1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// The MATCHER* family of macros can be used in a namespace scope to
33// define custom matchers easily.
34//
35// Basic Usage
36// ===========
37//
38// The syntax
39//
40//   MATCHER(name, description_string) { statements; }
41//
42// defines a matcher with the given name that executes the statements,
43// which must return a bool to indicate if the match succeeds.  Inside
44// the statements, you can refer to the value being matched by 'arg',
45// and refer to its type by 'arg_type'.
46//
47// The description string documents what the matcher does, and is used
48// to generate the failure message when the match fails.  Since a
49// MATCHER() is usually defined in a header file shared by multiple
50// C++ source files, we require the description to be a C-string
51// literal to avoid possible side effects.  It can be empty, in which
52// case we'll use the sequence of words in the matcher name as the
53// description.
54//
55// For example:
56//
57//   MATCHER(IsEven, "") { return (arg % 2) == 0; }
58//
59// allows you to write
60//
61//   // Expects mock_foo.Bar(n) to be called where n is even.
62//   EXPECT_CALL(mock_foo, Bar(IsEven()));
63//
64// or,
65//
66//   // Verifies that the value of some_expression is even.
67//   EXPECT_THAT(some_expression, IsEven());
68//
69// If the above assertion fails, it will print something like:
70//
71//   Value of: some_expression
72//   Expected: is even
73//     Actual: 7
74//
75// where the description "is even" is automatically calculated from the
76// matcher name IsEven.
77//
78// Argument Type
79// =============
80//
81// Note that the type of the value being matched (arg_type) is
82// determined by the context in which you use the matcher and is
83// supplied to you by the compiler, so you don't need to worry about
84// declaring it (nor can you).  This allows the matcher to be
85// polymorphic.  For example, IsEven() can be used to match any type
86// where the value of "(arg % 2) == 0" can be implicitly converted to
87// a bool.  In the "Bar(IsEven())" example above, if method Bar()
88// takes an int, 'arg_type' will be int; if it takes an unsigned long,
89// 'arg_type' will be unsigned long; and so on.
90//
91// Parameterizing Matchers
92// =======================
93//
94// Sometimes you'll want to parameterize the matcher.  For that you
95// can use another macro:
96//
97//   MATCHER_P(name, param_name, description_string) { statements; }
98//
99// For example:
100//
101//   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102//
103// will allow you to write:
104//
105//   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106//
107// which may lead to this message (assuming n is 10):
108//
109//   Value of: Blah("a")
110//   Expected: has absolute value 10
111//     Actual: -9
112//
113// Note that both the matcher description and its parameter are
114// printed, making the message human-friendly.
115//
116// In the matcher definition body, you can write 'foo_type' to
117// reference the type of a parameter named 'foo'.  For example, in the
118// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119// 'value_type' to refer to the type of 'value'.
120//
121// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122// support multi-parameter matchers.
123//
124// Describing Parameterized Matchers
125// =================================
126//
127// The last argument to MATCHER*() is a string-typed expression.  The
128// expression can reference all of the matcher's parameters and a
129// special bool-typed variable named 'negation'.  When 'negation' is
130// false, the expression should evaluate to the matcher's description;
131// otherwise it should evaluate to the description of the negation of
132// the matcher.  For example,
133//
134//   using testing::PrintToString;
135//
136//   MATCHER_P2(InClosedRange, low, hi,
137//       std::string(negation ? "is not" : "is") + " in range [" +
138//       PrintToString(low) + ", " + PrintToString(hi) + "]") {
139//     return low <= arg && arg <= hi;
140//   }
141//   ...
142//   EXPECT_THAT(3, InClosedRange(4, 6));
143//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144//
145// would generate two failures that contain the text:
146//
147//   Expected: is in range [4, 6]
148//   ...
149//   Expected: is not in range [2, 4]
150//
151// If you specify "" as the description, the failure message will
152// contain the sequence of words in the matcher name followed by the
153// parameter values printed as a tuple.  For example,
154//
155//   MATCHER_P2(InClosedRange, low, hi, "") { ... }
156//   ...
157//   EXPECT_THAT(3, InClosedRange(4, 6));
158//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159//
160// would generate two failures that contain the text:
161//
162//   Expected: in closed range (4, 6)
163//   ...
164//   Expected: not (in closed range (2, 4))
165//
166// Types of Matcher Parameters
167// ===========================
168//
169// For the purpose of typing, you can view
170//
171//   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172//
173// as shorthand for
174//
175//   template <typename p1_type, ..., typename pk_type>
176//   FooMatcherPk<p1_type, ..., pk_type>
177//   Foo(p1_type p1, ..., pk_type pk) { ... }
178//
179// When you write Foo(v1, ..., vk), the compiler infers the types of
180// the parameters v1, ..., and vk for you.  If you are not happy with
181// the result of the type inference, you can specify the types by
182// explicitly instantiating the template, as in Foo<long, bool>(5,
183// false).  As said earlier, you don't get to (or need to) specify
184// 'arg_type' as that's determined by the context in which the matcher
185// is used.  You can assign the result of expression Foo(p1, ..., pk)
186// to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
187// can be useful when composing matchers.
188//
189// While you can instantiate a matcher template with reference types,
190// passing the parameters by pointer usually makes your code more
191// readable.  If, however, you still want to pass a parameter by
192// reference, be aware that in the failure message generated by the
193// matcher you will see the value of the referenced object but not its
194// address.
195//
196// Explaining Match Results
197// ========================
198//
199// Sometimes the matcher description alone isn't enough to explain why
200// the match has failed or succeeded.  For example, when expecting a
201// long string, it can be very helpful to also print the diff between
202// the expected string and the actual one.  To achieve that, you can
203// optionally stream additional information to a special variable
204// named result_listener, whose type is a pointer to class
205// MatchResultListener:
206//
207//   MATCHER_P(EqualsLongString, str, "") {
208//     if (arg == str) return true;
209//
210//     *result_listener << "the difference: "
211///                     << DiffStrings(str, arg);
212//     return false;
213//   }
214//
215// Overloading Matchers
216// ====================
217//
218// You can overload matchers with different numbers of parameters:
219//
220//   MATCHER_P(Blah, a, description_string1) { ... }
221//   MATCHER_P2(Blah, a, b, description_string2) { ... }
222//
223// Caveats
224// =======
225//
226// When defining a new matcher, you should also consider implementing
227// MatcherInterface or using MakePolymorphicMatcher().  These
228// approaches require more work than the MATCHER* macros, but also
229// give you more control on the types of the value being matched and
230// the matcher parameters, which may leads to better compiler error
231// messages when the matcher is used wrong.  They also allow
232// overloading matchers based on parameter types (as opposed to just
233// based on the number of parameters).
234//
235// MATCHER*() can only be used in a namespace scope as templates cannot be
236// declared inside of a local class.
237//
238// More Information
239// ================
240//
241// To learn more about using these macros, please search for 'MATCHER'
242// on
243// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244//
245// This file also implements some commonly used argument matchers.  More
246// matchers can be defined by the user implementing the
247// MatcherInterface<T> interface if necessary.
248//
249// See googletest/include/gtest/gtest-matchers.h for the definition of class
250// Matcher, class MatcherInterface, and others.
251
252// IWYU pragma: private, include "gmock/gmock.h"
253// IWYU pragma: friend gmock/.*
254
255#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258#include <algorithm>
259#include <cmath>
260#include <exception>
261#include <functional>
262#include <initializer_list>
263#include <ios>
264#include <iterator>
265#include <limits>
266#include <memory>
267#include <ostream>  // NOLINT
268#include <sstream>
269#include <string>
270#include <type_traits>
271#include <utility>
272#include <vector>
273
274#include "gmock/internal/gmock-internal-utils.h"
275#include "gmock/internal/gmock-port.h"
276#include "gmock/internal/gmock-pp.h"
277#include "gtest/gtest.h"
278
279// MSVC warning C5046 is new as of VS2017 version 15.8.
280#if defined(_MSC_VER) && _MSC_VER >= 1915
281#define GMOCK_MAYBE_5046_ 5046
282#else
283#define GMOCK_MAYBE_5046_
284#endif
285
286GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287    4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288                              clients of class B */
289    /* Symbol involving type with internal linkage not defined */)
290
291namespace testing {
292
293// To implement a matcher Foo for type T, define:
294//   1. a class FooMatcherImpl that implements the
295//      MatcherInterface<T> interface, and
296//   2. a factory function that creates a Matcher<T> object from a
297//      FooMatcherImpl*.
298//
299// The two-level delegation design makes it possible to allow a user
300// to write "v" instead of "Eq(v)" where a Matcher is expected, which
301// is impossible if we pass matchers by pointers.  It also eases
302// ownership management as Matcher objects can now be copied like
303// plain values.
304
305// A match result listener that stores the explanation in a string.
306class StringMatchResultListener : public MatchResultListener {
307 public:
308  StringMatchResultListener() : MatchResultListener(&ss_) {}
309
310  // Returns the explanation accumulated so far.
311  std::string str() const { return ss_.str(); }
312
313  // Clears the explanation accumulated so far.
314  void Clear() { ss_.str(""); }
315
316 private:
317  ::std::stringstream ss_;
318
319  StringMatchResultListener(const StringMatchResultListener&) = delete;
320  StringMatchResultListener& operator=(const StringMatchResultListener&) =
321      delete;
322};
323
324// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
325// and MUST NOT BE USED IN USER CODE!!!
326namespace internal {
327
328// The MatcherCastImpl class template is a helper for implementing
329// MatcherCast().  We need this helper in order to partially
330// specialize the implementation of MatcherCast() (C++ allows
331// class/struct templates to be partially specialized, but not
332// function templates.).
333
334// This general version is used when MatcherCast()'s argument is a
335// polymorphic matcher (i.e. something that can be converted to a
336// Matcher but is not one yet; for example, Eq(value)) or a value (for
337// example, "hello").
338template <typename T, typename M>
339class MatcherCastImpl {
340 public:
341  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
342    // M can be a polymorphic matcher, in which case we want to use
343    // its conversion operator to create Matcher<T>.  Or it can be a value
344    // that should be passed to the Matcher<T>'s constructor.
345    //
346    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
347    // polymorphic matcher because it'll be ambiguous if T has an implicit
348    // constructor from M (this usually happens when T has an implicit
349    // constructor from any type).
350    //
351    // It won't work to unconditionally implicit_cast
352    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
353    // a user-defined conversion from M to T if one exists (assuming M is
354    // a value).
355    return CastImpl(polymorphic_matcher_or_value,
356                    std::is_convertible<M, Matcher<T>>{},
357                    std::is_convertible<M, T>{});
358  }
359
360 private:
361  template <bool Ignore>
362  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
363                             std::true_type /* convertible_to_matcher */,
364                             std::integral_constant<bool, Ignore>) {
365    // M is implicitly convertible to Matcher<T>, which means that either
366    // M is a polymorphic matcher or Matcher<T> has an implicit constructor
367    // from M.  In both cases using the implicit conversion will produce a
368    // matcher.
369    //
370    // Even if T has an implicit constructor from M, it won't be called because
371    // creating Matcher<T> would require a chain of two user-defined conversions
372    // (first to create T from M and then to create Matcher<T> from T).
373    return polymorphic_matcher_or_value;
374  }
375
376  // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
377  // matcher. It's a value of a type implicitly convertible to T. Use direct
378  // initialization to create a matcher.
379  static Matcher<T> CastImpl(const M& value,
380                             std::false_type /* convertible_to_matcher */,
381                             std::true_type /* convertible_to_T */) {
382    return Matcher<T>(ImplicitCast_<T>(value));
383  }
384
385  // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
386  // polymorphic matcher Eq(value) in this case.
387  //
388  // Note that we first attempt to perform an implicit cast on the value and
389  // only fall back to the polymorphic Eq() matcher afterwards because the
390  // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
391  // which might be undefined even when Rhs is implicitly convertible to Lhs
392  // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
393  //
394  // We don't define this method inline as we need the declaration of Eq().
395  static Matcher<T> CastImpl(const M& value,
396                             std::false_type /* convertible_to_matcher */,
397                             std::false_type /* convertible_to_T */);
398};
399
400// This more specialized version is used when MatcherCast()'s argument
401// is already a Matcher.  This only compiles when type T can be
402// statically converted to type U.
403template <typename T, typename U>
404class MatcherCastImpl<T, Matcher<U>> {
405 public:
406  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
407    return Matcher<T>(new Impl(source_matcher));
408  }
409
410 private:
411  class Impl : public MatcherInterface<T> {
412   public:
413    explicit Impl(const Matcher<U>& source_matcher)
414        : source_matcher_(source_matcher) {}
415
416    // We delegate the matching logic to the source matcher.
417    bool MatchAndExplain(T x, MatchResultListener* listener) const override {
418      using FromType = typename std::remove_cv<typename std::remove_pointer<
419          typename std::remove_reference<T>::type>::type>::type;
420      using ToType = typename std::remove_cv<typename std::remove_pointer<
421          typename std::remove_reference<U>::type>::type>::type;
422      // Do not allow implicitly converting base*/& to derived*/&.
423      static_assert(
424          // Do not trigger if only one of them is a pointer. That implies a
425          // regular conversion and not a down_cast.
426          (std::is_pointer<typename std::remove_reference<T>::type>::value !=
427           std::is_pointer<typename std::remove_reference<U>::type>::value) ||
428              std::is_same<FromType, ToType>::value ||
429              !std::is_base_of<FromType, ToType>::value,
430          "Can't implicitly convert from <base> to <derived>");
431
432      // Do the cast to `U` explicitly if necessary.
433      // Otherwise, let implicit conversions do the trick.
434      using CastType =
435          typename std::conditional<std::is_convertible<T&, const U&>::value,
436                                    T&, U>::type;
437
438      return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
439                                             listener);
440    }
441
442    void DescribeTo(::std::ostream* os) const override {
443      source_matcher_.DescribeTo(os);
444    }
445
446    void DescribeNegationTo(::std::ostream* os) const override {
447      source_matcher_.DescribeNegationTo(os);
448    }
449
450   private:
451    const Matcher<U> source_matcher_;
452  };
453};
454
455// This even more specialized version is used for efficiently casting
456// a matcher to its own type.
457template <typename T>
458class MatcherCastImpl<T, Matcher<T>> {
459 public:
460  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
461};
462
463// Template specialization for parameterless Matcher.
464template <typename Derived>
465class MatcherBaseImpl {
466 public:
467  MatcherBaseImpl() = default;
468
469  template <typename T>
470  operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
471    return ::testing::Matcher<T>(new
472                                 typename Derived::template gmock_Impl<T>());
473  }
474};
475
476// Template specialization for Matcher with parameters.
477template <template <typename...> class Derived, typename... Ts>
478class MatcherBaseImpl<Derived<Ts...>> {
479 public:
480  // Mark the constructor explicit for single argument T to avoid implicit
481  // conversions.
482  template <typename E = std::enable_if<sizeof...(Ts) == 1>,
483            typename E::type* = nullptr>
484  explicit MatcherBaseImpl(Ts... params)
485      : params_(std::forward<Ts>(params)...) {}
486  template <typename E = std::enable_if<sizeof...(Ts) != 1>,
487            typename = typename E::type>
488  MatcherBaseImpl(Ts... params)  // NOLINT
489      : params_(std::forward<Ts>(params)...) {}
490
491  template <typename F>
492  operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
493    return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
494  }
495
496 private:
497  template <typename F, std::size_t... tuple_ids>
498  ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
499    return ::testing::Matcher<F>(
500        new typename Derived<Ts...>::template gmock_Impl<F>(
501            std::get<tuple_ids>(params_)...));
502  }
503
504  const std::tuple<Ts...> params_;
505};
506
507}  // namespace internal
508
509// In order to be safe and clear, casting between different matcher
510// types is done explicitly via MatcherCast<T>(m), which takes a
511// matcher m and returns a Matcher<T>.  It compiles only when T can be
512// statically converted to the argument type of m.
513template <typename T, typename M>
514inline Matcher<T> MatcherCast(const M& matcher) {
515  return internal::MatcherCastImpl<T, M>::Cast(matcher);
516}
517
518// This overload handles polymorphic matchers and values only since
519// monomorphic matchers are handled by the next one.
520template <typename T, typename M>
521inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
522  return MatcherCast<T>(polymorphic_matcher_or_value);
523}
524
525// This overload handles monomorphic matchers.
526//
527// In general, if type T can be implicitly converted to type U, we can
528// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
529// contravariant): just keep a copy of the original Matcher<U>, convert the
530// argument from type T to U, and then pass it to the underlying Matcher<U>.
531// The only exception is when U is a reference and T is not, as the
532// underlying Matcher<U> may be interested in the argument's address, which
533// is not preserved in the conversion from T to U.
534template <typename T, typename U>
535inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
536  // Enforce that T can be implicitly converted to U.
537  static_assert(std::is_convertible<const T&, const U&>::value,
538                "T must be implicitly convertible to U");
539  // Enforce that we are not converting a non-reference type T to a reference
540  // type U.
541  static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
542                "cannot convert non reference arg to reference");
543  // In case both T and U are arithmetic types, enforce that the
544  // conversion is not lossy.
545  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
546  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
547  constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
548  constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
549  static_assert(
550      kTIsOther || kUIsOther ||
551          (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
552      "conversion of arithmetic types must be lossless");
553  return MatcherCast<T>(matcher);
554}
555
556// A<T>() returns a matcher that matches any value of type T.
557template <typename T>
558Matcher<T> A();
559
560// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561// and MUST NOT BE USED IN USER CODE!!!
562namespace internal {
563
564// If the explanation is not empty, prints it to the ostream.
565inline void PrintIfNotEmpty(const std::string& explanation,
566                            ::std::ostream* os) {
567  if (!explanation.empty() && os != nullptr) {
568    *os << ", " << explanation;
569  }
570}
571
572// Returns true if the given type name is easy to read by a human.
573// This is used to decide whether printing the type of a value might
574// be helpful.
575inline bool IsReadableTypeName(const std::string& type_name) {
576  // We consider a type name readable if it's short or doesn't contain
577  // a template or function type.
578  return (type_name.length() <= 20 ||
579          type_name.find_first_of("<(") == std::string::npos);
580}
581
582// Matches the value against the given matcher, prints the value and explains
583// the match result to the listener. Returns the match result.
584// 'listener' must not be NULL.
585// Value cannot be passed by const reference, because some matchers take a
586// non-const argument.
587template <typename Value, typename T>
588bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
589                          MatchResultListener* listener) {
590  if (!listener->IsInterested()) {
591    // If the listener is not interested, we do not need to construct the
592    // inner explanation.
593    return matcher.Matches(value);
594  }
595
596  StringMatchResultListener inner_listener;
597  const bool match = matcher.MatchAndExplain(value, &inner_listener);
598
599  UniversalPrint(value, listener->stream());
600#if GTEST_HAS_RTTI
601  const std::string& type_name = GetTypeName<Value>();
602  if (IsReadableTypeName(type_name))
603    *listener->stream() << " (of type " << type_name << ")";
604#endif
605  PrintIfNotEmpty(inner_listener.str(), listener->stream());
606
607  return match;
608}
609
610// An internal helper class for doing compile-time loop on a tuple's
611// fields.
612template <size_t N>
613class TuplePrefix {
614 public:
615  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
616  // if and only if the first N fields of matcher_tuple matches
617  // the first N fields of value_tuple, respectively.
618  template <typename MatcherTuple, typename ValueTuple>
619  static bool Matches(const MatcherTuple& matcher_tuple,
620                      const ValueTuple& value_tuple) {
621    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
622           std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
623  }
624
625  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
626  // describes failures in matching the first N fields of matchers
627  // against the first N fields of values.  If there is no failure,
628  // nothing will be streamed to os.
629  template <typename MatcherTuple, typename ValueTuple>
630  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
631                                     const ValueTuple& values,
632                                     ::std::ostream* os) {
633    // First, describes failures in the first N - 1 fields.
634    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
635
636    // Then describes the failure (if any) in the (N - 1)-th (0-based)
637    // field.
638    typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
639        std::get<N - 1>(matchers);
640    typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
641    const Value& value = std::get<N - 1>(values);
642    StringMatchResultListener listener;
643    if (!matcher.MatchAndExplain(value, &listener)) {
644      *os << "  Expected arg #" << N - 1 << ": ";
645      std::get<N - 1>(matchers).DescribeTo(os);
646      *os << "\n           Actual: ";
647      // We remove the reference in type Value to prevent the
648      // universal printer from printing the address of value, which
649      // isn't interesting to the user most of the time.  The
650      // matcher's MatchAndExplain() method handles the case when
651      // the address is interesting.
652      internal::UniversalPrint(value, os);
653      PrintIfNotEmpty(listener.str(), os);
654      *os << "\n";
655    }
656  }
657};
658
659// The base case.
660template <>
661class TuplePrefix<0> {
662 public:
663  template <typename MatcherTuple, typename ValueTuple>
664  static bool Matches(const MatcherTuple& /* matcher_tuple */,
665                      const ValueTuple& /* value_tuple */) {
666    return true;
667  }
668
669  template <typename MatcherTuple, typename ValueTuple>
670  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
671                                     const ValueTuple& /* values */,
672                                     ::std::ostream* /* os */) {}
673};
674
675// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
676// all matchers in matcher_tuple match the corresponding fields in
677// value_tuple.  It is a compiler error if matcher_tuple and
678// value_tuple have different number of fields or incompatible field
679// types.
