLVMContext(),
2866      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2867  llvm::Value *ValidVtable = Builder.CreateCall(
2868      CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2869  EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2870            StaticData, {VTable, ValidVtable});
2871}
2872
2873bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2874  if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2875      !CGM.HasHiddenLTOVisibility(RD))
2876    return false;
2877
2878  if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2879    return true;
2880
2881  if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2882      !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2883    return false;
2884
2885  std::string TypeName = RD->getQualifiedNameAsString();
2886  return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2887                                                        TypeName);
2888}
2889
2890llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2891    const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2892    uint64_t VTableByteOffset) {
2893  SanitizerScope SanScope(this);
2894
2895  EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2896
2897  llvm::Metadata *MD =
2898      CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2899  llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2900
2901  llvm::Value *CheckedLoad = Builder.CreateCall(
2902      CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2903      {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2904  llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2905
2906  std::string TypeName = RD->getQualifiedNameAsString();
2907  if (SanOpts.has(SanitizerKind::CFIVCall) &&
2908      !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2909                                                     TypeName)) {
2910    EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2911              SanitizerHandler::CFICheckFail, {}, {});
2912  }
2913
2914  return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2915                               VTableTy);
2916}
2917
2918void CodeGenFunction::EmitForwardingCallToLambda(
2919    const CXXMethodDecl *callOperator, CallArgList &callArgs,
2920    const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2921  // Get the address of the call operator.
2922  if (!calleeFnInfo)
2923    calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2924
2925  if (!calleePtr)
2926    calleePtr =
2927        CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2928                              CGM.getTypes().GetFunctionType(*calleeFnInfo));
2929
2930  // Prepare the return slot.
2931  const FunctionProtoType *FPT =
2932    callOperator->getType()->castAs<FunctionProtoType>();
2933  QualType resultType = FPT->getReturnType();
2934  ReturnValueSlot returnSlot;
2935  if (!resultType->isVoidType() &&
2936      calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2937      !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2938    returnSlot =
2939        ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2940                        /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2941
2942  // We don't need to separately arrange the call arguments because
2943  // the call can't be variadic anyway --- it's impossible to forward
2944  // variadic arguments.
2945
2946  // Now emit our call.
2947  auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2948  RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2949
2950  // If necessary, copy the returned value into the slot.
2951  if (!resultType->isVoidType() && returnSlot.isNull()) {
2952    if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2953      RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2954    }
2955    EmitReturnOfRValue(RV, resultType);
2956  } else
2957    EmitBranchThroughCleanup(ReturnBlock);
2958}
2959
2960void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2961  const BlockDecl *BD = BlockInfo->getBlockDecl();
2962  const VarDecl *variable = BD->capture_begin()->getVariable();
2963  const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2964  const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2965
2966  if (CallOp->isVariadic()) {
2967    // FIXME: Making this work correctly is nasty because it requires either
2968    // cloning the body of the call operator or making the call operator
2969    // forward.
2970    CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2971    return;
2972  }
2973
2974  // Start building arguments for forwarding call
2975  CallArgList CallArgs;
2976
2977  QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2978  Address ThisPtr = GetAddrOfBlockDecl(variable);
2979  CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2980
2981  // Add the rest of the parameters.
2982  for (auto *param : BD->parameters())
2983    EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2984
2985  assert(!Lambda->isGenericLambda() &&
2986            "generic lambda interconversion to block not implemented");
2987  EmitForwardingCallToLambda(CallOp, CallArgs);
2988}
2989
2990void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2991  if (MD->isVariadic()) {
2992    // FIXME: Making this work correctly is nasty because it requires either
2993    // cloning the body of the call operator or making the call operator
2994    // forward.
2995    CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2996    return;
2997  }
2998
2999  const CXXRecordDecl *Lambda = MD->getParent();
3000
3001  // Start building arguments for forwarding call
3002  CallArgList CallArgs;
3003
3004  QualType LambdaType = getContext().getRecordType(Lambda);
3005  QualType ThisType = getContext().getPointerType(LambdaType);
3006  Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3007  CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3008
3009  EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3010}
3011
3012void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3013                                                     CallArgList &CallArgs) {
3014  // Add the rest of the forwarded parameters.
3015  for (auto *Param : MD->parameters())
3016    EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3017
3018  const CXXRecordDecl *Lambda = MD->getParent();
3019  const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3020  // For a generic lambda, find the corresponding call operator specialization
3021  // to which the call to the static-invoker shall be forwarded.
3022  if (Lambda->isGenericLambda()) {
3023    assert(MD->isFunctionTemplateSpecialization());
3024    const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3025    FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3026    void *InsertPos = nullptr;
3027    FunctionDecl *CorrespondingCallOpSpecialization =
3028        CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3029    assert(CorrespondingCallOpSpecialization);
3030    CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3031  }
3032
3033  // Special lambda forwarding when there are inalloca parameters.
3034  if (hasInAllocaArg(MD)) {
3035    const CGFunctionInfo *ImplFnInfo = nullptr;
3036    llvm::Function *ImplFn = nullptr;
3037    EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3038
3039    EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3040    return;
3041  }
3042
3043  EmitForwardingCallToLambda(CallOp, CallArgs);
3044}
3045
3046void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3047  if (MD->isVariadic()) {
3048    // FIXME: Making this work correctly is nasty because it requires either
3049    // cloning the body of the call operator or making the call operator forward.
3050    CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3051    return;
3052  }
3053
3054  // Forward %this argument.
3055  CallArgList CallArgs;
3056  QualType LambdaType = getContext().getRecordType(MD->getParent());
3057  QualType ThisType = getContext().getPointerType(LambdaType);
3058  llvm::Value *ThisArg = CurFn->getArg(0);
3059  CallArgs.add(RValue::get(ThisArg), ThisType);
3060
3061  EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3062}
3063
3064void CodeGenFunction::EmitLambdaInAllocaImplFn(
3065    const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3066    llvm::Function **ImplFn) {
3067  const CGFunctionInfo &FnInfo =
3068      CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3069  llvm::Function *CallOpFn =
3070      cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3071
3072  // Emit function containing the original call op body. __invoke will delegate
3073  // to this function.
3074  SmallVector<CanQualType, 4> ArgTypes;
3075  for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3076    ArgTypes.push_back(I->type);
3077  *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3078      FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3079      FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3080
3081  // Create mangled name as if this was a method named __impl. If for some
3082  // reason the name doesn't look as expected then just tack __impl to the
3083  // front.
3084  // TODO: Use the name mangler to produce the right name instead of using
3085  // string replacement.
3086  StringRef CallOpName = CallOpFn->getName();
3087  std::string ImplName;
3088  if (size_t Pos = CallOpName.find_first_of("<lambda"))
3089    ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3090  else
3091    ImplName = ("__impl" + CallOpName).str();
3092
3093  llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3094  if (!Fn) {
3095    Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3096                                llvm::GlobalValue::InternalLinkage, ImplName,
3097                                CGM.getModule());
3098    CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3099
3100    const GlobalDecl &GD = GlobalDecl(CallOp);
3101    const auto *D = cast<FunctionDecl>(GD.getDecl());
3102    CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3103    CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3104  }
3105  *ImplFn = Fn;
3106}
3107