680template <typename MatcherTuple, typename ValueTuple>
681bool TupleMatches(const MatcherTuple& matcher_tuple,
682                  const ValueTuple& value_tuple) {
683  // Makes sure that matcher_tuple and value_tuple have the same
684  // number of fields.
685  static_assert(std::tuple_size<MatcherTuple>::value ==
686                    std::tuple_size<ValueTuple>::value,
687                "matcher and value have different numbers of fields");
688  return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
689                                                                  value_tuple);
690}
691
692// Describes failures in matching matchers against values.  If there
693// is no failure, nothing will be streamed to os.
694template <typename MatcherTuple, typename ValueTuple>
695void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
696                                const ValueTuple& values, ::std::ostream* os) {
697  TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
698      matchers, values, os);
699}
700
701// TransformTupleValues and its helper.
702//
703// TransformTupleValuesHelper hides the internal machinery that
704// TransformTupleValues uses to implement a tuple traversal.
705template <typename Tuple, typename Func, typename OutIter>
706class TransformTupleValuesHelper {
707 private:
708  typedef ::std::tuple_size<Tuple> TupleSize;
709
710 public:
711  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
712  // Returns the final value of 'out' in case the caller needs it.
713  static OutIter Run(Func f, const Tuple& t, OutIter out) {
714    return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
715  }
716
717 private:
718  template <typename Tup, size_t kRemainingSize>
719  struct IterateOverTuple {
720    OutIter operator()(Func f, const Tup& t, OutIter out) const {
721      *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
722      return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
723    }
724  };
725  template <typename Tup>
726  struct IterateOverTuple<Tup, 0> {
727    OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
728      return out;
729    }
730  };
731};
732
733// Successively invokes 'f(element)' on each element of the tuple 't',
734// appending each result to the 'out' iterator. Returns the final value
735// of 'out'.
736template <typename Tuple, typename Func, typename OutIter>
737OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
738  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
739}
740
741// Implements _, a matcher that matches any value of any
742// type.  This is a polymorphic matcher, so we need a template type
743// conversion operator to make it appearing as a Matcher<T> for any
744// type T.
745class AnythingMatcher {
746 public:
747  using is_gtest_matcher = void;
748
749  template <typename T>
750  bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
751    return true;
752  }
753  void DescribeTo(std::ostream* os) const { *os << "is anything"; }
754  void DescribeNegationTo(::std::ostream* os) const {
755    // This is mostly for completeness' sake, as it's not very useful
756    // to write Not(A<bool>()).  However we cannot completely rule out
757    // such a possibility, and it doesn't hurt to be prepared.
758    *os << "never matches";
759  }
760};
761
762// Implements the polymorphic IsNull() matcher, which matches any raw or smart
763// pointer that is NULL.
764class IsNullMatcher {
765 public:
766  template <typename Pointer>
767  bool MatchAndExplain(const Pointer& p,
768                       MatchResultListener* /* listener */) const {
769    return p == nullptr;
770  }
771
772  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
773  void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
774};
775
776// Implements the polymorphic NotNull() matcher, which matches any raw or smart
777// pointer that is not NULL.
778class NotNullMatcher {
779 public:
780  template <typename Pointer>
781  bool MatchAndExplain(const Pointer& p,
782                       MatchResultListener* /* listener */) const {
783    return p != nullptr;
784  }
785
786  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
787  void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
788};
789
790// Ref(variable) matches any argument that is a reference to
791// 'variable'.  This matcher is polymorphic as it can match any
792// super type of the type of 'variable'.
793//
794// The RefMatcher template class implements Ref(variable).  It can
795// only be instantiated with a reference type.  This prevents a user
796// from mistakenly using Ref(x) to match a non-reference function
797// argument.  For example, the following will righteously cause a
798// compiler error:
799//
800//   int n;
801//   Matcher<int> m1 = Ref(n);   // This won't compile.
802//   Matcher<int&> m2 = Ref(n);  // This will compile.
803template <typename T>
804class RefMatcher;
805
806template <typename T>
807class RefMatcher<T&> {
808  // Google Mock is a generic framework and thus needs to support
809  // mocking any function types, including those that take non-const
810  // reference arguments.  Therefore the template parameter T (and
811  // Super below) can be instantiated to either a const type or a
812  // non-const type.
813 public:
814  // RefMatcher() takes a T& instead of const T&, as we want the
815  // compiler to catch using Ref(const_value) as a matcher for a
816  // non-const reference.
817  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
818
819  template <typename Super>
820  operator Matcher<Super&>() const {
821    // By passing object_ (type T&) to Impl(), which expects a Super&,
822    // we make sure that Super is a super type of T.  In particular,
823    // this catches using Ref(const_value) as a matcher for a
824    // non-const reference, as you cannot implicitly convert a const
825    // reference to a non-const reference.
826    return MakeMatcher(new Impl<Super>(object_));
827  }
828
829 private:
830  template <typename Super>
831  class Impl : public MatcherInterface<Super&> {
832   public:
833    explicit Impl(Super& x) : object_(x) {}  // NOLINT
834
835    // MatchAndExplain() takes a Super& (as opposed to const Super&)
836    // in order to match the interface MatcherInterface<Super&>.
837    bool MatchAndExplain(Super& x,
838                         MatchResultListener* listener) const override {
839      *listener << "which is located @" << static_cast<const void*>(&x);
840      return &x == &object_;
841    }
842
843    void DescribeTo(::std::ostream* os) const override {
844      *os << "references the variable ";
845      UniversalPrinter<Super&>::Print(object_, os);
846    }
847
848    void DescribeNegationTo(::std::ostream* os) const override {
849      *os << "does not reference the variable ";
850      UniversalPrinter<Super&>::Print(object_, os);
851    }
852
853   private:
854    const Super& object_;
855  };
856
857  T& object_;
858};
859
860// Polymorphic helper functions for narrow and wide string matchers.
861inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
862  return String::CaseInsensitiveCStringEquals(lhs, rhs);
863}
864
865inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
866                                         const wchar_t* rhs) {
867  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
868}
869
870// String comparison for narrow or wide strings that can have embedded NUL
871// characters.
872template <typename StringType>
873bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
874  // Are the heads equal?
875  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
876    return false;
877  }
878
879  // Skip the equal heads.
880  const typename StringType::value_type nul = 0;
881  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
882
883  // Are we at the end of either s1 or s2?
884  if (i1 == StringType::npos || i2 == StringType::npos) {
885    return i1 == i2;
886  }
887
888  // Are the tails equal?
889  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
890}
891
892// String matchers.
893
894// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
895template <typename StringType>
896class StrEqualityMatcher {
897 public:
898  StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
899      : string_(std::move(str)),
900        expect_eq_(expect_eq),
901        case_sensitive_(case_sensitive) {}
902
903#if GTEST_INTERNAL_HAS_STRING_VIEW
904  bool MatchAndExplain(const internal::StringView& s,
905                       MatchResultListener* listener) const {
906    // This should fail to compile if StringView is used with wide
907    // strings.
908    const StringType& str = std::string(s);
909    return MatchAndExplain(str, listener);
910  }
911#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
912
913  // Accepts pointer types, particularly:
914  //   const char*
915  //   char*
916  //   const wchar_t*
917  //   wchar_t*
918  template <typename CharType>
919  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
920    if (s == nullptr) {
921      return !expect_eq_;
922    }
923    return MatchAndExplain(StringType(s), listener);
924  }
925
926  // Matches anything that can convert to StringType.
927  //
928  // This is a template, not just a plain function with const StringType&,
929  // because StringView has some interfering non-explicit constructors.
930  template <typename MatcheeStringType>
931  bool MatchAndExplain(const MatcheeStringType& s,
932                       MatchResultListener* /* listener */) const {
933    const StringType s2(s);
934    const bool eq = case_sensitive_ ? s2 == string_
935                                    : CaseInsensitiveStringEquals(s2, string_);
936    return expect_eq_ == eq;
937  }
938
939  void DescribeTo(::std::ostream* os) const {
940    DescribeToHelper(expect_eq_, os);
941  }
942
943  void DescribeNegationTo(::std::ostream* os) const {
944    DescribeToHelper(!expect_eq_, os);
945  }
946
947 private:
948  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
949    *os << (expect_eq ? "is " : "isn't ");
950    *os << "equal to ";
951    if (!case_sensitive_) {
952      *os << "(ignoring case) ";
953    }
954    UniversalPrint(string_, os);
955  }
956
957  const StringType string_;
958  const bool expect_eq_;
959  const bool case_sensitive_;
960};
961
962// Implements the polymorphic HasSubstr(substring) matcher, which
963// can be used as a Matcher<T> as long as T can be converted to a
964// string.
965template <typename StringType>
966class HasSubstrMatcher {
967 public:
968  explicit HasSubstrMatcher(const StringType& substring)
969      : substring_(substring) {}
970
971#if GTEST_INTERNAL_HAS_STRING_VIEW
972  bool MatchAndExplain(const internal::StringView& s,
973                       MatchResultListener* listener) const {
974    // This should fail to compile if StringView is used with wide
975    // strings.
976    const StringType& str = std::string(s);
977    return MatchAndExplain(str, listener);
978  }
979#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
980
981  // Accepts pointer types, particularly:
982  //   const char*
983  //   char*
984  //   const wchar_t*
985  //   wchar_t*
986  template <typename CharType>
987  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
988    return s != nullptr && MatchAndExplain(StringType(s), listener);
989  }
990
991  // Matches anything that can convert to StringType.
992  //
993  // This is a template, not just a plain function with const StringType&,
994  // because StringView has some interfering non-explicit constructors.
995  template <typename MatcheeStringType>
996  bool MatchAndExplain(const MatcheeStringType& s,
997                       MatchResultListener* /* listener */) const {
998    return StringType(s).find(substring_) != StringType::npos;
999  }
1000
1001  // Describes what this matcher matches.
1002  void DescribeTo(::std::ostream* os) const {
1003    *os << "has substring ";
1004    UniversalPrint(substring_, os);
1005  }
1006
1007  void DescribeNegationTo(::std::ostream* os) const {
1008    *os << "has no substring ";
1009    UniversalPrint(substring_, os);
1010  }
1011
1012 private:
1013  const StringType substring_;
1014};
1015
1016// Implements the polymorphic StartsWith(substring) matcher, which
1017// can be used as a Matcher<T> as long as T can be converted to a
1018// string.
1019template <typename StringType>
1020class StartsWithMatcher {
1021 public:
1022  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1023
1024#if GTEST_INTERNAL_HAS_STRING_VIEW
1025  bool MatchAndExplain(const internal::StringView& s,
1026                       MatchResultListener* listener) const {
1027    // This should fail to compile if StringView is used with wide
1028    // strings.
1029    const StringType& str = std::string(s);
1030    return MatchAndExplain(str, listener);
1031  }
1032#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1033
1034  // Accepts pointer types, particularly:
1035  //   const char*
1036  //   char*
1037  //   const wchar_t*
1038  //   wchar_t*
1039  template <typename CharType>
1040  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1041    return s != nullptr && MatchAndExplain(StringType(s), listener);
1042  }
1043
1044  // Matches anything that can convert to StringType.
1045  //
1046  // This is a template, not just a plain function with const StringType&,
1047  // because StringView has some interfering non-explicit constructors.
1048  template <typename MatcheeStringType>
1049  bool MatchAndExplain(const MatcheeStringType& s,
1050                       MatchResultListener* /* listener */) const {
1051    const StringType& s2(s);
1052    return s2.length() >= prefix_.length() &&
1053           s2.substr(0, prefix_.length()) == prefix_;
1054  }
1055
1056  void DescribeTo(::std::ostream* os) const {
1057    *os << "starts with ";
1058    UniversalPrint(prefix_, os);
1059  }
1060
1061  void DescribeNegationTo(::std::ostream* os) const {
1062    *os << "doesn't start with ";
1063    UniversalPrint(prefix_, os);
1064  }
1065
1066 private:
1067  const StringType prefix_;
1068};
1069
1070// Implements the polymorphic EndsWith(substring) matcher, which
1071// can be used as a Matcher<T> as long as T can be converted to a
1072// string.
1073template <typename StringType>
1074class EndsWithMatcher {
1075 public:
1076  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1077
1078#if GTEST_INTERNAL_HAS_STRING_VIEW
1079  bool MatchAndExplain(const internal::StringView& s,
1080                       MatchResultListener* listener) const {
1081    // This should fail to compile if StringView is used with wide
1082    // strings.
1083    const StringType& str = std::string(s);
1084    return MatchAndExplain(str, listener);
1085  }
1086#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1087
1088  // Accepts pointer types, particularly:
1089  //   const char*
1090  //   char*
1091  //   const wchar_t*
1092  //   wchar_t*
1093  template <typename CharType>
1094  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1095    return s != nullptr && MatchAndExplain(StringType(s), listener);
1096  }
1097
1098  // Matches anything that can convert to StringType.
1099  //
1100  // This is a template, not just a plain function with const StringType&,
1101  // because StringView has some interfering non-explicit constructors.
1102  template <typename MatcheeStringType>
1103  bool MatchAndExplain(const MatcheeStringType& s,
1104                       MatchResultListener* /* listener */) const {
1105    const StringType& s2(s);
1106    return s2.length() >= suffix_.length() &&
1107           s2.substr(s2.length() - suffix_.length()) == suffix_;
1108  }
1109
1110  void DescribeTo(::std::ostream* os) const {
1111    *os << "ends with ";
1112    UniversalPrint(suffix_, os);
1113  }
1114
1115  void DescribeNegationTo(::std::ostream* os) const {
1116    *os << "doesn't end with ";
1117    UniversalPrint(suffix_, os);
1118  }
1119
1120 private:
1121  const StringType suffix_;
1122};
1123
1124// Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1125// used as a Matcher<T> as long as T can be converted to a string.
1126class WhenBase64UnescapedMatcher {
1127 public:
1128  using is_gtest_matcher = void;
1129
1130  explicit WhenBase64UnescapedMatcher(
1131      const Matcher<const std::string&>& internal_matcher)
1132      : internal_matcher_(internal_matcher) {}
1133
1134  // Matches anything that can convert to std::string.
1135  template <typename MatcheeStringType>
1136  bool MatchAndExplain(const MatcheeStringType& s,
1137                       MatchResultListener* listener) const {
1138    const std::string s2(s);  // NOLINT (needed for working with string_view).
1139    std::string unescaped;
1140    if (!internal::Base64Unescape(s2, &unescaped)) {
1141      if (listener != nullptr) {
1142        *listener << "is not a valid base64 escaped string";
1143      }
1144      return false;
1145    }
1146    return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1147  }
1148
1149  void DescribeTo(::std::ostream* os) const {
1150    *os << "matches after Base64Unescape ";
1151    internal_matcher_.DescribeTo(os);
1152  }
1153
1154  void DescribeNegationTo(::std::ostream* os) const {
1155    *os << "does not match after Base64Unescape ";
1156    internal_matcher_.DescribeTo(os);
1157  }
1158
1159 private:
1160  const Matcher<const std::string&> internal_matcher_;
1161};
1162
1163// Implements a matcher that compares the two fields of a 2-tuple
1164// using one of the ==, <=, <, etc, operators.  The two fields being
1165// compared don't have to have the same type.
1166//
1167// The matcher defined here is polymorphic (for example, Eq() can be
1168// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1169// etc).  Therefore we use a template type conversion operator in the
1170// implementation.
1171template <typename D, typename Op>
1172class PairMatchBase {
1173 public:
1174  template <typename T1, typename T2>
1175  operator Matcher<::std::tuple<T1, T2>>() const {
1176    return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1177  }
1178  template <typename T1, typename T2>
1179  operator Matcher<const ::std::tuple<T1, T2>&>() const {
1180    return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1181  }
1182
1183 private:
1184  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1185    return os << D::Desc();
1186  }
1187
1188  template <typename Tuple>
1189  class Impl : public MatcherInterface<Tuple> {
1190   public:
1191    bool MatchAndExplain(Tuple args,
1192                         MatchResultListener* /* listener */) const override {
1193      return Op()(::std::get<0>(args), ::std::get<1>(args));
1194    }
1195    void DescribeTo(::std::ostream* os) const override {
1196      *os << "are " << GetDesc;
1197    }
1198    void DescribeNegationTo(::std::ostream* os) const override {
1199      *os << "aren't " << GetDesc;
1200    }
1201  };
1202};
1203
1204class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1205 public:
1206  static const char* Desc() { return "an equal pair"; }
1207};
1208class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1209 public:
1210  static const char* Desc() { return "an unequal pair"; }
1211};
1212class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1213 public:
1214  static const char* Desc() { return "a pair where the first < the second"; }
1215};
1216class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1217 public:
1218  static const char* Desc() { return "a pair where the first > the second"; }
1219};
1220class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1221 public:
1222  static const char* Desc() { return "a pair where the first <= the second"; }
1223};
1224class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1225 public:
1226  static const char* Desc() { return "a pair where the first >= the second"; }
1227};
1228
1229// Implements the Not(...) matcher for a particular argument type T.
1230// We do not nest it inside the NotMatcher class template, as that
1231// will prevent different instantiations of NotMatcher from sharing
1232// the same NotMatcherImpl<T> class.
1233template <typename T>
1234class NotMatcherImpl : public MatcherInterface<const T&> {
1235 public:
1236  explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1237
1238  bool MatchAndExplain(const T& x,
1239                       MatchResultListener* listener) const override {
1240    return !matcher_.MatchAndExplain(x, listener);
1241  }
1242
1243  void DescribeTo(::std::ostream* os) const override {
1244    matcher_.DescribeNegationTo(os);
1245  }
1246
1247  void DescribeNegationTo(::std::ostream* os) const override {
1248    matcher_.DescribeTo(os);
1249  }
1250
1251 private:
1252  const Matcher<T> matcher_;
1253};
1254
1255// Implements the Not(m) matcher, which matches a value that doesn't
1256// match matcher m.
1257template <typename InnerMatcher>
1258class NotMatcher {
1259 public:
1260  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1261
1262  // This template type conversion operator allows Not(m) to be used
1263  // to match any type m can match.
1264  template <typename T>
1265  operator Matcher<T>() const {
1266    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1267  }
1268
1269 private:
1270  InnerMatcher matcher_;
1271};
1272
1273// Implements the AllOf(m1, m2) matcher for a particular argument type
1274// T. We do not nest it inside the BothOfMatcher class template, as
1275// that will prevent different instantiations of BothOfMatcher from
1276// sharing the same BothOfMatcherImpl<T> class.
1277template <typename T>
1278class AllOfMatcherImpl : public MatcherInterface<const T&> {
1279 public:
1280  explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1281      : matchers_(std::move(matchers)) {}
1282
1283  void DescribeTo(::std::ostream* os) const override {
1284    *os << "(";
1285    for (size_t i = 0; i < matchers_.size(); ++i) {
1286      if (i != 0) *os << ") and (";
1287      matchers_[i].DescribeTo(os);
1288    }
1289    *os << ")";
1290  }
1291
1292  void DescribeNegationTo(::std::ostream* os) const override {
1293    *os << "(";
1294    for (size_t i = 0; i < matchers_.size(); ++i) {
1295      if (i != 0) *os << ") or (";
1296      matchers_[i].DescribeNegationTo(os);
1297    }
1298    *os << ")";
1299  }
1300
1301  bool MatchAndExplain(const T& x,
1302                       MatchResultListener* listener) const override {
1303    // If either matcher1_ or matcher2_ doesn't match x, we only need
1304    // to explain why one of them fails.
1305    std::string all_match_result;
1306
1307    for (size_t i = 0; i < matchers_.size(); ++i) {
1308      StringMatchResultListener slistener;
1309      if (matchers_[i].MatchAndExplain(x, &slistener)) {
1310        if (all_match_result.empty()) {
1311          all_match_result = slistener.str();
1312        } else {
1313          std::string result = slistener.str();
1314          if (!result.empty()) {
1315            all_match_result += ", and ";
1316            all_match_result += result;
1317          }
1318        }
1319      } else {
1320        *listener << slistener.str();
1321        return false;
1322      }
1323    }
1324
1325    // Otherwise we need to explain why *both* of them match.
1326    *listener << all_match_result;
1327    return true;
1328  }
1329
1330 private:
1331  const std::vector<Matcher<T>> matchers_;
1332};
1333
1334// VariadicMatcher is used for the variadic implementation of
1335// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1336// CombiningMatcher<T> is used to recursively combine the provided matchers
1337// (of type Args...).
1338template <template <typename T> class CombiningMatcher, typename... Args>
1339class VariadicMatcher {
1340 public:
1341  VariadicMatcher(const Args&... matchers)  // NOLINT
1342      : matchers_(matchers...) {
1343    static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1344  }
1345
1346  VariadicMatcher(const VariadicMatcher&) = default;
1347  VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1348
1349  // This template type conversion operator allows an
1350  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1351  // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1352  template <typename T>
1353  operator Matcher<T>() const {
1354    std::vector<Matcher<T>> values;
1355    CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1356    return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1357  }
1358
1359 private:
1360  template <typename T, size_t I>
1361  void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1362                             std::integral_constant<size_t, I>) const {
1363    values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1364    CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1365  }
1366
1367  template <typename T>
1368  void CreateVariadicMatcher(
1369      std::vector<Matcher<T>>*,
1370      std::integral_constant<size_t, sizeof...(Args)>) const {}
1371
1372  std::tuple<Args...> matchers_;
1373};
1374
1375template <typename... Args>
1376using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1377
1378// Implements the AnyOf(m1, m2) matcher for a particular argument type
1379// T.  We do not nest it inside the AnyOfMatcher class template, as
1380// that will prevent different instantiations of AnyOfMatcher from
1381// sharing the same EitherOfMatcherImpl<T> class.
1382template <typename T>
1383class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1384 public:
1385  explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1386      : matchers_(std::move(matchers)) {}
1387
1388  void DescribeTo(::std::ostream* os) const override {
1389    *os << "(";
1390    for (size_t i = 0; i < matchers_.size(); ++i) {
1391      if (i != 0) *os << ") or (";
1392      matchers_[i].DescribeTo(os);
1393    }
1394    *os << ")";
1395  }
1396
1397  void DescribeNegationTo(::std::ostream* os) const override {
1398    *os << "(";
1399    for (size_t i = 0; i < matchers_.size(); ++i) {
1400      if (i != 0) *os << ") and (";
1401      matchers_[i].DescribeNegationTo(os);
1402    }
1403    *os << ")";
1404  }
1405
1406  bool MatchAndExplain(const T& x,
1407                       MatchResultListener* listener) const override {
1408    std::string no_match_result;
1409
1410    // If either matcher1_ or matcher2_ matches x, we just need to
1411    // explain why *one* of them matches.
1412    for (size_t i = 0; i < matchers_.size(); ++i) {
1413      StringMatchResultListener slistener;
1414      if (matchers_[i].MatchAndExplain(x, &slistener)) {
1415        *listener << slistener.str();
1416        return true;
1417      } else {
1418        if (no_match_result.empty()) {
1419          no_match_result = slistener.str();
1420        } else {
1421          std::string result = slistener.str();
1422          if (!result.empty()) {
1423            no_match_result += ", and ";
1424            no_match_result += result;
1425          }
1426        }
1427      }
1428    }
1429
1430    // Otherwise we need to explain why *both* of them fail.
1431    *listener << no_match_result;
1432    return false;
1433  }
1434
1435 private:
1436  const std::vector<Matcher<T>> matchers_;
1437};
1438
1439// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1440template <typename... Args>
1441using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1442
1443// ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1444template <typename MatcherTrue, typename MatcherFalse>
1445class ConditionalMatcher {
1446 public:
1447  ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1448                     MatcherFalse matcher_false)
1449      : condition_(condition),
1450        matcher_true_(std::move(matcher_true)),
1451        matcher_false_(std::move(matcher_false)) {}
1452
1453  template <typename T>
1454  operator Matcher<T>() const {  // NOLINT(runtime/explicit)
1455    return condition_ ? SafeMatcherCast<T>(matcher_true_)
1456                      : SafeMatcherCast<T>(matcher_false_);
1457  }
1458
1459 private:
1460  bool condition_;
1461  MatcherTrue matcher_true_;
1462  MatcherFalse matcher_false_;
1463};
1464
1465// Wrapper for implementation of Any/AllOfArray().
1466template <template <class> class MatcherImpl, typename T>
1467class SomeOfArrayMatcher {
1468 public:
1469  // Constructs the matcher from a sequence of element values or
1470  // element matchers.
1471  template <typename Iter>
1472  SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1473
1474  template <typename U>
1475  operator Matcher<U>() const {  // NOLINT
1476    using RawU = typename std::decay<U>::type;
1477    std::vector<Matcher<RawU>> matchers;
1478    matchers.reserve(matchers_.size());
1479    for (const auto& matcher : matchers_) {
1480      matchers.push_back(MatcherCast<RawU>(matcher));
1481    }
1482    return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1483  }
1484
1485 private:
1486  const ::std::vector<T> matchers_;
1487};
1488
1489template <typename T>
1490using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1491
1492template <typename T>
1493using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1494
1495// Used for implementing Truly(pred), which turns a predicate into a
1496// matcher.
1497template <typename Predicate>
1498class TrulyMatcher {
1499 public:
1500  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1501
1502  // This method template allows Truly(pred) to be used as a matcher
1503  // for type T where T is the argument type of predicate 'pred'.  The
1504  // argument is passed by reference as the predicate may be
1505  // interested in the address of the argument.
1506  template <typename T>
1507  bool MatchAndExplain(T& x,  // NOLINT
1508                       MatchResultListener* listener) const {
1509    // Without the if-statement, MSVC sometimes warns about converting
1510    // a value to bool (warning 4800).
1511    //
1512    // We cannot write 'return !!predicate_(x);' as that doesn't work
1513    // when predicate_(x) returns a class convertible to bool but
1514    // having no operator!().
1515    if (predicate_(x)) return true;
1516    *listener << "didn't satisfy the given predicate";
1517    return false;
1518  }
1519
1520  void DescribeTo(::std::ostream* os) const {
1521    *os << "satisfies the given predicate";
1522  }
1523
1524  void DescribeNegationTo(::std::ostream* os) const {
1525    *os << "doesn't satisfy the given predicate";
1526  }
1527
1528 private:
1529  Predicate predicate_;
1530};
1531
1532// Used for implementing Matches(matcher), which turns a matcher into
1533// a predicate.
1534template <typename M>
1535class MatcherAsPredicate {
1536 public:
1537  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1538
1539  // This template operator() allows Matches(m) to be used as a
1540  // predicate on type T where m is a matcher on type T.
1541  //
1542  // The argument x is passed by reference instead of by value, as
1543  // some matcher may be interested in its address (e.g. as in
1544  // Matches(Ref(n))(x)).
1545  template <typename T>
1546  bool operator()(const T& x) const {
1547    // We let matcher_ commit to a particular type here instead of
1548    // when the MatcherAsPredicate object was constructed.  This
1549    // allows us to write Matches(m) where m is a polymorphic matcher
1550    // (e.g. Eq(5)).
1551    //
1552    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1553    // compile when matcher_ has type Matcher<const T&>; if we write
1554    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1555    // when matcher_ has type Matcher<T>; if we just write
1556    // matcher_.Matches(x), it won't compile when matcher_ is
1557    // polymorphic, e.g. Eq(5).
1558    //
1559    // MatcherCast<const T&>() is necessary for making the code work
1560    // in all of the above situations.
1561    return MatcherCast<const T&>(matcher_).Matches(x);
1562  }
1563
1564 private:
1565  M matcher_;
1566};
1567
1568// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1569// argument M must be a type that can be converted to a matcher.
1570template <typename M>
1571class PredicateFormatterFromMatcher {
1572 public:
1573  explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1574
1575  // This template () operator allows a PredicateFormatterFromMatcher
1576  // object to act as a predicate-formatter suitable for using with
1577  // Google Test's EXPECT_PRED_FORMAT1() macro.
1578  template <typename T>
1579  AssertionResult operator()(const char* value_text, const T& x) const {
1580    // We convert matcher_ to a Matcher<const T&> *now* instead of
1581    // when the PredicateFormatterFromMatcher object was constructed,
1582    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1583    // know which type to instantiate it to until we actually see the
1584    // type of x here.
1585    //
1586    // We write SafeMatcherCast<const T&>(matcher_) instead of
1587    // Matcher<const T&>(matcher_), as the latter won't compile when
1588    // matcher_ has type Matcher<T> (e.g. An<int>()).
1589    // We don't write MatcherCast<const T&> either, as that allows
1590    // potentially unsafe downcasting of the matcher argument.
1591    const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1592
1593    // The expected path here is that the matcher should match (i.e. that most
1594    // tests pass) so optimize for this case.
1595    if (matcher.Matches(x)) {
1596      return AssertionSuccess();
1597    }
1598
1599    ::std::stringstream ss;
1600    ss << "Value of: " << value_text << "\n"
1601       << "Expected: ";
1602    matcher.DescribeTo(&ss);
1603
1604    // Rerun the matcher to "PrintAndExplain" the failure.
1605    StringMatchResultListener listener;
1606    if (MatchPrintAndExplain(x, matcher, &listener)) {
1607      ss << "\n  The matcher failed on the initial attempt; but passed when "
1608            "rerun to generate the explanation.";
1609    }
1610    ss << "\n  Actual: " << listener.str();
1611    return AssertionFailure() << ss.str();
1612  }
1613
1614 private:
1615  const M matcher_;
1616};
1617
1618// A helper function for converting a matcher to a predicate-formatter
1619// without the user needing to explicitly write the type.  This is
1620// used for implementing ASSERT_THAT() and EXPECT_THAT().
1621// Implementation detail: 'matcher' is received by-value to force decaying.
1622template <typename M>
1623inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1624    M matcher) {
1625  return PredicateFormatterFromMatcher<M>(std::move(matcher));
1626}
1627
1628// Implements the polymorphic IsNan() matcher, which matches any floating type
1629// value that is Nan.
1630class IsNanMatcher {
1631 public:
1632  template <typename FloatType>
1633  bool MatchAndExplain(const FloatType& f,
1634                       MatchResultListener* /* listener */) const {
1635    return (::std::isnan)(f);
1636  }
1637
1638  void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1639  void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1640};
1641
1642// Implements the polymorphic floating point equality matcher, which matches
1643// two float values using ULP-based approximation or, optionally, a
1644// user-specified epsilon.  The template is meant to be instantiated with
1645// FloatType being either float or double.
1646template <typename FloatType>
1647class FloatingEqMatcher {
1648 public:
1649  // Constructor for FloatingEqMatcher.
1650  // The matcher's input will be compared with expected.  The matcher treats two
1651  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1652  // equality comparisons between NANs will always return false.  We specify a
1653  // negative max_abs_error_ term to indicate that ULP-based approximation will
1654  // be used for comparison.
1655  FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1656      : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1657
1658  // Constructor that supports a user-specified max_abs_error that will be used
1659  // for comparison instead of ULP-based approximation.  The max absolute
1660  // should be non-negative.
1661  FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1662                    FloatType max_abs_error)
1663      : expected_(expected),
1664        nan_eq_nan_(nan_eq_nan),
1665        max_abs_error_(max_abs_error) {
1666    GTEST_CHECK_(max_abs_error >= 0)
1667        << ", where max_abs_error is" << max_abs_error;
1668  }
1669
1670  // Implements floating point equality matcher as a Matcher<T>.
1671  template <typename T>
1672  class Impl : public MatcherInterface<T> {
1673   public:
1674    Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1675        : expected_(expected),
1676          nan_eq_nan_(nan_eq_nan),
1677          max_abs_error_(max_abs_error) {}
1678
1679    bool MatchAndExplain(T value,
1680                         MatchResultListener* listener) const override {
1681      const FloatingPoint<FloatType> actual(value), expected(expected_);
1682
1683      // Compares NaNs first, if nan_eq_nan_ is true.
1684      if (actual.is_nan() || expected.is_nan()) {
1685        if (actual.is_nan() && expected.is_nan()) {
1686          return nan_eq_nan_;
1687        }
1688        // One is nan; the other is not nan.
1689        return false;
1690      }
1691      if (HasMaxAbsError()) {
1692        // We perform an equality check so that inf will match inf, regardless
1693        // of error bounds.  If the result of value - expected_ would result in
1694        // overflow or if either value is inf, the default result is infinity,
1695        // which should only match if max_abs_error_ is also infinity.
1696        if (value == expected_) {
1697          return true;
1698        }
1699
1700        const FloatType diff = value - expected_;
1701        if (::std::fabs(diff) <= max_abs_error_) {
1702          return true;
1703        }
1704
1705        if (listener->IsInterested()) {
1706          *listener << "which is " << diff << " from " << expected_;
1707        }
1708        return false;
1709      } else {
1710        return actual.AlmostEquals(expected);
1711      }
1712    }
1713
1714    void DescribeTo(::std::ostream* os) const override {
1715      // os->precision() returns the previously set precision, which we
1716      // store to restore the ostream to its original configuration
1717      // after outputting.
1718      const ::std::streamsize old_precision =
1719          os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1720      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1721        if (nan_eq_nan_) {
1722          *os << "is NaN";
1723        } else {
1724          *os << "never matches";
1725        }
1726      } else {
1727        *os << "is approximately " << expected_;
1728        if (HasMaxAbsError()) {
1729          *os << " (absolute error <= " << max_abs_error_ << ")";
1730        }
1731      }
1732      os->precision(old_precision);
1733    }
1734
1735    void DescribeNegationTo(::std::ostream* os) const override {
1736      // As before, get original precision.
1737      const ::std::streamsize old_precision =
1738          os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1739      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1740        if (nan_eq_nan_) {
1741          *os << "isn't NaN";
1742        } else {
1743          *os << "is anything";
1744        }
1745      } else {
1746        *os << "isn't approximately " << expected_;
1747        if (HasMaxAbsError()) {
1748          *os << " (absolute error > " << max_abs_error_ << ")";
1749        }
1750      }
1751      // Restore original precision.
1752      os->precision(old_precision);
1753    }
1754
1755   private:
1756    bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1757
1758    const FloatType expected_;
1759    const bool nan_eq_nan_;
1760    // max_abs_error will be used for value comparison when >= 0.
1761    const FloatType max_abs_error_;
1762  };
1763
1764  // The following 3 type conversion operators allow FloatEq(expected) and
1765  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1766  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1767  operator Matcher<FloatType>() const {
1768    return MakeMatcher(
1769        new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1770  }
1771
1772  operator Matcher<const FloatType&>() const {
1773    return MakeMatcher(
1774        new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1775  }
1776
1777  operator Matcher<FloatType&>() const {
1778    return MakeMatcher(
1779        new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1780  }
1781
1782 private:
1783  const FloatType expected_;
1784  const bool nan_eq_nan_;
1785  // max_abs_error will be used for value comparison when >= 0.
1786  const FloatType max_abs_error_;
1787};
1788
1789// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1790// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1791// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1792// against y. The former implements "Eq", the latter "Near". At present, there
1793// is no version that compares NaNs as equal.
1794template <typename FloatType>
1795class FloatingEq2Matcher {
1796 public:
1797  FloatingEq2Matcher() { Init(-1, false); }
1798
1799  explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1800
1801  explicit FloatingEq2Matcher(FloatType max_abs_error) {
1802    Init(max_abs_error, false);
1803  }
1804
1805  FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1806    Init(max_abs_error, nan_eq_nan);
1807  }
1808
1809  template <typename T1, typename T2>
1810  operator Matcher<::std::tuple<T1, T2>>() const {
1811    return MakeMatcher(
1812        new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1813  }
1814  template <typename T1, typename T2>
1815  operator Matcher<const ::std::tuple<T1, T2>&>() const {
1816    return MakeMatcher(
1817        new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1818  }
1819
1820 private:
1821  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1822    return os << "an almost-equal pair";
1823  }
1824
1825  template <typename Tuple>
1826  class Impl : public MatcherInterface<Tuple> {
1827   public:
1828    Impl(FloatType max_abs_error, bool nan_eq_nan)
1829        : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1830
1831    bool MatchAndExplain(Tuple args,
1832                         MatchResultListener* listener) const override {
1833      if (max_abs_error_ == -1) {
1834        FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1835        return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1836            ::std::get<1>(args), listener);
1837      } else {
1838        FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1839                                        max_abs_error_);
1840        return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1841            ::std::get<1>(args), listener);
1842      }
1843    }
1844    void DescribeTo(::std::ostream* os) const override {
1845      *os << "are " << GetDesc;
1846    }
1847    void DescribeNegationTo(::std::ostream* os) const override {
1848      *os << "aren't " << GetDesc;
1849    }
1850
1851   private:
1852    FloatType max_abs_error_;
1853    const bool nan_eq_nan_;
1854  };
1855
1856  void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1857    max_abs_error_ = max_abs_error_val;
1858    nan_eq_nan_ = nan_eq_nan_val;
1859  }
1860  FloatType max_abs_error_;
1861  bool nan_eq_nan_;
1862};
1863
1864// Implements the Pointee(m) matcher for matching a pointer whose
1865// pointee matches matcher m.  The pointer can be either raw or smart.
1866template <typename InnerMatcher>
1867class PointeeMatcher {
1868 public:
1869  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1870
1871  // This type conversion operator template allows Pointee(m) to be
1872  // used as a matcher for any pointer type whose pointee type is
1873  // compatible with the inner matcher, where type Pointer can be
1874  // either a raw pointer or a smart pointer.
1875  //
1876  // The reason we do this instead of relying on
1877  // MakePolymorphicMatcher() is that the latter is not flexible
1878  // enough for implementing the DescribeTo() method of Pointee().
1879  template <typename Pointer>
1880  operator Matcher<Pointer>() const {
1881    return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1882  }
1883
1884 private:
1885  // The monomorphic implementation that works for a particular pointer type.
1886  template <typename Pointer>
1887  class Impl : public MatcherInterface<Pointer> {
1888   public:
1889    using Pointee =
1890        typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1891            Pointer)>::element_type;
1892
1893    explicit Impl(const InnerMatcher& matcher)
1894        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1895
1896    void DescribeTo(::std::ostream* os) const override {
1897      *os << "points to a value that ";
1898      matcher_.DescribeTo(os);
1899    }
1900
1901    void DescribeNegationTo(::std::ostream* os) const override {
1902      *os << "does not point to a value that ";
1903      matcher_.DescribeTo(os);
1904    }
1905
1906    bool MatchAndExplain(Pointer pointer,
1907                         MatchResultListener* listener) const override {
1908      if (GetRawPointer(pointer) == nullptr) return false;
1909
1910      *listener << "which points to ";
1911      return MatchPrintAndExplain(*pointer, matcher_, listener);
1912    }
1913
1914   private:
1915    const Matcher<const Pointee&> matcher_;
1916  };
1917
1918  const InnerMatcher matcher_;
1919};
1920
1921// Implements the Pointer(m) matcher
1922// Implements the Pointer(m) matcher for matching a pointer that matches matcher
1923// m.  The pointer can be either raw or smart, and will match `m` against the
1924// raw pointer.
1925template <typename InnerMatcher>
1926class PointerMatcher {
1927 public:
1928  explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1929
1930  // This type conversion operator template allows Pointer(m) to be
1931  // used as a matcher for any pointer type whose pointer type is
1932  // compatible with the inner matcher, where type PointerType can be
1933  // either a raw pointer or a smart pointer.
1934  //
1935  // The reason we do this instead of relying on
1936  // MakePolymorphicMatcher() is that the latter is not flexible
1937  // enough for implementing the DescribeTo() method of Pointer().
1938  template <typename PointerType>
1939  operator Matcher<PointerType>() const {  // NOLINT
1940    return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1941  }
1942
1943 private:
1944  // The monomorphic implementation that works for a particular pointer type.
1945  template <typename PointerType>
1946  class Impl : public MatcherInterface<PointerType> {
1947   public:
1948    using Pointer =
1949        const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1950            PointerType)>::element_type*;
1951
1952    explicit Impl(const InnerMatcher& matcher)
1953        : matcher_(MatcherCast<Pointer>(matcher)) {}
1954
1955    void DescribeTo(::std::ostream* os) const override {
1956      *os << "is a pointer that ";
1957      matcher_.DescribeTo(os);
1958    }
1959
1960    void DescribeNegationTo(::std::ostream* os) const override {
1961      *os << "is not a pointer that ";
1962      matcher_.DescribeTo(os);
1963    }
1964
1965    bool MatchAndExplain(PointerType pointer,
1966                         MatchResultListener* listener) const override {
1967      *listener << "which is a pointer that ";
1968      Pointer p = GetRawPointer(pointer);
1969      return MatchPrintAndExplain(p, matcher_, listener);
1970    }
1971
1972   private:
1973    Matcher<Pointer> matcher_;
1974  };
1975
1976  const InnerMatcher matcher_;
1977};
1978
1979#if GTEST_HAS_RTTI
1980// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1981// reference that matches inner_matcher when dynamic_cast<T> is applied.
1982// The result of dynamic_cast<To> is forwarded to the inner matcher.
1983// If To is a pointer and the cast fails, the inner matcher will receive NULL.
1984// If To is a reference and the cast fails, this matcher returns false
1985// immediately.
1986template <typename To>
1987class WhenDynamicCastToMatcherBase {
1988 public:
1989  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1990      : matcher_(matcher) {}
1991
1992  void DescribeTo(::std::ostream* os) const {
1993    GetCastTypeDescription(os);
1994    matcher_.DescribeTo(os);
1995  }
1996
1997  void DescribeNegationTo(::std::ostream* os) const {
1998    GetCastTypeDescription(os);
1999    matcher_.DescribeNegationTo(os);
2000  }
2001
2002 protected:
2003  const Matcher<To> matcher_;
2004
2005  static std::string GetToName() { return GetTypeName<To>(); }
2006
2007 private:
2008  static void GetCastTypeDescription(::std::ostream* os) {
2009    *os << "when dynamic_cast to " << GetToName() << ", ";
2010  }
2011};
2012
2013// Primary template.
2014// To is a pointer. Cast and forward the result.
2015template <typename To>
2016class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2017 public:
2018  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2019      : WhenDynamicCastToMatcherBase<To>(matcher) {}
2020
2021  template <typename From>
2022  bool MatchAndExplain(From from, MatchResultListener* listener) const {
2023    To to = dynamic_cast<To>(from);
2024    return MatchPrintAndExplain(to, this->matcher_, listener);
2025  }
2026};
2027
2028// Specialize for references.
2029// In this case we return false if the dynamic_cast fails.
2030template <typename To>
2031class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2032 public:
2033  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2034      : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2035
2036  template <typename From>
2037  bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2038    // We don't want an std::bad_cast here, so do the cast with pointers.
2039    To* to = dynamic_cast<To*>(&from);
2040    if (to == nullptr) {
2041      *listener << "which cannot be dynamic_cast to " << this->GetToName();
2042      return false;
2043    }
2044    return MatchPrintAndExplain(*to, this->matcher_, listener);
2045  }
2046};
2047#endif  // GTEST_HAS_RTTI
2048
2049// Implements the Field() matcher for matching a field (i.e. member
2050// variable) of an object.
2051template <typename Class, typename FieldType>
2052class FieldMatcher {
2053 public:
2054  FieldMatcher(FieldType Class::*field,
2055               const Matcher<const FieldType&>& matcher)
2056      : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2057
2058  FieldMatcher(const std::string& field_name, FieldType Class::*field,
2059               const Matcher<const FieldType&>& matcher)
2060      : field_(field),
2061        matcher_(matcher),
2062        whose_field_("whose field `" + field_name + "` ") {}
2063
2064  void DescribeTo(::std::ostream* os) const {
2065    *os << "is an object " << whose_field_;
2066    matcher_.DescribeTo(os);
2067  }
2068
2069  void DescribeNegationTo(::std::ostream* os) const {
2070    *os << "is an object " << whose_field_;
2071    matcher_.DescribeNegationTo(os);
2072  }
2073
2074  template <typename T>
2075  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2076    // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2077    // a compiler bug, and can now be removed.
2078    return MatchAndExplainImpl(
2079        typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2080        value, listener);
2081  }
2082
2083 private:
2084  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2085                           const Class& obj,
2086                           MatchResultListener* listener) const {
2087    *listener << whose_field_ << "is ";
2088    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2089  }
2090
2091  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2092                           MatchResultListener* listener) const {
2093    if (p == nullptr) return false;
2094
2095    *listener << "which points to an object ";
2096    // Since *p has a field, it must be a class/struct/union type and
2097    // thus cannot be a pointer.  Therefore we pass false_type() as
2098    // the first argument.
2099    return MatchAndExplainImpl(std::false_type(), *p, listener);
2100  }
2101
2102  const FieldType Class::*field_;
2103  const Matcher<const FieldType&> matcher_;
2104
2105  // Contains either "whose given field " if the name of the field is unknown
2106  // or "whose field `name_of_field` " if the name is known.
2107  const std::string whose_field_;
2108};
2109
2110// Implements the Property() matcher for matching a property
2111// (i.e. return value of a getter method) of an object.
2112//
2113// Property is a const-qualified member function of Class returning
2114// PropertyType.
2115template <typename Class, typename PropertyType, typename Property>
2116class PropertyMatcher {
2117 public:
2118  typedef const PropertyType& RefToConstProperty;
2119
2120  PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2121      : property_(property),
2122        matcher_(matcher),
2123        whose_property_("whose given property ") {}
2124
2125  PropertyMatcher(const std::string& property_name, Property property,
2126                  const Matcher<RefToConstProperty>& matcher)
2127      : property_(property),
2128        matcher_(matcher),
2129        whose_property_("whose property `" + property_name + "` ") {}
2130
2131  void DescribeTo(::std::ostream* os) const {
2132    *os << "is an object " << whose_property_;
2133    matcher_.DescribeTo(os);
2134  }
2135
2136  void DescribeNegationTo(::std::ostream* os) const {
2137    *os << "is an object " << whose_property_;
2138    matcher_.DescribeNegationTo(os);
2139  }
2140
2141  template <typename T>
2142  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2143    return MatchAndExplainImpl(
2144        typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2145        value, listener);
2146  }
2147
2148 private:
2149  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2150                           const Class& obj,
2151                           MatchResultListener* listener) const {
2152    *listener << whose_property_ << "is ";
2153    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2154    // which takes a non-const reference as argument.
2155    RefToConstProperty result = (obj.*property_)();
2156    return MatchPrintAndExplain(result, matcher_, listener);
2157  }
2158
2159  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2160                           MatchResultListener* listener) const {
2161    if (p == nullptr) return false;
2162
2163    *listener << "which points to an object ";
2164    // Since *p has a property method, it must be a class/struct/union
2165    // type and thus cannot be a pointer.  Therefore we pass
2166    // false_type() as the first argument.
2167    return MatchAndExplainImpl(std::false_type(), *p, listener);
2168  }
2169
2170  Property property_;
2171  const Matcher<RefToConstProperty> matcher_;
2172
2173  // Contains either "whose given property " if the name of the property is
2174  // unknown or "whose property `name_of_property` " if the name is known.
2175  const std::string whose_property_;
2176};
2177
2178// Type traits specifying various features of different functors for ResultOf.
2179// The default template specifies features for functor objects.
2180template <typename Functor>
2181struct CallableTraits {
2182  typedef Functor StorageType;
2183
2184  static void CheckIsValid(Functor /* functor */) {}
2185
2186  template <typename T>
2187  static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2188    return f(arg);
2189  }
2190};
2191
2192// Specialization for function pointers.
2193template <typename ArgType, typename ResType>
2194struct CallableTraits<ResType (*)(ArgType)> {
2195  typedef ResType ResultType;
2196  typedef ResType (*StorageType)(ArgType);
2197
2198  static void CheckIsValid(ResType (*f)(ArgType)) {
2199    GTEST_CHECK_(f != nullptr)
2200        << "NULL function pointer is passed into ResultOf().";
2201  }
2202  template <typename T>
2203  static ResType Invoke(ResType (*f)(ArgType), T arg) {
2204    return (*f)(arg);
2205  }
2206};
2207
2208// Implements the ResultOf() matcher for matching a return value of a
2209// unary function of an object.
2210template <typename Callable, typename InnerMatcher>
2211class ResultOfMatcher {
2212 public:
2213  ResultOfMatcher(Callable callable, InnerMatcher matcher)
2214      : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2215                        std::move(matcher)) {}
2216
2217  ResultOfMatcher(const std::string& result_description, Callable callable,
2218                  InnerMatcher matcher)
2219      : result_description_(result_description),
2220        callable_(std::move(callable)),
2221        matcher_(std::move(matcher)) {
2222    CallableTraits<Callable>::CheckIsValid(callable_);
2223  }
2224
2225  template <typename T>
2226  operator Matcher<T>() const {
2227    return Matcher<T>(
2228        new Impl<const T&>(result_description_, callable_, matcher_));
2229  }
2230
2231 private:
2232  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2233
2234  template <typename T>
2235  class Impl : public MatcherInterface<T> {
2236    using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2237        std::declval<CallableStorageType>(), std::declval<T>()));
2238
2239   public:
2240    template <typename M>
2241    Impl(const std::string& result_description,
2242         const CallableStorageType& callable, const M& matcher)
2243        : result_description_(result_description),
2244          callable_(callable),
2245          matcher_(MatcherCast<ResultType>(matcher)) {}
2246
2247    void DescribeTo(::std::ostream* os) const override {
2248      if (result_description_.empty()) {
2249        *os << "is mapped by the given callable to a value that ";
2250      } else {
2251        *os << "whose " << result_description_ << " ";
2252      }
2253      matcher_.DescribeTo(os);
2254    }
2255
2256    void DescribeNegationTo(::std::ostream* os) const override {
2257      if (result_description_.empty()) {
2258        *os << "is mapped by the given callable to a value that ";
2259      } else {
2260        *os << "whose " << result_description_ << " ";
2261      }
2262      matcher_.DescribeNegationTo(os);
2263    }
2264
2265    bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2266      if (result_description_.empty()) {
2267        *listener << "which is mapped by the given callable to ";
2268      } else {
2269        *listener << "whose " << result_description_ << " is ";
2270      }
2271      // Cannot pass the return value directly to MatchPrintAndExplain, which
2272      // takes a non-const reference as argument.
2273      // Also, specifying template argument explicitly is needed because T could
2274      // be a non-const reference (e.g. Matcher<Uncopyable&>).
2275      ResultType result =
2276          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2277      return MatchPrintAndExplain(result, matcher_, listener);
2278    }
2279
2280   private:
2281    const std::string result_description_;
2282    // Functors often define operator() as non-const method even though
2283    // they are actually stateless. But we need to use them even when
2284    // 'this' is a const pointer. It's the user's responsibility not to
2285    // use stateful callables with ResultOf(), which doesn't guarantee
2286    // how many times the callable will be invoked.
2287    mutable CallableStorageType callable_;
2288    const Matcher<ResultType> matcher_;
2289  };  // class Impl
2290
2291  const std::string result_description_;
2292  const CallableStorageType callable_;
2293  const InnerMatcher matcher_;
2294};
2295
2296// Implements a matcher that checks the size of an STL-style container.
2297template <typename SizeMatcher>
2298class SizeIsMatcher {
2299 public:
2300  explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2301      : size_matcher_(size_matcher) {}
2302
2303  template <typename Container>
2304  operator Matcher<Container>() const {
2305    return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2306  }
2307
2308  template <typename Container>
2309  class Impl : public MatcherInterface<Container> {
2310   public:
2311    using SizeType = decltype(std::declval<Container>().size());
2312    explicit Impl(const SizeMatcher& size_matcher)
2313        : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2314
2315    void DescribeTo(::std::ostream* os) const override {
2316      *os << "has a size that ";
2317      size_matcher_.DescribeTo(os);
2318    }
2319    void DescribeNegationTo(::std::ostream* os) const override {
2320      *os << "has a size that ";
2321      size_matcher_.DescribeNegationTo(os);
2322    }
2323
2324    bool MatchAndExplain(Container container,
2325                         MatchResultListener* listener) const override {
2326      SizeType size = container.size();
2327      StringMatchResultListener size_listener;
2328      const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2329      *listener << "whose size " << size
2330                << (result ? " matches" : " doesn't match");
2331      PrintIfNotEmpty(size_listener.str(), listener->stream());
2332      return result;
2333    }
2334
2335   private:
2336    const Matcher<SizeType> size_matcher_;
2337  };
2338
2339 private:
2340  const SizeMatcher size_matcher_;
2341};
2342
2343// Implements a matcher that checks the begin()..end() distance of an STL-style
2344// container.
2345template <typename DistanceMatcher>
2346class BeginEndDistanceIsMatcher {
2347 public:
2348  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2349      : distance_matcher_(distance_matcher) {}
2350
2351  template <typename Container>
2352  operator Matcher<Container>() const {
2353    return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2354  }
2355
2356  template <typename Container>
2357  class Impl : public MatcherInterface<Container> {
2358   public:
2359    typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2360        Container)>
2361        ContainerView;
2362    typedef typename std::iterator_traits<
2363        typename ContainerView::type::const_iterator>::difference_type
2364        DistanceType;
2365    explicit Impl(const DistanceMatcher& distance_matcher)
2366        : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2367
2368    void DescribeTo(::std::ostream* os) const override {
2369      *os << "distance between begin() and end() ";
2370      distance_matcher_.DescribeTo(os);
2371    }
2372    void DescribeNegationTo(::std::ostream* os) const override {
2373      *os << "distance between begin() and end() ";
2374      distance_matcher_.DescribeNegationTo(os);
2375    }
2376
2377    bool MatchAndExplain(Container container,
2378                         MatchResultListener* listener) const override {
2379      using std::begin;
2380      using std::end;
2381      DistanceType distance = std::distance(begin(container), end(container));
2382      StringMatchResultListener distance_listener;
2383      const bool result =
2384          distance_matcher_.MatchAndExplain(distance, &distance_listener);
2385      *listener << "whose distance between begin() and end() " << distance
2386                << (result ? " matches" : " doesn't match");
2387      PrintIfNotEmpty(distance_listener.str(), listener->stream());
2388      return result;
2389    }
2390
2391   private:
2392    const Matcher<DistanceType> distance_matcher_;
2393  };
2394
2395 private:
2396  const DistanceMatcher distance_matcher_;
2397};
2398
2399// Implements an equality matcher for any STL-style container whose elements
2400// support ==. This matcher is like Eq(), but its failure explanations provide
2401// more detailed information that is useful when the container is used as a set.
2402// The failure message reports elements that are in one of the operands but not
2403// the other. The failure messages do not report duplicate or out-of-order
2404// elements in the containers (which don't properly matter to sets, but can
2405// occur if the containers are vectors or lists, for example).
2406//
2407// Uses the container's const_iterator, value_type, operator ==,
2408// begin(), and end().
2409template <typename Container>
2410class ContainerEqMatcher {
2411 public:
2412  typedef internal::StlContainerView<Container> View;
2413  typedef typename View::type StlContainer;
2414  typedef typename View::const_reference StlContainerReference;
2415
2416  static_assert(!std::is_const<Container>::value,
2417                "Container type must not be const");
2418  static_assert(!std::is_reference<Container>::value,
2419                "Container type must not be a reference");
2420
2421  // We make a copy of expected in case the elements in it are modified
2422  // after this matcher is created.
2423  explicit ContainerEqMatcher(const Container& expected)
2424      : expected_(View::Copy(expected)) {}
2425
2426  void DescribeTo(::std::ostream* os) const {
2427    *os << "equals ";
2428    UniversalPrint(expected_, os);
2429  }
2430  void DescribeNegationTo(::std::ostream* os) const {
2431    *os << "does not equal ";
2432    UniversalPrint(expected_, os);
2433  }
2434
2435  template <typename LhsContainer>
2436  bool MatchAndExplain(const LhsContainer& lhs,
2437                       MatchResultListener* listener) const {
2438    typedef internal::StlContainerView<
2439        typename std::remove_const<LhsContainer>::type>
2440        LhsView;
2441    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2442    if (lhs_stl_container == expected_) return true;
2443
2444    ::std::ostream* const os = listener->stream();
2445    if (os != nullptr) {
2446      // Something is different. Check for extra values first.
2447      bool printed_header = false;
2448      for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2449           ++it) {
2450        if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2451            expected_.end()) {
2452          if (printed_header) {
2453            *os << ", ";
2454          } else {
2455            *os << "which has these unexpected elements: ";
2456            printed_header = true;
2457          }
2458          UniversalPrint(*it, os);
2459        }
2460      }
2461
2462      // Now check for missing values.
2463      bool printed_header2 = false;
2464      for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2465        if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2466                                     lhs_stl_container.end(),
2467                                     *it) == lhs_stl_container.end()) {
2468          if (printed_header2) {
2469            *os << ", ";
2470          } else {
2471            *os << (printed_header ? ",\nand" : "which")
2472                << " doesn't have these expected elements: ";
2473            printed_header2 = true;
2474          }
2475          UniversalPrint(*it, os);
2476        }
2477      }
2478    }
2479
2480    return false;
2481  }
2482
2483 private:
2484  const StlContainer expected_;
2485};
2486
2487// A comparator functor that uses the < operator to compare two values.
2488struct LessComparator {
2489  template <typename T, typename U>
2490  bool operator()(const T& lhs, const U& rhs) const {
2491    return lhs < rhs;
2492  }
2493};
2494
2495// Implements WhenSortedBy(comparator, container_matcher).
2496template <typename Comparator, typename ContainerMatcher>
2497class WhenSortedByMatcher {
2498 public:
2499  WhenSortedByMatcher(const Comparator& comparator,
2500                      const ContainerMatcher& matcher)
2501      : comparator_(comparator), matcher_(matcher) {}
2502
2503  template <typename LhsContainer>
2504  operator Matcher<LhsContainer>() const {
2505    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2506  }
2507
2508  template <typename LhsContainer>
2509  class Impl : public MatcherInterface<LhsContainer> {
2510   public:
2511    typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2512        LhsContainer)>
2513        LhsView;
2514    typedef typename LhsView::type LhsStlContainer;
2515    typedef typename LhsView::const_reference LhsStlContainerReference;
2516    // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2517    // so that we can match associative containers.
2518    typedef
2519        typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2520            LhsValue;
2521
2522    Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2523        : comparator_(comparator), matcher_(matcher) {}
2524
2525    void DescribeTo(::std::ostream* os) const override {
2526      *os << "(when sorted) ";
2527      matcher_.DescribeTo(os);
2528    }
2529
2530    void DescribeNegationTo(::std::ostream* os) const override {
2531      *os << "(when sorted) ";
2532      matcher_.DescribeNegationTo(os);
2533    }
2534
2535    bool MatchAndExplain(LhsContainer lhs,
2536                         MatchResultListener* listener) const override {
2537      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2538      ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2539                                               lhs_stl_container.end());
2540      ::std::sort(sorted_container.begin(), sorted_container.end(),
2541                  comparator_);
2542
2543      if (!listener->IsInterested()) {
2544        // If the listener is not interested, we do not need to
2545        // construct the inner explanation.
2546        return matcher_.Matches(sorted_container);
2547      }
2548
2549      *listener << "which is ";
2550      UniversalPrint(sorted_container, listener->stream());
2551      *listener << " when sorted";
2552
2553      StringMatchResultListener inner_listener;
2554      const bool match =
2555          matcher_.MatchAndExplain(sorted_container, &inner_listener);
2556      PrintIfNotEmpty(inner_listener.str(), listener->stream());
2557      return match;
2558    }
2559
2560   private:
2561    const Comparator comparator_;
2562    const Matcher<const ::std::vector<LhsValue>&> matcher_;
2563
2564    Impl(const Impl&) = delete;
2565    Impl& operator=(const Impl&) = delete;
2566  };
2567
2568 private:
2569  const Comparator comparator_;
2570  const ContainerMatcher matcher_;
2571};
2572
2573// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2574// must be able to be safely cast to Matcher<std::tuple<const T1&, const
2575// T2&> >, where T1 and T2 are the types of elements in the LHS
2576// container and the RHS container respectively.
2577template <typename TupleMatcher, typename RhsContainer>
2578class PointwiseMatcher {
2579  static_assert(
2580      !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2581      "use UnorderedPointwise with hash tables");
2582
2583 public:
2584  typedef internal::StlContainerView<RhsContainer> RhsView;
2585  typedef typename RhsView::type RhsStlContainer;
2586  typedef typename RhsStlContainer::value_type RhsValue;
2587
2588  static_assert(!std::is_const<RhsContainer>::value,
2589                "RhsContainer type must not be const");
2590  static_assert(!std::is_reference<RhsContainer>::value,
2591                "RhsContainer type must not be a reference");
2592
2593  // Like ContainerEq, we make a copy of rhs in case the elements in
2594  // it are modified after this matcher is created.
2595  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2596      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2597
2598  template <typename LhsContainer>
2599  operator Matcher<LhsContainer>() const {
2600    static_assert(
2601        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2602        "use UnorderedPointwise with hash tables");
2603
2604    return Matcher<LhsContainer>(
2605        new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2606  }
2607
2608  template <typename LhsContainer>
2609  class Impl : public MatcherInterface<LhsContainer> {
2610   public:
2611    typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2612        LhsContainer)>
2613        LhsView;
2614    typedef typename LhsView::type LhsStlContainer;
2615    typedef typename LhsView::const_reference LhsStlContainerReference;
2616    typedef typename LhsStlContainer::value_type LhsValue;
2617    // We pass the LHS value and the RHS value to the inner matcher by
2618    // reference, as they may be expensive to copy.  We must use tuple
2619    // instead of pair here, as a pair cannot hold references (C++ 98,
2620    // 20.2.2 [lib.pairs]).
2621    typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2622
2623    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2624        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2625        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2626          rhs_(rhs) {}
2627
2628    void DescribeTo(::std::ostream* os) const override {
2629      *os << "contains " << rhs_.size()
2630          << " values, where each value and its corresponding value in ";
2631      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2632      *os << " ";
2633      mono_tuple_matcher_.DescribeTo(os);
2634    }
2635    void DescribeNegationTo(::std::ostream* os) const override {
2636      *os << "doesn't contain exactly " << rhs_.size()
2637          << " values, or contains a value x at some index i"
2638          << " where x and the i-th value of ";
2639      UniversalPrint(rhs_, os);
2640      *os << " ";
2641      mono_tuple_matcher_.DescribeNegationTo(os);
2642    }
2643
2644    bool MatchAndExplain(LhsContainer lhs,
2645                         MatchResultListener* listener) const override {
2646      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2647      const size_t actual_size = lhs_stl_container.size();
2648      if (actual_size != rhs_.size()) {
2649        *listener << "which contains " << actual_size << " values";
2650        return false;
2651      }
2652
2653      auto left = lhs_stl_container.begin();
2654      auto right = rhs_.begin();
2655      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2656        if (listener->IsInterested()) {
2657          StringMatchResultListener inner_listener;
2658          // Create InnerMatcherArg as a temporarily object to avoid it outlives
2659          // *left and *right. Dereference or the conversion to `const T&` may
2660          // return temp objects, e.g. for vector<bool>.
2661          if (!mono_tuple_matcher_.MatchAndExplain(
2662                  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2663                                  ImplicitCast_<const RhsValue&>(*right)),
2664                  &inner_listener)) {
2665            *listener << "where the value pair (";
2666            UniversalPrint(*left, listener->stream());
2667            *listener << ", ";
2668            UniversalPrint(*right, listener->stream());
2669            *listener << ") at index #" << i << " don't match";
2670            PrintIfNotEmpty(inner_listener.str(), listener->stream());
2671            return false;
2672          }
2673        } else {
2674          if (!mono_tuple_matcher_.Matches(
2675                  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2676                                  ImplicitCast_<const RhsValue&>(*right))))
2677            return false;
2678        }
2679      }
2680
2681      return true;
2682    }
2683
2684   private:
2685    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2686    const RhsStlContainer rhs_;
2687  };
2688
2689 private:
2690  const TupleMatcher tuple_matcher_;
2691  const RhsStlContainer rhs_;
2692};
2693
2694// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2695template <typename Container>
2696class QuantifierMatcherImpl : public MatcherInterface<Container> {
2697 public:
2698  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2699  typedef StlContainerView<RawContainer> View;
2700  typedef typename View::type StlContainer;
2701  typedef typename View::const_reference StlContainerReference;
2702  typedef typename StlContainer::value_type Element;
2703
2704  template <typename InnerMatcher>
2705  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2706      : inner_matcher_(
2707            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2708
2709  // Checks whether:
2710  // * All elements in the container match, if all_elements_should_match.
2711  // * Any element in the container matches, if !all_elements_should_match.
2712  bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2713                           MatchResultListener* listener) const {
2714    StlContainerReference stl_container = View::ConstReference(container);
2715    size_t i = 0;
2716    for (auto it = stl_container.begin(); it != stl_container.end();
2717         ++it, ++i) {
2718      StringMatchResultListener inner_listener;
2719      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2720
2721      if (matches != all_elements_should_match) {
2722        *listener << "whose element #" << i
2723                  << (matches ? " matches" : " doesn't match");
2724        PrintIfNotEmpty(inner_listener.str(), listener->stream());
2725        return !all_elements_should_match;
2726      }
2727    }
2728    return all_elements_should_match;
2729  }
2730
2731  bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2732                           Container container,
2733                           MatchResultListener* listener) const {
2734    StlContainerReference stl_container = View::ConstReference(container);
2735    size_t i = 0;
2736    std::vector<size_t> match_elements;
2737    for (auto it = stl_container.begin(); it != stl_container.end();
2738         ++it, ++i) {
2739      StringMatchResultListener inner_listener;
2740      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2741      if (matches) {
2742        match_elements.push_back(i);
2743      }
2744    }
2745    if (listener->IsInterested()) {
2746      if (match_elements.empty()) {
2747        *listener << "has no element that matches";
2748      } else if (match_elements.size() == 1) {
2749        *listener << "whose element #" << match_elements[0] << " matches";
2750      } else {
2751        *listener << "whose elements (";
2752        std::string sep = "";
2753        for (size_t e : match_elements) {
2754          *listener << sep << e;
2755          sep = ", ";
2756        }
2757        *listener << ") match";
2758      }
2759    }
2760    StringMatchResultListener count_listener;
2761    if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2762      *listener << " and whose match quantity of " << match_elements.size()
2763                << " matches";
2764      PrintIfNotEmpty(count_listener.str(), listener->stream());
2765      return true;
2766    } else {
2767      if (match_elements.empty()) {
2768        *listener << " and";
2769      } else {
2770        *listener << " but";
2771      }
2772      *listener << " whose match quantity of " << match_elements.size()
2773                << " does not match";
2774      PrintIfNotEmpty(count_listener.str(), listener->stream());
2775      return false;
2776    }
2777  }
2778
2779 protected:
2780  const Matcher<const Element&> inner_matcher_;
2781};
2782
2783// Implements Contains(element_matcher) for the given argument type Container.
2784// Symmetric to EachMatcherImpl.
2785template <typename Container>
2786class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2787 public:
2788  template <typename InnerMatcher>
2789  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2790      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2791
2792  // Describes what this matcher does.
2793  void DescribeTo(::std::ostream* os) const override {
2794    *os << "contains at least one element that ";
2795    this->inner_matcher_.DescribeTo(os);
2796  }
2797
2798  void DescribeNegationTo(::std::ostream* os) const override {
2799    *os << "doesn't contain any element that ";
2800    this->inner_matcher_.DescribeTo(os);
2801  }
2802
2803  bool MatchAndExplain(Container container,
2804                       MatchResultListener* listener) const override {
2805    return this->MatchAndExplainImpl(false, container, listener);
2806  }
2807};
2808
2809// Implements Each(element_matcher) for the given argument type Container.
2810// Symmetric to ContainsMatcherImpl.
2811template <typename Container>
2812class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2813 public:
2814  template <typename InnerMatcher>
2815  explicit EachMatcherImpl(InnerMatcher inner_matcher)
2816      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2817
2818  // Describes what this matcher does.
2819  void DescribeTo(::std::ostream* os) const override {
2820    *os << "only contains elements that ";
2821    this->inner_matcher_.DescribeTo(os);
2822  }
2823
2824  void DescribeNegationTo(::std::ostream* os) const override {
2825    *os << "contains some element that ";
2826    this->inner_matcher_.DescribeNegationTo(os);
2827  }
2828
2829  bool MatchAndExplain(Container container,
2830                       MatchResultListener* listener) const override {
2831    return this->MatchAndExplainImpl(true, container, listener);
2832  }
2833};
2834
2835// Implements Contains(element_matcher).Times(n) for the given argument type
2836// Container.
2837template <typename Container>
2838class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2839 public:
2840  template <typename InnerMatcher>
2841  explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2842                                    Matcher<size_t> count_matcher)
2843      : QuantifierMatcherImpl<Container>(inner_matcher),
2844        count_matcher_(std::move(count_matcher)) {}
2845
2846  void DescribeTo(::std::ostream* os) const override {
2847    *os << "quantity of elements that match ";
2848    this->inner_matcher_.DescribeTo(os);
2849    *os << " ";
2850    count_matcher_.DescribeTo(os);
2851  }
2852
2853  void DescribeNegationTo(::std::ostream* os) const override {
2854    *os << "quantity of elements that match ";
2855    this->inner_matcher_.DescribeTo(os);
2856    *os << " ";
2857    count_matcher_.DescribeNegationTo(os);
2858  }
2859
2860  bool MatchAndExplain(Container container,
2861                       MatchResultListener* listener) const override {
2862    return this->MatchAndExplainImpl(count_matcher_, container, listener);
2863  }
2864
2865 private:
2866  const Matcher<size_t> count_matcher_;
2867};
2868
2869// Implements polymorphic Contains(element_matcher).Times(n).
2870template <typename M>
2871class ContainsTimesMatcher {
2872 public:
2873  explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2874      : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2875
2876  template <typename Container>
2877  operator Matcher<Container>() const {  // NOLINT
2878    return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2879        inner_matcher_, count_matcher_));
2880  }
2881
2882 private:
2883  const M inner_matcher_;
2884  const Matcher<size_t> count_matcher_;
2885};
2886
2887// Implements polymorphic Contains(element_matcher).
2888template <typename M>
2889class ContainsMatcher {
2890 public:
2891  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2892
2893  template <typename Container>
2894  operator Matcher<Container>() const {  // NOLINT
2895    return Matcher<Container>(
2896        new ContainsMatcherImpl<const Container&>(inner_matcher_));
2897  }
2898
2899  ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2900    return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2901  }
2902
2903 private:
2904  const M inner_matcher_;
2905};
2906
2907// Implements polymorphic Each(element_matcher).
2908template <typename M>
2909class EachMatcher {
2910 public:
2911  explicit EachMatcher(M m) : inner_matcher_(m) {}
2912
2913  template <typename Container>
2914  operator Matcher<Container>() const {  // NOLINT
2915    return Matcher<Container>(
2916        new EachMatcherImpl<const Container&>(inner_matcher_));
2917  }
2918
2919 private:
2920  const M inner_matcher_;
2921};
2922
2923struct Rank1 {};
2924struct Rank0 : Rank1 {};
2925
2926namespace pair_getters {
2927using std::get;
2928template <typename T>
2929auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
2930  return get<0>(x);
2931}
2932template <typename T>
2933auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
2934  return x.first;
2935}
2936
2937template <typename T>
2938auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
2939  return get<1>(x);
2940}
2941template <typename T>
2942auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
2943  return x.second;
2944}
2945}  // namespace pair_getters
2946
2947// Implements Key(inner_matcher) for the given argument pair type.
2948// Key(inner_matcher) matches an std::pair whose 'first' field matches
2949// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2950// std::map that contains at least one element whose key is >= 5.
2951template <typename PairType>
2952class KeyMatcherImpl : public MatcherInterface<PairType> {
2953 public:
2954  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2955  typedef typename RawPairType::first_type KeyType;
2956
2957  template <typename InnerMatcher>
2958  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2959      : inner_matcher_(
2960            testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2961
2962  // Returns true if and only if 'key_value.first' (the key) matches the inner
2963  // matcher.
2964  bool MatchAndExplain(PairType key_value,
2965                       MatchResultListener* listener) const override {
2966    StringMatchResultListener inner_listener;
2967    const bool match = inner_matcher_.MatchAndExplain(
2968        pair_getters::First(key_value, Rank0()), &inner_listener);
2969    const std::string explanation = inner_listener.str();
2970    if (!explanation.empty()) {
2971      *listener << "whose first field is a value " << explanation;
2972    }
2973    return match;
2974  }
2975
2976  // Describes what this matcher does.
2977  void DescribeTo(::std::ostream* os) const override {
2978    *os << "has a key that ";
2979    inner_matcher_.DescribeTo(os);
2980  }
2981
2982  // Describes what the negation of this matcher does.
2983  void DescribeNegationTo(::std::ostream* os) const override {
2984    *os << "doesn't have a key that ";
2985    inner_matcher_.DescribeTo(os);
2986  }
2987
2988 private:
2989  const Matcher<const KeyType&> inner_matcher_;
2990};
2991
2992// Implements polymorphic Key(matcher_for_key).
2993template <typename M>
2994class KeyMatcher {
2995 public:
2996  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2997
2998  template <typename PairType>
2999  operator Matcher<PairType>() const {
3000    return Matcher<PairType>(
3001        new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3002  }
3003
3004 private:
3005  const M matcher_for_key_;
3006};
3007
3008// Implements polymorphic Address(matcher_for_address).
3009template <typename InnerMatcher>
3010class AddressMatcher {
3011 public:
3012  explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3013
3014  template <typename Type>
3015  operator Matcher<Type>() const {  // NOLINT
3016    return Matcher<Type>(new Impl<const Type&>(matcher_));
3017  }
3018
3019 private:
3020  // The monomorphic implementation that works for a particular object type.
3021  template <typename Type>
3022  class Impl : public MatcherInterface<Type> {
3023   public:
3024    using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3025    explicit Impl(const InnerMatcher& matcher)
3026        : matcher_(MatcherCast<Address>(matcher)) {}
3027
3028    void DescribeTo(::std::ostream* os) const override {
3029      *os << "has address that ";
3030      matcher_.DescribeTo(os);
3031    }
3032
3033    void DescribeNegationTo(::std::ostream* os) const override {
3034      *os << "does not have address that ";
3035      matcher_.DescribeTo(os);
3036    }
3037
3038    bool MatchAndExplain(Type object,
3039                         MatchResultListener* listener) const override {
3040      *listener << "which has address ";
3041      Address address = std::addressof(object);
3042      return MatchPrintAndExplain(address, matcher_, listener);
3043    }
3044
3045   private:
3046    const Matcher<Address> matcher_;
3047  };
3048  const InnerMatcher matcher_;
3049};
3050
3051// Implements Pair(first_matcher, second_matcher) for the given argument pair
3052// type with its two matchers. See Pair() function below.
3053template <typename PairType>
3054class PairMatcherImpl : public MatcherInterface<PairType> {
3055 public:
3056  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3057  typedef typename RawPairType::first_type FirstType;
3058  typedef typename RawPairType::second_type SecondType;
3059
3060  template <typename FirstMatcher, typename SecondMatcher>
3061  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3062      : first_matcher_(
3063            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3064        second_matcher_(
3065            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3066
3067  // Describes what this matcher does.
3068  void DescribeTo(::std::ostream* os) const override {
3069    *os << "has a first field that ";
3070    first_matcher_.DescribeTo(os);
3071    *os << ", and has a second field that ";
3072    second_matcher_.DescribeTo(os);
3073  }
3074
3075  // Describes what the negation of this matcher does.
3076  void DescribeNegationTo(::std::ostream* os) const override {
3077    *os << "has a first field that ";
3078    first_matcher_.DescribeNegationTo(os);
3079    *os << ", or has a second field that ";
3080    second_matcher_.DescribeNegationTo(os);
3081  }
3082
3083  // Returns true if and only if 'a_pair.first' matches first_matcher and
3084  // 'a_pair.second' matches second_matcher.
3085  bool MatchAndExplain(PairType a_pair,
3086                       MatchResultListener* listener) const override {
3087    if (!listener->IsInterested()) {
3088      // If the listener is not interested, we don't need to construct the
3089      // explanation.
3090      return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3091             second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3092    }
3093    StringMatchResultListener first_inner_listener;
3094    if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3095                                        &first_inner_listener)) {
3096      *listener << "whose first field does not match";
3097      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3098      return false;
3099    }
3100    StringMatchResultListener second_inner_listener;
3101    if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3102                                         &second_inner_listener)) {
3103      *listener << "whose second field does not match";
3104      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3105      return false;
3106    }
3107    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3108                   listener);
3109    return true;
3110  }
3111
3112 private:
3113  void ExplainSuccess(const std::string& first_explanation,
3114                      const std::string& second_explanation,
3115                      MatchResultListener* listener) const {
3116    *listener << "whose both fields match";
3117    if (!first_explanation.empty()) {
3118      *listener << ", where the first field is a value " << first_explanation;
3119    }
3120    if (!second_explanation.empty()) {
3121      *listener << ", ";
3122      if (!first_explanation.empty()) {
3123        *listener << "and ";
3124      } else {
3125        *listener << "where ";
3126      }
3127      *listener << "the second field is a value " << second_explanation;
3128    }
3129  }
3130
3131  const Matcher<const FirstType&> first_matcher_;
3132  const Matcher<const SecondType&> second_matcher_;
3133};
3134
3135// Implements polymorphic Pair(first_matcher, second_matcher).
3136template <typename FirstMatcher, typename SecondMatcher>
3137class PairMatcher {
3138 public:
3139  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3140      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3141
3142  template <typename PairType>
3143  operator Matcher<PairType>() const {
3144    return Matcher<PairType>(
3145        new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3146  }
3147
3148 private:
3149  const FirstMatcher first_matcher_;
3150  const SecondMatcher second_matcher_;
3151};
3152
3153template <typename T, size_t... I>
3154auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
3155    -> decltype(std::tie(get<I>(t)...)) {
3156  static_assert(std::tuple_size<T>::value == sizeof...(I),
3157                "Number of arguments doesn't match the number of fields.");
3158  return std::tie(get<I>(t)...);
3159}
3160
3161#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3162template <typename T>
3163auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
3164  const auto& [a] = t;
3165  return std::tie(a);
3166}
3167template <typename T>
3168auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
3169  const auto& [a, b] = t;
3170  return std::tie(a, b);
3171}
3172template <typename T>
3173auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
3174  const auto& [a, b, c] = t;
3175  return std::tie(a, b, c);
3176}
3177template <typename T>
3178auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3179  const auto& [a, b, c, d] = t;
3180  return std::tie(a, b, c, d);
3181}
3182template <typename T>
3183auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3184  const auto& [a, b, c, d, e] = t;
3185  return std::tie(a, b, c, d, e);
3186}
3187template <typename T>
3188auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3189  const auto& [a, b, c, d, e, f] = t;
3190  return std::tie(a, b, c, d, e, f);
3191}
3192template <typename T>
3193auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3194  const auto& [a, b, c, d, e, f, g] = t;
3195  return std::tie(a, b, c, d, e, f, g);
3196}
3197template <typename T>
3198auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3199  const auto& [a, b, c, d, e, f, g, h] = t;
3200  return std::tie(a, b, c, d, e, f, g, h);
3201}
3202template <typename T>
3203auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3204  const auto& [a, b, c, d, e, f, g, h, i] = t;
3205  return std::tie(a, b, c, d, e, f, g, h, i);
3206}
3207template <typename T>
3208auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3209  const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3210  return std::tie(a, b, c, d, e, f, g, h, i, j);
3211}
3212template <typename T>
3213auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3214  const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3215  return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3216}
3217template <typename T>
3218auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3219  const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3220  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3221}
3222template <typename T>
3223auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3224  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3225  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3226}
3227template <typename T>
3228auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3229  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3230  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3231}
3232template <typename T>
3233auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3234  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3235  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3236}
3237template <typename T>
3238auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3239  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3240  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3241}
3242template <typename T>
3243auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) {
3244  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3245  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3246}
3247template <typename T>
3248auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) {
3249  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3250  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3251}
3252template <typename T>
3253auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) {
3254  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3255  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3256}
3257#endif  // defined(__cpp_structured_bindings)
3258
3259template <size_t I, typename T>
3260auto UnpackStruct(const T& t)
3261    -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3262  return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3263}
3264
3265// Helper function to do comma folding in C++11.
3266// The array ensures left-to-right order of evaluation.
3267// Usage: VariadicExpand({expr...});
3268template <typename T, size_t N>
3269void VariadicExpand(const T (&)[N]) {}
3270
3271template <typename Struct, typename StructSize>
3272class FieldsAreMatcherImpl;
3273
3274template <typename Struct, size_t... I>
3275class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3276    : public MatcherInterface<Struct> {
3277  using UnpackedType =
3278      decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3279  using MatchersType = std::tuple<
3280      Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3281
3282 public:
3283  template <typename Inner>
3284  explicit FieldsAreMatcherImpl(const Inner& matchers)
3285      : matchers_(testing::SafeMatcherCast<
3286                  const typename std::tuple_element<I, UnpackedType>::type&>(
3287            std::get<I>(matchers))...) {}
3288
3289  void DescribeTo(::std::ostream* os) const override {
3290    const char* separator = "";
3291    VariadicExpand(
3292        {(*os << separator << "has field #" << I << " that ",
3293          std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3294  }
3295
3296  void DescribeNegationTo(::std::ostream* os) const override {
3297    const char* separator = "";
3298    VariadicExpand({(*os << separator << "has field #" << I << " that ",
3299                     std::get<I>(matchers_).DescribeNegationTo(os),
3300                     separator = ", or ")...});
3301  }
3302
3303  bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3304    return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3305  }
3306
3307 private:
3308  bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3309    if (!listener->IsInterested()) {
3310      // If the listener is not interested, we don't need to construct the
3311      // explanation.
3312      bool good = true;
3313      VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3314                                         std::get<I>(tuple))...});
3315      return good;
3316    }
3317
3318    size_t failed_pos = ~size_t{};
3319
3320    std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3321
3322    VariadicExpand(
3323        {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3324                                        std::get<I>(tuple), &inner_listener[I])
3325             ? failed_pos = I
3326             : 0 ...});
3327    if (failed_pos != ~size_t{}) {
3328      *listener << "whose field #" << failed_pos << " does not match";
3329      PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3330      return false;
3331    }
3332
3333    *listener << "whose all elements match";
3334    const char* separator = ", where";
3335    for (size_t index = 0; index < sizeof...(I); ++index) {
3336      const std::string str = inner_listener[index].str();
3337      if (!str.empty()) {
3338        *listener << separator << " field #" << index << " is a value " << str;
3339        separator = ", and";
3340      }
3341    }
3342
3343    return true;
3344  }
3345
3346  MatchersType matchers_;
3347};
3348
3349template <typename... Inner>
3350class FieldsAreMatcher {
3351 public:
3352  explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3353
3354  template <typename Struct>
3355  operator Matcher<Struct>() const {  // NOLINT
3356    return Matcher<Struct>(
3357        new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3358            matchers_));
3359  }
3360
3361 private:
3362  std::tuple<Inner...> matchers_;
3363};
3364
3365// Implements ElementsAre() and ElementsAreArray().
3366template <typename Container>
3367class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3368 public:
3369  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3370  typedef internal::StlContainerView<RawContainer> View;
3371  typedef typename View::type StlContainer;
3372  typedef typename View::const_reference StlContainerReference;
3373  typedef typename StlContainer::value_type Element;
3374
3375  // Constructs the matcher from a sequence of element values or
3376  // element matchers.
3377  template <typename InputIter>
3378  ElementsAreMatcherImpl(InputIter first, InputIter last) {
3379    while (first != last) {
3380      matchers_.push_back(MatcherCast<const Element&>(*first++));
3381    }
3382  }
3383
3384  // Describes what this matcher does.
3385  void DescribeTo(::std::ostream* os) const override {
3386    if (count() == 0) {
3387      *os << "is empty";
3388    } else if (count() == 1) {
3389      *os << "has 1 element that ";
3390      matchers_[0].DescribeTo(os);
3391    } else {
3392      *os << "has " << Elements(count()) << " where\n";
3393      for (size_t i = 0; i != count(); ++i) {
3394        *os << "element #" << i << " ";
3395        matchers_[i].DescribeTo(os);
3396        if (i + 1 < count()) {
3397          *os << ",\n";
3398        }
3399      }
3400    }
3401  }
3402
3403  // Describes what the negation of this matcher does.
3404  void DescribeNegationTo(::std::ostream* os) const override {
3405    if (count() == 0) {
3406      *os << "isn't empty";
3407      return;
3408    }
3409
3410    *os << "doesn't have " << Elements(count()) << ", or\n";
3411    for (size_t i = 0; i != count(); ++i) {
3412      *os << "element #" << i << " ";
3413      matchers_[i].DescribeNegationTo(os);
3414      if (i + 1 < count()) {
3415        *os << ", or\n";
3416      }
3417    }
3418  }
3419
3420  bool MatchAndExplain(Container container,
3421                       MatchResultListener* listener) const override {
3422    // To work with stream-like "containers", we must only walk
3423    // through the elements in one pass.
3424
3425    const bool listener_interested = listener->IsInterested();
3426
3427    // explanations[i] is the explanation of the element at index i.
3428    ::std::vector<std::string> explanations(count());
3429    StlContainerReference stl_container = View::ConstReference(container);
3430    auto it = stl_container.begin();
3431    size_t exam_pos = 0;
3432    bool mismatch_found = false;  // Have we found a mismatched element yet?
3433
3434    // Go through the elements and matchers in pairs, until we reach
3435    // the end of either the elements or the matchers, or until we find a
3436    // mismatch.
3437    for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3438      bool match;  // Does the current element match the current matcher?
3439      if (listener_interested) {
3440        StringMatchResultListener s;
3441        match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3442        explanations[exam_pos] = s.str();
3443      } else {
3444        match = matchers_[exam_pos].Matches(*it);
3445      }
3446
3447      if (!match) {
3448        mismatch_found = true;
3449        break;
3450      }
3451    }
3452    // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3453
3454    // Find how many elements the actual container has.  We avoid
3455    // calling size() s.t. this code works for stream-like "containers"
3456    // that don't define size().
3457    size_t actual_count = exam_pos;
3458    for (; it != stl_container.end(); ++it) {
3459      ++actual_count;
3460    }
3461
3462    if (actual_count != count()) {
3463      // The element count doesn't match.  If the container is empty,
3464      // there's no need to explain anything as Google Mock already
3465      // prints the empty container.  Otherwise we just need to show
3466      // how many elements there actually are.
3467      if (listener_interested && (actual_count != 0)) {
3468        *listener << "which has " << Elements(actual_count);
3469      }
3470      return false;
3471    }
3472
3473    if (mismatch_found) {
3474      // The element count matches, but the exam_pos-th element doesn't match.
3475      if (listener_interested) {
3476        *listener << "whose element #" << exam_pos << " doesn't match";
3477        PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3478      }
3479      return false;
3480    }
3481
3482    // Every element matches its expectation.  We need to explain why
3483    // (the obvious ones can be skipped).
3484    if (listener_interested) {
3485      bool reason_printed = false;
3486      for (size_t i = 0; i != count(); ++i) {
3487        const std::string& s = explanations[i];
3488        if (!s.empty()) {
3489          if (reason_printed) {
3490            *listener << ",\nand ";
3491          }
3492          *listener << "whose element #" << i << " matches, " << s;
3493          reason_printed = true;
3494        }
3495      }
3496    }
3497    return true;
3498  }
3499
3500 private:
3501  static Message Elements(size_t count) {
3502    return Message() << count << (count == 1 ? " element" : " elements");
3503  }
3504
3505  size_t count() const { return matchers_.size(); }
3506
3507  ::std::vector<Matcher<const Element&>> matchers_;
3508};
3509
3510// Connectivity matrix of (elements X matchers), in element-major order.
3511// Initially, there are no edges.
3512// Use NextGraph() to iterate over all possible edge configurations.
3513// Use Randomize() to generate a random edge configuration.
3514class GTEST_API_ MatchMatrix {
3515 public:
3516  MatchMatrix(size_t num_elements, size_t num_matchers)
3517      : num_elements_(num_elements),
3518        num_matchers_(num_matchers),
3519        matched_(num_elements_ * num_matchers_, 0) {}
3520
3521  size_t LhsSize() const { return num_elements_; }
3522  size_t RhsSize() const { return num_matchers_; }
3523  bool HasEdge(size_t ilhs, size_t irhs) const {
3524    return matched_[SpaceIndex(ilhs, irhs)] == 1;
3525  }
3526  void SetEdge(size_t ilhs, size_t irhs, bool b) {
3527    matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3528  }
3529
3530  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3531  // adds 1 to that number; returns false if incrementing the graph left it
3532  // empty.
3533  bool NextGraph();
3534
3535  void Randomize();
3536
3537  std::string DebugString() const;
3538
3539 private:
3540  size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3541    return ilhs * num_matchers_ + irhs;
3542  }
3543
3544  size_t num_elements_;
3545  size_t num_matchers_;
3546
3547  // Each element is a char interpreted as bool. They are stored as a
3548  // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3549  // a (ilhs, irhs) matrix coordinate into an offset.
3550  ::std::vector<char> matched_;
3551};
3552
3553typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3554typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3555
3556// Returns a maximum bipartite matching for the specified graph 'g'.
3557// The matching is represented as a vector of {element, matcher} pairs.
3558GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3559
3560struct UnorderedMatcherRequire {
3561  enum Flags {
3562    Superset = 1 << 0,
3563    Subset = 1 << 1,
3564    ExactMatch = Superset | Subset,
3565  };
3566};
3567
3568// Untyped base class for implementing UnorderedElementsAre.  By
3569// putting logic that's not specific to the element type here, we
3570// reduce binary bloat and increase compilation speed.
3571class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3572 protected:
3573  explicit UnorderedElementsAreMatcherImplBase(
3574      UnorderedMatcherRequire::Flags matcher_flags)
3575      : match_flags_(matcher_flags) {}
3576
3577  // A vector of matcher describers, one for each element matcher.
3578  // Does not own the describers (and thus can be used only when the
3579  // element matchers are alive).
3580  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3581
3582  // Describes this UnorderedElementsAre matcher.
3583  void DescribeToImpl(::std::ostream* os) const;
3584
3585  // Describes the negation of this UnorderedElementsAre matcher.
3586  void DescribeNegationToImpl(::std::ostream* os) const;
3587
3588  bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3589                         const MatchMatrix& matrix,
3590                         MatchResultListener* listener) const;
3591
3592  bool FindPairing(const MatchMatrix& matrix,
3593                   MatchResultListener* listener) const;
3594
3595  MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3596
3597  static Message Elements(size_t n) {
3598    return Message() << n << " element" << (n == 1 ? "" : "s");
3599  }
3600
3601  UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3602
3603 private:
3604  UnorderedMatcherRequire::Flags match_flags_;
3605  MatcherDescriberVec matcher_describers_;
3606};
3607
3608// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3609// IsSupersetOf.
3610template <typename Container>
3611class UnorderedElementsAreMatcherImpl
3612    : public MatcherInterface<Container>,
3613      public UnorderedElementsAreMatcherImplBase {
3614 public:
3615  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3616  typedef internal::StlContainerView<RawContainer> View;
3617  typedef typename View::type StlContainer;
3618  typedef typename View::const_reference StlContainerReference;
3619  typedef typename StlContainer::value_type Element;
3620
3621  template <typename InputIter>
3622  UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3623                                  InputIter first, InputIter last)
3624      : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3625    for (; first != last; ++first) {
3626      matchers_.push_back(MatcherCast<const Element&>(*first));
3627    }
3628    for (const auto& m : matchers_) {
3629      matcher_describers().push_back(m.GetDescriber());
3630    }
3631  }
3632
3633  // Describes what this matcher does.
3634  void DescribeTo(::std::ostream* os) const override {
3635    return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3636  }
3637
3638  // Describes what the negation of this matcher does.
3639  void DescribeNegationTo(::std::ostream* os) const override {
3640    return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3641  }
3642
3643  bool MatchAndExplain(Container container,
3644                       MatchResultListener* listener) const override {
3645    StlContainerReference stl_container = View::ConstReference(container);
3646    ::std::vector<std::string> element_printouts;
3647    MatchMatrix matrix =
3648        AnalyzeElements(stl_container.begin(), stl_container.end(),
3649                        &element_printouts, listener);
3650
3651    return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3652           FindPairing(matrix, listener);
3653  }
3654
3655 private:
3656  template <typename ElementIter>
3657  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3658                              ::std::vector<std::string>* element_printouts,
3659                              MatchResultListener* listener) const {
3660    element_printouts->clear();
3661    ::std::vector<char> did_match;
3662    size_t num_elements = 0;
3663    DummyMatchResultListener dummy;
3664    for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3665      if (listener->IsInterested()) {
3666        element_printouts->push_back(PrintToString(*elem_first));
3667      }
3668      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3669        did_match.push_back(
3670            matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3671      }
3672    }
3673
3674    MatchMatrix matrix(num_elements, matchers_.size());
3675    ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3676    for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3677      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3678        matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3679      }
3680    }
3681    return matrix;
3682  }
3683
3684  ::std::vector<Matcher<const Element&>> matchers_;
3685};
3686
3687// Functor for use in TransformTuple.
3688// Performs MatcherCast<Target> on an input argument of any type.
3689template <typename Target>
3690struct CastAndAppendTransform {
3691  template <typename Arg>
3692  Matcher<Target> operator()(const Arg& a) const {
3693    return MatcherCast<Target>(a);
3694  }
3695};
3696
3697// Implements UnorderedElementsAre.
3698template <typename MatcherTuple>
3699class UnorderedElementsAreMatcher {
3700 public:
3701  explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3702      : matchers_(args) {}
3703
3704  template <typename Container>
3705  operator Matcher<Container>() const {
3706    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3707    typedef typename internal::StlContainerView<RawContainer>::type View;
3708    typedef typename View::value_type Element;
3709    typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3710    MatcherVec matchers;
3711    matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3712    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3713                         ::std::back_inserter(matchers));
3714    return Matcher<Container>(
3715        new UnorderedElementsAreMatcherImpl<const Container&>(
3716            UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3717            matchers.end()));
3718  }
3719
3720 private:
3721  const MatcherTuple matchers_;
3722};
3723
3724// Implements ElementsAre.
3725template <typename MatcherTuple>
3726class ElementsAreMatcher {
3727 public:
3728  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3729
3730  template <typename Container>
3731  operator Matcher<Container>() const {
3732    static_assert(
3733        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3734            ::std::tuple_size<MatcherTuple>::value < 2,
3735        "use UnorderedElementsAre with hash tables");
3736
3737    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3738    typedef typename internal::StlContainerView<RawContainer>::type View;
3739    typedef typename View::value_type Element;
3740    typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3741    MatcherVec matchers;
3742    matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3743    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3744                         ::std::back_inserter(matchers));
3745    return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3746        matchers.begin(), matchers.end()));
3747  }
3748
3749 private:
3750  const MatcherTuple matchers_;
3751};
3752
3753// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3754template <typename T>
3755class UnorderedElementsAreArrayMatcher {
3756 public:
3757  template <typename Iter>
3758  UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3759                                   Iter first, Iter last)
3760      : match_flags_(match_flags), matchers_(first, last) {}
3761
3762  template <typename Container>
3763  operator Matcher<Container>() const {
3764    return Matcher<Container>(
3765        new UnorderedElementsAreMatcherImpl<const Container&>(
3766            match_flags_, matchers_.begin(), matchers_.end()));
3767  }
3768
3769 private:
3770  UnorderedMatcherRequire::Flags match_flags_;
3771  ::std::vector<T> matchers_;
3772};
3773
3774// Implements ElementsAreArray().
3775template <typename T>
3776class ElementsAreArrayMatcher {
3777 public:
3778  template <typename Iter>
3779  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3780
3781  template <typename Container>
3782  operator Matcher<Container>() const {
3783    static_assert(
3784        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3785        "use UnorderedElementsAreArray with hash tables");
3786
3787    return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3788        matchers_.begin(), matchers_.end()));
3789  }
3790
3791 private:
3792  const ::std::vector<T> matchers_;
3793};
3794
3795// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3796// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3797// second) is a polymorphic matcher that matches a value x if and only if
3798// tm matches tuple (x, second).  Useful for implementing
3799// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3800//
3801// BoundSecondMatcher is copyable and assignable, as we need to put
3802// instances of this class in a vector when implementing
3803// UnorderedPointwise().
3804template <typename Tuple2Matcher, typename Second>
3805class BoundSecondMatcher {
3806 public:
3807  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3808      : tuple2_matcher_(tm), second_value_(second) {}
3809
3810  BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3811
3812  template <typename T>
3813  operator Matcher<T>() const {
3814    return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3815  }
3816
3817  // We have to define this for UnorderedPointwise() to compile in
3818  // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3819  // which requires the elements to be assignable in C++98.  The
3820  // compiler cannot generate the operator= for us, as Tuple2Matcher
3821  // and Second may not be assignable.
3822  //
3823  // However, this should never be called, so the implementation just
3824  // need to assert.
3825  void operator=(const BoundSecondMatcher& /*rhs*/) {
3826    GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3827  }
3828
3829 private:
3830  template <typename T>
3831  class Impl : public MatcherInterface<T> {
3832   public:
3833    typedef ::std::tuple<T, Second> ArgTuple;
3834
3835    Impl(const Tuple2Matcher& tm, const Second& second)
3836        : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3837          second_value_(second) {}
3838
3839    void DescribeTo(::std::ostream* os) const override {
3840      *os << "and ";
3841      UniversalPrint(second_value_, os);
3842      *os << " ";
3843      mono_tuple2_matcher_.DescribeTo(os);
3844    }
3845
3846    bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3847      return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3848                                                  listener);
3849    }
3850
3851   private:
3852    const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3853    const Second second_value_;
3854  };
3855
3856  const Tuple2Matcher tuple2_matcher_;
3857  const Second second_value_;
3858};
3859
3860// Given a 2-tuple matcher tm and a value second,
3861// MatcherBindSecond(tm, second) returns a matcher that matches a
3862// value x if and only if tm matches tuple (x, second).  Useful for
3863// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3864template <typename Tuple2Matcher, typename Second>
3865BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3866    const Tuple2Matcher& tm, const Second& second) {
3867  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3868}
3869
3870// Returns the description for a matcher defined using the MATCHER*()
3871// macro where the user-supplied description string is "", if
3872// 'negation' is false; otherwise returns the description of the
3873// negation of the matcher.  'param_values' contains a list of strings
3874// that are the print-out of the matcher's parameters.
3875GTEST_API_ std::string FormatMatcherDescription(
3876    bool negation, const char* matcher_name,
3877    const std::vector<const char*>& param_names, const Strings& param_values);
3878
3879// Implements a matcher that checks the value of a optional<> type variable.
3880template <typename ValueMatcher>
3881class OptionalMatcher {
3882 public:
3883  explicit OptionalMatcher(const ValueMatcher& value_matcher)
3884      : value_matcher_(value_matcher) {}
3885
3886  template <typename Optional>
3887  operator Matcher<Optional>() const {
3888    return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3889  }
3890
3891  template <typename Optional>
3892  class Impl : public MatcherInterface<Optional> {
3893   public:
3894    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3895    typedef typename OptionalView::value_type ValueType;
3896    explicit Impl(const ValueMatcher& value_matcher)
3897        : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3898
3899    void DescribeTo(::std::ostream* os) const override {
3900      *os << "value ";
3901      value_matcher_.DescribeTo(os);
3902    }
3903
3904    void DescribeNegationTo(::std::ostream* os) const override {
3905      *os << "value ";
3906      value_matcher_.DescribeNegationTo(os);
3907    }
3908
3909    bool MatchAndExplain(Optional optional,
3910                         MatchResultListener* listener) const override {
3911      if (!optional) {
3912        *listener << "which is not engaged";
3913        return false;
3914      }
3915      const ValueType& value = *optional;
3916      StringMatchResultListener value_listener;
3917      const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3918      *listener << "whose value " << PrintToString(value)
3919                << (match ? " matches" : " doesn't match");
3920      PrintIfNotEmpty(value_listener.str(), listener->stream());
3921      return match;
3922    }
3923
3924   private:
3925    const Matcher<ValueType> value_matcher_;
3926  };
3927
3928 private:
3929  const ValueMatcher value_matcher_;
3930};
3931
3932namespace variant_matcher {
3933// Overloads to allow VariantMatcher to do proper ADL lookup.
3934template <typename T>
3935void holds_alternative() {}
3936template <typename T>
3937void get() {}
3938
3939// Implements a matcher that checks the value of a variant<> type variable.
3940template <typename T>
3941class VariantMatcher {
3942 public:
3943  explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3944      : matcher_(std::move(matcher)) {}
3945
3946  template <typename Variant>
3947  bool MatchAndExplain(const Variant& value,
3948                       ::testing::MatchResultListener* listener) const {
3949    using std::get;
3950    if (!listener->IsInterested()) {
3951      return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3952    }
3953
3954    if (!holds_alternative<T>(value)) {
3955      *listener << "whose value is not of type '" << GetTypeName() << "'";
3956      return false;
3957    }
3958
3959    const T& elem = get<T>(value);
3960    StringMatchResultListener elem_listener;
3961    const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3962    *listener << "whose value " << PrintToString(elem)
3963              << (match ? " matches" : " doesn't match");
3964    PrintIfNotEmpty(elem_listener.str(), listener->stream());
3965    return match;
3966  }
3967
3968  void DescribeTo(std::ostream* os) const {
3969    *os << "is a variant<> with value of type '" << GetTypeName()
3970        << "' and the value ";
3971    matcher_.DescribeTo(os);
3972  }
3973
3974  void DescribeNegationTo(std::ostream* os) const {
3975    *os << "is a variant<> with value of type other than '" << GetTypeName()
3976        << "' or the value ";
3977    matcher_.DescribeNegationTo(os);
3978  }
3979
3980 private:
3981  static std::string GetTypeName() {
3982#if GTEST_HAS_RTTI
3983    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3984        return internal::GetTypeName<T>());
3985#endif
3986    return "the element type";
3987  }
3988
3989  const ::testing::Matcher<const T&> matcher_;
3990};
3991
3992}  // namespace variant_matcher
3993
3994namespace any_cast_matcher {
3995
3996// Overloads to allow AnyCastMatcher to do proper ADL lookup.
3997template <typename T>
3998void any_cast() {}
3999
4000// Implements a matcher that any_casts the value.
4001template <typename T>
4002class AnyCastMatcher {
4003 public:
4004  explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4005      : matcher_(matcher) {}
4006
4007  template <typename AnyType>
4008  bool MatchAndExplain(const AnyType& value,
4009                       ::testing::MatchResultListener* listener) const {
4010    if (!listener->IsInterested()) {
4011      const T* ptr = any_cast<T>(&value);
4012      return ptr != nullptr && matcher_.Matches(*ptr);
4013    }
4014
4015    const T* elem = any_cast<T>(&value);
4016    if (elem == nullptr) {
4017      *listener << "whose value is not of type '" << GetTypeName() << "'";
4018      return false;
4019    }
4020
4021    StringMatchResultListener elem_listener;
4022    const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4023    *listener << "whose value " << PrintToString(*elem)
4024              << (match ? " matches" : " doesn't match");
4025    PrintIfNotEmpty(elem_listener.str(), listener->stream());
4026    return match;
4027  }
4028
4029  void DescribeTo(std::ostream* os) const {
4030    *os << "is an 'any' type with value of type '" << GetTypeName()
4031        << "' and the value ";
4032    matcher_.DescribeTo(os);
4033  }
4034
4035  void DescribeNegationTo(std::ostream* os) const {
4036    *os << "is an 'any' type with value of type other than '" << GetTypeName()
4037        << "' or the value ";
4038    matcher_.DescribeNegationTo(os);
4039  }
4040
4041 private:
4042  static std::string GetTypeName() {
4043#if GTEST_HAS_RTTI
4044    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4045        return internal::GetTypeName<T>());
4046#endif
4047    return "the element type";
4048  }
4049
4050  const ::testing::Matcher<const T&> matcher_;
4051};
4052
4053}  // namespace any_cast_matcher
4054
4055// Implements the Args() matcher.
4056template <class ArgsTuple, size_t... k>
4057class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4058 public:
4059  using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4060  using SelectedArgs =
4061      std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4062  using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4063
4064  template <typename InnerMatcher>
4065  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4066      : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4067
4068  bool MatchAndExplain(ArgsTuple args,
4069                       MatchResultListener* listener) const override {
4070    // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4071    (void)args;
4072    const SelectedArgs& selected_args =
4073        std::forward_as_tuple(std::get<k>(args)...);
4074    if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4075
4076    PrintIndices(listener->stream());
4077    *listener << "are " << PrintToString(selected_args);
4078
4079    StringMatchResultListener inner_listener;
4080    const bool match =
4081        inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4082    PrintIfNotEmpty(inner_listener.str(), listener->stream());
4083    return match;
4084  }
4085
4086  void DescribeTo(::std::ostream* os) const override {
4087    *os << "are a tuple ";
4088    PrintIndices(os);
4089    inner_matcher_.DescribeTo(os);
4090  }
4091
4092  void DescribeNegationTo(::std::ostream* os) const override {
4093    *os << "are a tuple ";
4094    PrintIndices(os);
4095    inner_matcher_.DescribeNegationTo(os);
4096  }
4097
4098 private:
4099  // Prints the indices of the selected fields.
4100  static void PrintIndices(::std::ostream* os) {
4101    *os << "whose fields (";
4102    const char* sep = "";
4103    // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4104    (void)sep;
4105    // The static_cast to void is needed to silence Clang's -Wcomma warning.
4106    // This pattern looks suspiciously like we may have mismatched parentheses
4107    // and may have been trying to use the first operation of the comma operator
4108    // as a member of the array, so Clang warns that we may have made a mistake.
4109    const char* dummy[] = {
4110        "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4111    (void)dummy;
4112    *os << ") ";
4113  }
4114
4115  MonomorphicInnerMatcher inner_matcher_;
4116};
4117
4118template <class InnerMatcher, size_t... k>
4119class ArgsMatcher {
4120 public:
4121  explicit ArgsMatcher(InnerMatcher inner_matcher)
4122      : inner_matcher_(std::move(inner_matcher)) {}
4123
4124  template <typename ArgsTuple>
4125  operator Matcher<ArgsTuple>() const {  // NOLINT
4126    return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4127  }
4128
4129 private:
4130  InnerMatcher inner_matcher_;
4131};
4132
4133}  // namespace internal
4134
4135// ElementsAreArray(iterator_first, iterator_last)
4136// ElementsAreArray(pointer, count)
4137// ElementsAreArray(array)
4138// ElementsAreArray(container)
4139// ElementsAreArray({ e1, e2, ..., en })
4140//
4141// The ElementsAreArray() functions are like ElementsAre(...), except
4142// that they are given a homogeneous sequence rather than taking each
4143// element as a function argument. The sequence can be specified as an
4144// array, a pointer and count, a vector, an initializer list, or an
4145// STL iterator range. In each of these cases, the underlying sequence
4146// can be either a sequence of values or a sequence of matchers.
4147//
4148// All forms of ElementsAreArray() make a copy of the input matcher sequence.
4149
4150template <typename Iter>
4151inline internal::ElementsAreArrayMatcher<
4152    typename ::std::iterator_traits<Iter>::value_type>
4153ElementsAreArray(Iter first, Iter last) {
4154  typedef typename ::std::iterator_traits<Iter>::value_type T;
4155  return internal::ElementsAreArrayMatcher<T>(first, last);
4156}
4157
4158template <typename T>
4159inline auto ElementsAreArray(const T* pointer, size_t count)
4160    -> decltype(ElementsAreArray(pointer, pointer + count)) {
4161  return ElementsAreArray(pointer, pointer + count);
4162}
4163
4164template <typename T, size_t N>
4165inline auto ElementsAreArray(const T (&array)[N])
4166    -> decltype(ElementsAreArray(array, N)) {
4167  return ElementsAreArray(array, N);
4168}
4169
4170template <typename Container>
4171inline auto ElementsAreArray(const Container& container)
4172    -> decltype(ElementsAreArray(container.begin(), container.end())) {
4173  return ElementsAreArray(container.begin(), container.end());
4174}
4175
4176template <typename T>
4177inline auto ElementsAreArray(::std::initializer_list<T> xs)
4178    -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4179  return ElementsAreArray(xs.begin(), xs.end());
4180}
4181
4182// UnorderedElementsAreArray(iterator_first, iterator_last)
4183// UnorderedElementsAreArray(pointer, count)
4184// UnorderedElementsAreArray(array)
4185// UnorderedElementsAreArray(container)
4186// UnorderedElementsAreArray({ e1, e2, ..., en })
4187//
4188// UnorderedElementsAreArray() verifies that a bijective mapping onto a
4189// collection of matchers exists.
4190//
4191// The matchers can be specified as an array, a pointer and count, a container,
4192// an initializer list, or an STL iterator range. In each of these cases, the
4193// underlying matchers can be either values or matchers.
4194
4195template <typename Iter>
4196inline internal::UnorderedElementsAreArrayMatcher<
4197    typename ::std::iterator_traits<Iter>::value_type>
4198UnorderedElementsAreArray(Iter first, Iter last) {
4199  typedef typename ::std::iterator_traits<Iter>::value_type T;
4200  return internal::UnorderedElementsAreArrayMatcher<T>(
4201      internal::UnorderedMatcherRequire::ExactMatch, first, last);
4202}
4203
4204template <typename T>
4205inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4206    const T* pointer, size_t count) {
4207  return UnorderedElementsAreArray(pointer, pointer + count);
4208}
4209
4210template <typename T, size_t N>
4211inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4212    const T (&array)[N]) {
4213  return UnorderedElementsAreArray(array, N);
4214}
4215
4216template <typename Container>
4217inline internal::UnorderedElementsAreArrayMatcher<
4218    typename Container::value_type>
4219UnorderedElementsAreArray(const Container& container) {
4220  return UnorderedElementsAreArray(container.begin(), container.end());
4221}
4222
4223template <typename T>
4224inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4225    ::std::initializer_list<T> xs) {
4226  return UnorderedElementsAreArray(xs.begin(), xs.end());
4227}
4228
4229// _ is a matcher that matches anything of any type.
4230//
4231// This definition is fine as:
4232//
4233//   1. The C++ standard permits using the name _ in a namespace that
4234//      is not the global namespace or ::std.
4235//   2. The AnythingMatcher class has no data member or constructor,
4236//      so it's OK to create global variables of this type.
4237//   3. c-style has approved of using _ in this case.
4238const internal::AnythingMatcher _ = {};
4239// Creates a matcher that matches any value of the given type T.
4240template <typename T>
4241inline Matcher<T> A() {
4242  return _;
4243}
4244
4245// Creates a matcher that matches any value of the given type T.
4246template <typename T>
4247inline Matcher<T> An() {
4248  return _;
4249}
4250
4251template <typename T, typename M>
4252Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4253    const M& value, std::false_type /* convertible_to_matcher */,
4254    std::false_type /* convertible_to_T */) {
4255  return Eq(value);
4256}
4257
4258// Creates a polymorphic matcher that matches any NULL pointer.
4259inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4260  return MakePolymorphicMatcher(internal::IsNullMatcher());
4261}
4262
4263// Creates a polymorphic matcher that matches any non-NULL pointer.
4264// This is convenient as Not(NULL) doesn't compile (the compiler
4265// thinks that that expression is comparing a pointer with an integer).
4266inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4267  return MakePolymorphicMatcher(internal::NotNullMatcher());
4268}
4269
4270// Creates a polymorphic matcher that matches any argument that
4271// references variable x.
4272template <typename T>
4273inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4274  return internal::RefMatcher<T&>(x);
4275}
4276
4277// Creates a polymorphic matcher that matches any NaN floating point.
4278inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4279  return MakePolymorphicMatcher(internal::IsNanMatcher());
4280}
4281
4282// Creates a matcher that matches any double argument approximately
4283// equal to rhs, where two NANs are considered unequal.
4284inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4285  return internal::FloatingEqMatcher<double>(rhs, false);
4286}
4287
4288// Creates a matcher that matches any double argument approximately
4289// equal to rhs, including NaN values when rhs is NaN.
4290inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4291  return internal::FloatingEqMatcher<double>(rhs, true);
4292}
4293
4294// Creates a matcher that matches any double argument approximately equal to
4295// rhs, up to the specified max absolute error bound, where two NANs are
4296// considered unequal.  The max absolute error bound must be non-negative.
4297inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4298                                                      double max_abs_error) {
4299  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4300}
4301
4302// Creates a matcher that matches any double argument approximately equal to
4303// rhs, up to the specified max absolute error bound, including NaN values when
4304// rhs is NaN.  The max absolute error bound must be non-negative.
4305inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4306    double rhs, double max_abs_error) {
4307  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4308}
4309
4310// Creates a matcher that matches any float argument approximately
4311// equal to rhs, where two NANs are considered unequal.
4312inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4313  return internal::FloatingEqMatcher<float>(rhs, false);
4314}
4315
4316// Creates a matcher that matches any float argument approximately
4317// equal to rhs, including NaN values when rhs is NaN.
4318inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4319  return internal::FloatingEqMatcher<float>(rhs, true);
4320}
4321
4322// Creates a matcher that matches any float argument approximately equal to
4323// rhs, up to the specified max absolute error bound, where two NANs are
4324// considered unequal.  The max absolute error bound must be non-negative.
4325inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4326                                                    float max_abs_error) {
4327  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4328}
4329
4330// Creates a matcher that matches any float argument approximately equal to
4331// rhs, up to the specified max absolute error bound, including NaN values when
4332// rhs is NaN.  The max absolute error bound must be non-negative.
4333inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4334    float rhs, float max_abs_error) {
4335  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4336}
4337
4338// Creates a matcher that matches a pointer (raw or smart) that points
4339// to a value that matches inner_matcher.
4340template <typename InnerMatcher>
4341inline internal::PointeeMatcher<InnerMatcher> Pointee(
4342    const InnerMatcher& inner_matcher) {
4343  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4344}
4345
4346#if GTEST_HAS_RTTI
4347// Creates a matcher that matches a pointer or reference that matches
4348// inner_matcher when dynamic_cast<To> is applied.
4349// The result of dynamic_cast<To> is forwarded to the inner matcher.
4350// If To is a pointer and the cast fails, the inner matcher will receive NULL.
4351// If To is a reference and the cast fails, this matcher returns false
4352// immediately.
4353template <typename To>
4354inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4355WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4356  return MakePolymorphicMatcher(
4357      internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4358}
4359#endif  // GTEST_HAS_RTTI
4360
4361// Creates a matcher that matches an object whose given field matches
4362// 'matcher'.  For example,
4363//   Field(&Foo::number, Ge(5))
4364// matches a Foo object x if and only if x.number >= 5.
4365template <typename Class, typename FieldType, typename FieldMatcher>
4366inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4367    FieldType Class::*field, const FieldMatcher& matcher) {
4368  return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4369      field, MatcherCast<const FieldType&>(matcher)));
4370  // The call to MatcherCast() is required for supporting inner
4371  // matchers of compatible types.  For example, it allows
4372  //   Field(&Foo::bar, m)
4373  // to compile where bar is an int32 and m is a matcher for int64.
4374}
4375
4376// Same as Field() but also takes the name of the field to provide better error
4377// messages.
4378template <typename Class, typename FieldType, typename FieldMatcher>
4379inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4380    const std::string& field_name, FieldType Class::*field,
4381    const FieldMatcher& matcher) {
4382  return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4383      field_name, field, MatcherCast<const FieldType&>(matcher)));
4384}
4385
4386// Creates a matcher that matches an object whose given property
4387// matches 'matcher'.  For example,
4388//   Property(&Foo::str, StartsWith("hi"))
4389// matches a Foo object x if and only if x.str() starts with "hi".
4390template <typename Class, typename PropertyType, typename PropertyMatcher>
4391inline PolymorphicMatcher<internal::PropertyMatcher<
4392    Class, PropertyType, PropertyType (Class::*)() const>>
4393Property(PropertyType (Class::*property)() const,
4394         const PropertyMatcher& matcher) {
4395  return MakePolymorphicMatcher(
4396      internal::PropertyMatcher<Class, PropertyType,
4397                                PropertyType (Class::*)() const>(
4398          property, MatcherCast<const PropertyType&>(matcher)));
4399  // The call to MatcherCast() is required for supporting inner
4400  // matchers of compatible types.  For example, it allows
4401  //   Property(&Foo::bar, m)
4402  // to compile where bar() returns an int32 and m is a matcher for int64.
4403}
4404
4405// Same as Property() above, but also takes the name of the property to provide
4406// better error messages.
4407template <typename Class, typename PropertyType, typename PropertyMatcher>
4408inline PolymorphicMatcher<internal::PropertyMatcher<
4409    Class, PropertyType, PropertyType (Class::*)() const>>
4410Property(const std::string& property_name,
4411         PropertyType (Class::*property)() const,
4412         const PropertyMatcher& matcher) {
4413  return MakePolymorphicMatcher(
4414      internal::PropertyMatcher<Class, PropertyType,
4415                                PropertyType (Class::*)() const>(
4416          property_name, property, MatcherCast<const PropertyType&>(matcher)));
4417}
4418
4419// The same as above but for reference-qualified member functions.
4420template <typename Class, typename PropertyType, typename PropertyMatcher>
4421inline PolymorphicMatcher<internal::PropertyMatcher<
4422    Class, PropertyType, PropertyType (Class::*)() const&>>
4423Property(PropertyType (Class::*property)() const&,
4424         const PropertyMatcher& matcher) {
4425  return MakePolymorphicMatcher(
4426      internal::PropertyMatcher<Class, PropertyType,
4427                                PropertyType (Class::*)() const&>(
4428          property, MatcherCast<const PropertyType&>(matcher)));
4429}
4430
4431// Three-argument form for reference-qualified member functions.
4432template <typename Class, typename PropertyType, typename PropertyMatcher>
4433inline PolymorphicMatcher<internal::PropertyMatcher<
4434    Class, PropertyType, PropertyType (Class::*)() const&>>
4435Property(const std::string& property_name,
4436         PropertyType (Class::*property)() const&,
4437         const PropertyMatcher& matcher) {
4438  return MakePolymorphicMatcher(
4439      internal::PropertyMatcher<Class, PropertyType,
4440                                PropertyType (Class::*)() const&>(
4441          property_name, property, MatcherCast<const PropertyType&>(matcher)));
4442}
4443
4444// Creates a matcher that matches an object if and only if the result of
4445// applying a callable to x matches 'matcher'. For example,
4446//   ResultOf(f, StartsWith("hi"))
4447// matches a Foo object x if and only if f(x) starts with "hi".
4448// `callable` parameter can be a function, function pointer, or a functor. It is
4449// required to keep no state affecting the results of the calls on it and make
4450// no assumptions about how many calls will be made. Any state it keeps must be
4451// protected from the concurrent access.
4452template <typename Callable, typename InnerMatcher>
4453internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4454    Callable callable, InnerMatcher matcher) {
4455  return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4456                                                           std::move(matcher));
4457}
4458
4459// Same as ResultOf() above, but also takes a description of the `callable`
4460// result to provide better error messages.
4461template <typename Callable, typename InnerMatcher>
4462internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4463    const std::string& result_description, Callable callable,
4464    InnerMatcher matcher) {
4465  return internal::ResultOfMatcher<Callable, InnerMatcher>(
4466      result_description, std::move(callable), std::move(matcher));
4467}
4468
4469// String matchers.
4470
4471// Matches a string equal to str.
4472template <typename T = std::string>
4473PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4474    const internal::StringLike<T>& str) {
4475  return MakePolymorphicMatcher(
4476      internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4477}
4478
4479// Matches a string not equal to str.
4480template <typename T = std::string>
4481PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4482    const internal::StringLike<T>& str) {
4483  return MakePolymorphicMatcher(
4484      internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4485}
4486
4487// Matches a string equal to str, ignoring case.
4488template <typename T = std::string>
4489PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4490    const internal::StringLike<T>& str) {
4491  return MakePolymorphicMatcher(
4492      internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4493}
4494
4495// Matches a string not equal to str, ignoring case.
4496template <typename T = std::string>
4497PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4498    const internal::StringLike<T>& str) {
4499  return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4500      std::string(str), false, false));
4501}
4502
4503// Creates a matcher that matches any string, std::string, or C string
4504// that contains the given substring.
4505template <typename T = std::string>
4506PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4507    const internal::StringLike<T>& substring) {
4508  return MakePolymorphicMatcher(
4509      internal::HasSubstrMatcher<std::string>(std::string(substring)));
4510}
4511
4512// Matches a string that starts with 'prefix' (case-sensitive).
4513template <typename T = std::string>
4514PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4515    const internal::StringLike<T>& prefix) {
4516  return MakePolymorphicMatcher(
4517      internal::StartsWithMatcher<std::string>(std::string(prefix)));
4518}
4519
4520// Matches a string that ends with 'suffix' (case-sensitive).
4521template <typename T = std::string>
4522PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4523    const internal::StringLike<T>& suffix) {
4524  return MakePolymorphicMatcher(
4525      internal::EndsWithMatcher<std::string>(std::string(suffix)));
4526}
4527
4528#if GTEST_HAS_STD_WSTRING
4529// Wide string matchers.
4530
4531// Matches a string equal to str.
4532inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4533    const std::wstring& str) {
4534  return MakePolymorphicMatcher(
4535      internal::StrEqualityMatcher<std::wstring>(str, true, true));
4536}
4537
4538// Matches a string not equal to str.
4539inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4540    const std::wstring& str) {
4541  return MakePolymorphicMatcher(
4542      internal::StrEqualityMatcher<std::wstring>(str, false, true));
4543}
4544
4545// Matches a string equal to str, ignoring case.
4546inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4547    const std::wstring& str) {
4548  return MakePolymorphicMatcher(
4549      internal::StrEqualityMatcher<std::wstring>(str, true, false));
4550}
4551
4552// Matches a string not equal to str, ignoring case.
4553inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4554    const std::wstring& str) {
4555  return MakePolymorphicMatcher(
4556      internal::StrEqualityMatcher<std::wstring>(str, false, false));
4557}
4558
4559// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4560// that contains the given substring.
4561inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4562    const std::wstring& substring) {
4563  return MakePolymorphicMatcher(
4564      internal::HasSubstrMatcher<std::wstring>(substring));
4565}
4566
4567// Matches a string that starts with 'prefix' (case-sensitive).
4568inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4569    const std::wstring& prefix) {
4570  return MakePolymorphicMatcher(
4571      internal::StartsWithMatcher<std::wstring>(prefix));
4572}
4573
4574// Matches a string that ends with 'suffix' (case-sensitive).
4575inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4576    const std::wstring& suffix) {
4577  return MakePolymorphicMatcher(
4578      internal::EndsWithMatcher<std::wstring>(suffix));
4579}
4580
4581#endif  // GTEST_HAS_STD_WSTRING
4582
4583// Creates a polymorphic matcher that matches a 2-tuple where the
4584// first field == the second field.
4585inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4586
4587// Creates a polymorphic matcher that matches a 2-tuple where the
4588// first field >= the second field.
4589inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4590
4591// Creates a polymorphic matcher that matches a 2-tuple where the
4592// first field > the second field.
4593inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4594
4595// Creates a polymorphic matcher that matches a 2-tuple where the
4596// first field <= the second field.
4597inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4598
4599// Creates a polymorphic matcher that matches a 2-tuple where the
4600// first field < the second field.
4601inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4602
4603// Creates a polymorphic matcher that matches a 2-tuple where the
4604// first field != the second field.
4605inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4606
4607// Creates a polymorphic matcher that matches a 2-tuple where
4608// FloatEq(first field) matches the second field.
4609inline internal::FloatingEq2Matcher<float> FloatEq() {
4610  return internal::FloatingEq2Matcher<float>();
4611}
4612
4613// Creates a polymorphic matcher that matches a 2-tuple where
4614// DoubleEq(first field) matches the second field.
4615inline internal::FloatingEq2Matcher<double> DoubleEq() {
4616  return internal::FloatingEq2Matcher<double>();
4617}
4618
4619// Creates a polymorphic matcher that matches a 2-tuple where
4620// FloatEq(first field) matches the second field with NaN equality.
4621inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4622  return internal::FloatingEq2Matcher<float>(true);
4623}
4624
4625// Creates a polymorphic matcher that matches a 2-tuple where
4626// DoubleEq(first field) matches the second field with NaN equality.
4627inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4628  return internal::FloatingEq2Matcher<double>(true);
4629}
4630
4631// Creates a polymorphic matcher that matches a 2-tuple where
4632// FloatNear(first field, max_abs_error) matches the second field.
4633inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4634  return internal::FloatingEq2Matcher<float>(max_abs_error);
4635}
4636
4637// Creates a polymorphic matcher that matches a 2-tuple where
4638// DoubleNear(first field, max_abs_error) matches the second field.
4639inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4640  return internal::FloatingEq2Matcher<double>(max_abs_error);
4641}
4642
4643// Creates a polymorphic matcher that matches a 2-tuple where
4644// FloatNear(first field, max_abs_error) matches the second field with NaN
4645// equality.
4646inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4647    float max_abs_error) {
4648  return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4649}
4650
4651// Creates a polymorphic matcher that matches a 2-tuple where
4652// DoubleNear(first field, max_abs_error) matches the second field with NaN
4653// equality.
4654inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4655    double max_abs_error) {
4656  return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4657}
4658
4659// Creates a matcher that matches any value of type T that m doesn't
4660// match.
4661template <typename InnerMatcher>
4662inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4663  return internal::NotMatcher<InnerMatcher>(m);
4664}
4665
4666// Returns a matcher that matches anything that satisfies the given
4667// predicate.  The predicate can be any unary function or functor
4668// whose return type can be implicitly converted to bool.
4669template <typename Predicate>
4670inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4671    Predicate pred) {
4672  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4673}
4674
4675// Returns a matcher that matches the container size. The container must
4676// support both size() and size_type which all STL-like containers provide.
4677// Note that the parameter 'size' can be a value of type size_type as well as
4678// matcher. For instance:
4679//   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4680//   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4681template <typename SizeMatcher>
4682inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4683    const SizeMatcher& size_matcher) {
4684  return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4685}
4686
4687// Returns a matcher that matches the distance between the container's begin()
4688// iterator and its end() iterator, i.e. the size of the container. This matcher
4689// can be used instead of SizeIs with containers such as std::forward_list which
4690// do not implement size(). The container must provide const_iterator (with
4691// valid iterator_traits), begin() and end().
4692template <typename DistanceMatcher>
4693inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4694    const DistanceMatcher& distance_matcher) {
4695  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4696}
4697
4698// Returns a matcher that matches an equal container.
4699// This matcher behaves like Eq(), but in the event of mismatch lists the
4700// values that are included in one container but not the other. (Duplicate
4701// values and order differences are not explained.)
4702template <typename Container>
4703inline PolymorphicMatcher<
4704    internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4705ContainerEq(const Container& rhs) {
4706  return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4707}
4708
4709// Returns a matcher that matches a container that, when sorted using
4710// the given comparator, matches container_matcher.
4711template <typename Comparator, typename ContainerMatcher>
4712inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4713    const Comparator& comparator, const ContainerMatcher& container_matcher) {
4714  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4715      comparator, container_matcher);
4716}
4717
4718// Returns a matcher that matches a container that, when sorted using
4719// the < operator, matches container_matcher.
4720template <typename ContainerMatcher>
4721inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4722WhenSorted(const ContainerMatcher& container_matcher) {
4723  return internal::WhenSortedByMatcher<internal::LessComparator,
4724                                       ContainerMatcher>(
4725      internal::LessComparator(), container_matcher);
4726}
4727
4728// Matches an STL-style container or a native array that contains the
4729// same number of elements as in rhs, where its i-th element and rhs's
4730// i-th element (as a pair) satisfy the given pair matcher, for all i.
4731// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4732// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4733// LHS container and the RHS container respectively.
4734template <typename TupleMatcher, typename Container>
4735inline internal::PointwiseMatcher<TupleMatcher,
4736                                  typename std::remove_const<Container>::type>
4737Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4738  return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4739                                                             rhs);
4740}
4741
4742// Supports the Pointwise(m, {a, b, c}) syntax.
4743template <typename TupleMatcher, typename T>
4744inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4745    const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4746  return Pointwise(tuple_matcher, std::vector<T>(rhs));
4747}
4748
4749// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4750// container or a native array that contains the same number of
4751// elements as in rhs, where in some permutation of the container, its
4752// i-th element and rhs's i-th element (as a pair) satisfy the given
4753// pair matcher, for all i.  Tuple2Matcher must be able to be safely
4754// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4755// the types of elements in the LHS container and the RHS container
4756// respectively.
4757//
4758// This is like Pointwise(pair_matcher, rhs), except that the element
4759// order doesn't matter.
4760template <typename Tuple2Matcher, typename RhsContainer>
4761inline internal::UnorderedElementsAreArrayMatcher<
4762    typename internal::BoundSecondMatcher<
4763        Tuple2Matcher,
4764        typename internal::StlContainerView<
4765            typename std::remove_const<RhsContainer>::type>::type::value_type>>
4766UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4767                   const RhsContainer& rhs_container) {
4768  // RhsView allows the same code to handle RhsContainer being a
4769  // STL-style container and it being a native C-style array.
4770  typedef typename internal::StlContainerView<RhsContainer> RhsView;
4771  typedef typename RhsView::type RhsStlContainer;
4772  typedef typename RhsStlContainer::value_type Second;
4773  const RhsStlContainer& rhs_stl_container =
4774      RhsView::ConstReference(rhs_container);
4775
4776  // Create a matcher for each element in rhs_container.
4777  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4778  for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4779       ++it) {
4780    matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4781  }
4782
4783  // Delegate the work to UnorderedElementsAreArray().
4784  return UnorderedElementsAreArray(matchers);
4785}
4786
4787// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4788template <typename Tuple2Matcher, typename T>
4789inline internal::UnorderedElementsAreArrayMatcher<
4790    typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4791UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4792                   std::initializer_list<T> rhs) {
4793  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4794}
4795
4796// Matches an STL-style container or a native array that contains at
4797// least one element matching the given value or matcher.
4798//
4799// Examples:
4800//   ::std::set<int> page_ids;
4801//   page_ids.insert(3);
4802//   page_ids.insert(1);
4803//   EXPECT_THAT(page_ids, Contains(1));
4804//   EXPECT_THAT(page_ids, Contains(Gt(2)));
4805//   EXPECT_THAT(page_ids, Not(Contains(4)));  // See below for Times(0)
4806//
4807//   ::std::map<int, size_t> page_lengths;
4808//   page_lengths[1] = 100;
4809//   EXPECT_THAT(page_lengths,
4810//               Contains(::std::pair<const int, size_t>(1, 100)));
4811//
4812//   const char* user_ids[] = { "joe", "mike", "tom" };
4813//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4814//
4815// The matcher supports a modifier `Times` that allows to check for arbitrary
4816// occurrences including testing for absence with Times(0).
4817//
4818// Examples:
4819//   ::std::vector<int> ids;
4820//   ids.insert(1);
4821//   ids.insert(1);
4822//   ids.insert(3);
4823//   EXPECT_THAT(ids, Contains(1).Times(2));      // 1 occurs 2 times
4824//   EXPECT_THAT(ids, Contains(2).Times(0));      // 2 is not present
4825//   EXPECT_THAT(ids, Contains(3).Times(Ge(1)));  // 3 occurs at least once
4826
4827template <typename M>
4828inline internal::ContainsMatcher<M> Contains(M matcher) {
4829  return internal::ContainsMatcher<M>(matcher);
4830}
4831
4832// IsSupersetOf(iterator_first, iterator_last)
4833// IsSupersetOf(pointer, count)
4834// IsSupersetOf(array)
4835// IsSupersetOf(container)
4836// IsSupersetOf({e1, e2, ..., en})
4837//
4838// IsSupersetOf() verifies that a surjective partial mapping onto a collection
4839// of matchers exists. In other words, a container matches
4840// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4841// {y1, ..., yn} of some of the container's elements where y1 matches e1,
4842// ..., and yn matches en. Obviously, the size of the container must be >= n
4843// in order to have a match. Examples:
4844//
4845// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4846//   1 matches Ne(0).
4847// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4848//   both Eq(1) and Lt(2). The reason is that different matchers must be used
4849//   for elements in different slots of the container.
4850// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4851//   Eq(1) and (the second) 1 matches Lt(2).
4852// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4853//   Gt(1) and 3 matches (the second) Gt(1).
4854//
4855// The matchers can be specified as an array, a pointer and count, a container,
4856// an initializer list, or an STL iterator range. In each of these cases, the
4857// underlying matchers can be either values or matchers.
4858
4859template <typename Iter>
4860inline internal::UnorderedElementsAreArrayMatcher<
4861    typename ::std::iterator_traits<Iter>::value_type>
4862IsSupersetOf(Iter first, Iter last) {
4863  typedef typename ::std::iterator_traits<Iter>::value_type T;
4864  return internal::UnorderedElementsAreArrayMatcher<T>(
4865      internal::UnorderedMatcherRequire::Superset, first, last);
4866}
4867
4868template <typename T>
4869inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4870    const T* pointer, size_t count) {
4871  return IsSupersetOf(pointer, pointer + count);
4872}
4873
4874template <typename T, size_t N>
4875inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4876    const T (&array)[N]) {
4877  return IsSupersetOf(array, N);
4878}
4879
4880template <typename Container>
4881inline internal::UnorderedElementsAreArrayMatcher<
4882    typename Container::value_type>
4883IsSupersetOf(const Container& container) {
4884  return IsSupersetOf(container.begin(), container.end());
4885}
4886
4887template <typename T>
4888inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4889    ::std::initializer_list<T> xs) {
4890  return IsSupersetOf(xs.begin(), xs.end());
4891}
4892
4893// IsSubsetOf(iterator_first, iterator_last)
4894// IsSubsetOf(pointer, count)
4895// IsSubsetOf(array)
4896// IsSubsetOf(container)
4897// IsSubsetOf({e1, e2, ..., en})
4898//
4899// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4900// exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4901// only if there is a subset of matchers {m1, ..., mk} which would match the
4902// container using UnorderedElementsAre.  Obviously, the size of the container
4903// must be <= n in order to have a match. Examples:
4904//
4905// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4906// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4907//   matches Lt(0).
4908// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4909//   match Gt(0). The reason is that different matchers must be used for
4910//   elements in different slots of the container.
4911//
4912// The matchers can be specified as an array, a pointer and count, a container,
4913// an initializer list, or an STL iterator range. In each of these cases, the
4914// underlying matchers can be either values or matchers.
4915
4916template <typename Iter>
4917inline internal::UnorderedElementsAreArrayMatcher<
4918    typename ::std::iterator_traits<Iter>::value_type>
4919IsSubsetOf(Iter first, Iter last) {
4920  typedef typename ::std::iterator_traits<Iter>::value_type T;
4921  return internal::UnorderedElementsAreArrayMatcher<T>(
4922      internal::UnorderedMatcherRequire::Subset, first, last);
4923}
4924
4925template <typename T>
4926inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4927    const T* pointer, size_t count) {
4928  return IsSubsetOf(pointer, pointer + count);
4929}
4930
4931template <typename T, size_t N>
4932inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4933    const T (&array)[N]) {
4934  return IsSubsetOf(array, N);
4935}
4936
4937template <typename Container>
4938inline internal::UnorderedElementsAreArrayMatcher<
4939    typename Container::value_type>
4940IsSubsetOf(const Container& container) {
4941  return IsSubsetOf(container.begin(), container.end());
4942}
4943
4944template <typename T>
4945inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4946    ::std::initializer_list<T> xs) {
4947  return IsSubsetOf(xs.begin(), xs.end());
4948}
4949
4950// Matches an STL-style container or a native array that contains only
4951// elements matching the given value or matcher.
4952//
4953// Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4954// the messages are different.
4955//
4956// Examples:
4957//   ::std::set<int> page_ids;
4958//   // Each(m) matches an empty container, regardless of what m is.
4959//   EXPECT_THAT(page_ids, Each(Eq(1)));
4960//   EXPECT_THAT(page_ids, Each(Eq(77)));
4961//
4962//   page_ids.insert(3);
4963//   EXPECT_THAT(page_ids, Each(Gt(0)));
4964//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4965//   page_ids.insert(1);
4966//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4967//
4968//   ::std::map<int, size_t> page_lengths;
4969//   page_lengths[1] = 100;
4970//   page_lengths[2] = 200;
4971//   page_lengths[3] = 300;
4972//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4973//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4974//
4975//   const char* user_ids[] = { "joe", "mike", "tom" };
4976//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4977template <typename M>
4978inline internal::EachMatcher<M> Each(M matcher) {
4979  return internal::EachMatcher<M>(matcher);
4980}
4981
4982// Key(inner_matcher) matches an std::pair whose 'first' field matches
4983// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4984// std::map that contains at least one element whose key is >= 5.
4985template <typename M>
4986inline internal::KeyMatcher<M> Key(M inner_matcher) {
4987  return internal::KeyMatcher<M>(inner_matcher);
4988}
4989
4990// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4991// matches first_matcher and whose 'second' field matches second_matcher.  For
4992// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4993// to match a std::map<int, string> that contains exactly one element whose key
4994// is >= 5 and whose value equals "foo".
4995template <typename FirstMatcher, typename SecondMatcher>
4996inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4997    FirstMatcher first_matcher, SecondMatcher second_matcher) {
4998  return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
4999                                                            second_matcher);
5000}
5001
5002namespace no_adl {
5003// Conditional() creates a matcher that conditionally uses either the first or
5004// second matcher provided. For example, we could create an `equal if, and only
5005// if' matcher using the Conditional wrapper as follows:
5006//
5007//   EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5008template <typename MatcherTrue, typename MatcherFalse>
5009internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5010    bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5011  return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5012      condition, std::move(matcher_true), std::move(matcher_false));
5013}
5014
5015// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5016// These include those that support `get<I>(obj)`, and when structured bindings
5017// are enabled any class that supports them.
5018// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5019template <typename... M>
5020internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5021    M&&... matchers) {
5022  return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5023      std::forward<M>(matchers)...);
5024}
5025
5026// Creates a matcher that matches a pointer (raw or smart) that matches
5027// inner_matcher.
5028template <typename InnerMatcher>
5029inline internal::PointerMatcher<InnerMatcher> Pointer(
5030    const InnerMatcher& inner_matcher) {
5031  return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5032}
5033
5034// Creates a matcher that matches an object that has an address that matches
5035// inner_matcher.
5036template <typename InnerMatcher>
5037inline internal::AddressMatcher<InnerMatcher> Address(
5038    const InnerMatcher& inner_matcher) {
5039  return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5040}
5041
5042// Matches a base64 escaped string, when the unescaped string matches the
5043// internal matcher.
5044template <typename MatcherType>
5045internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5046    const MatcherType& internal_matcher) {
5047  return internal::WhenBase64UnescapedMatcher(internal_matcher);
5048}
5049}  // namespace no_adl
5050
5051// Returns a predicate that is satisfied by anything that matches the
5052// given matcher.
5053template <typename M>
5054inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5055  return internal::MatcherAsPredicate<M>(matcher);
5056}
5057
5058// Returns true if and only if the value matches the matcher.
5059template <typename T, typename M>
5060inline bool Value(const T& value, M matcher) {
5061  return testing::Matches(matcher)(value);
5062}
5063
5064// Matches the value against the given matcher and explains the match
5065// result to listener.
5066template <typename T, typename M>
5067inline bool ExplainMatchResult(M matcher, const T& value,
5068                               MatchResultListener* listener) {
5069  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5070}
5071
5072// Returns a string representation of the given matcher.  Useful for description
5073// strings of matchers defined using MATCHER_P* macros that accept matchers as
5074// their arguments.  For example:
5075//
5076// MATCHER_P(XAndYThat, matcher,
5077//           "X that " + DescribeMatcher<int>(matcher, negation) +
5078//               (negation ? " or" : " and") + " Y that " +
5079//               DescribeMatcher<double>(matcher, negation)) {
5080//   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5081//          ExplainMatchResult(matcher, arg.y(), result_listener);
5082// }
5083template <typename T, typename M>
5084std::string DescribeMatcher(const M& matcher, bool negation = false) {
5085  ::std::stringstream ss;
5086  Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5087  if (negation) {
5088    monomorphic_matcher.DescribeNegationTo(&ss);
5089  } else {
5090    monomorphic_matcher.DescribeTo(&ss);
5091  }
5092  return ss.str();
5093}
5094
5095template <typename... Args>
5096internal::ElementsAreMatcher<
5097    std::tuple<typename std::decay<const Args&>::type...>>
5098ElementsAre(const Args&... matchers) {
5099  return internal::ElementsAreMatcher<
5100      std::tuple<typename std::decay<const Args&>::type...>>(
5101      std::make_tuple(matchers...));
5102}
5103
5104template <typename... Args>
5105internal::UnorderedElementsAreMatcher<
5106    std::tuple<typename std::decay<const Args&>::type...>>
5107UnorderedElementsAre(const Args&... matchers) {
5108  return internal::UnorderedElementsAreMatcher<
5109      std::tuple<typename std::decay<const Args&>::type...>>(
5110      std::make_tuple(matchers...));
5111}
5112
5113// Define variadic matcher versions.
5114template <typename... Args>
5115internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5116    const Args&... matchers) {
5117  return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5118      matchers...);
5119}
5120
5121template <typename... Args>
5122internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5123    const Args&... matchers) {
5124  return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5125      matchers...);
5126}
5127
5128// AnyOfArray(array)
5129// AnyOfArray(pointer, count)
5130// AnyOfArray(container)
5131// AnyOfArray({ e1, e2, ..., en })
5132// AnyOfArray(iterator_first, iterator_last)
5133//
5134// AnyOfArray() verifies whether a given value matches any member of a
5135// collection of matchers.
5136//
5137// AllOfArray(array)
5138// AllOfArray(pointer, count)
5139// AllOfArray(container)
5140// AllOfArray({ e1, e2, ..., en })
5141// AllOfArray(iterator_first, iterator_last)
5142//
5143// AllOfArray() verifies whether a given value matches all members of a
5144// collection of matchers.
5145//
5146// The matchers can be specified as an array, a pointer and count, a container,
5147// an initializer list, or an STL iterator range. In each of these cases, the
5148// underlying matchers can be either values or matchers.
5149
5150template <typename Iter>
5151inline internal::AnyOfArrayMatcher<
5152    typename ::std::iterator_traits<Iter>::value_type>
5153AnyOfArray(Iter first, Iter last) {
5154  return internal::AnyOfArrayMatcher<
5155      typename ::std::iterator_traits<Iter>::value_type>(first, last);
5156}
5157
5158template <typename Iter>
5159inline internal::AllOfArrayMatcher<
5160    typename ::std::iterator_traits<Iter>::value_type>
5161AllOfArray(Iter first, Iter last) {
5162  return internal::AllOfArrayMatcher<
5163      typename ::std::iterator_traits<Iter>::value_type>(first, last);
5164}
5165
5166template <typename T>
5167inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5168  return AnyOfArray(ptr, ptr + count);
5169}
5170
5171template <typename T>
5172inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5173  return AllOfArray(ptr, ptr + count);
5174}
5175
5176template <typename T, size_t N>
5177inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5178  return AnyOfArray(array, N);
5179}
5180
5181template <typename T, size_t N>
5182inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5183  return AllOfArray(array, N);
5184}
5185
5186template <typename Container>
5187inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5188    const Container& container) {
5189  return AnyOfArray(container.begin(), container.end());
5190}
5191
5192template <typename Container>
5193inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5194    const Container& container) {
5195  return AllOfArray(container.begin(), container.end());
5196}
5197
5198template <typename T>
5199inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5200    ::std::initializer_list<T> xs) {
5201  return AnyOfArray(xs.begin(), xs.end());
5202}
5203
5204template <typename T>
5205inline internal::AllOfArrayMatcher<T> AllOfArray(
5206    ::std::initializer_list<T> xs) {
5207  return AllOfArray(xs.begin(), xs.end());
5208}
5209
5210// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5211// fields of it matches a_matcher.  C++ doesn't support default
5212// arguments for function templates, so we have to overload it.
5213template <size_t... k, typename InnerMatcher>
5214internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5215    InnerMatcher&& matcher) {
5216  return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5217      std::forward<InnerMatcher>(matcher));
5218}
5219
5220// AllArgs(m) is a synonym of m.  This is useful in
5221//
5222//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5223//
5224// which is easier to read than
5225//
5226//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5227template <typename InnerMatcher>
5228inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5229  return matcher;
5230}
5231
5232// Returns a matcher that matches the value of an optional<> type variable.
5233// The matcher implementation only uses '!arg' and requires that the optional<>
5234// type has a 'value_type' member type and that '*arg' is of type 'value_type'
5235// and is printable using 'PrintToString'. It is compatible with
5236// std::optional/std::experimental::optional.
5237// Note that to compare an optional type variable against nullopt you should
5238// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5239// optional value contains an optional itself.
5240template <typename ValueMatcher>
5241inline internal::OptionalMatcher<ValueMatcher> Optional(
5242    const ValueMatcher& value_matcher) {
5243  return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5244}
5245
5246// Returns a matcher that matches the value of a absl::any type variable.
5247template <typename T>
5248PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5249    const Matcher<const T&>& matcher) {
5250  return MakePolymorphicMatcher(
5251      internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5252}
5253
5254// Returns a matcher that matches the value of a variant<> type variable.
5255// The matcher implementation uses ADL to find the holds_alternative and get
5256// functions.
5257// It is compatible with std::variant.
5258template <typename T>
5259PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5260    const Matcher<const T&>& matcher) {
5261  return MakePolymorphicMatcher(
5262      internal::variant_matcher::VariantMatcher<T>(matcher));
5263}
5264
5265#if GTEST_HAS_EXCEPTIONS
5266
5267// Anything inside the `internal` namespace is internal to the implementation
5268// and must not be used in user code!
5269namespace internal {
5270
5271class WithWhatMatcherImpl {
5272 public:
5273  WithWhatMatcherImpl(Matcher<std::string> matcher)
5274      : matcher_(std::move(matcher)) {}
5275
5276  void DescribeTo(std::ostream* os) const {
5277    *os << "contains .what() that ";
5278    matcher_.DescribeTo(os);
5279  }
5280
5281  void DescribeNegationTo(std::ostream* os) const {
5282    *os << "contains .what() that does not ";
5283    matcher_.DescribeTo(os);
5284  }
5285
5286  template <typename Err>
5287  bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5288    *listener << "which contains .what() (of value = " << err.what()
5289              << ") that ";
5290    return matcher_.MatchAndExplain(err.what(), listener);
5291  }
5292
5293 private:
5294  const Matcher<std::string> matcher_;
5295};
5296
5297inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5298    Matcher<std::string> m) {
5299  return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5300}
5301
5302template <typename Err>
5303class ExceptionMatcherImpl {
5304  class NeverThrown {
5305   public:
5306    const char* what() const noexcept {
5307      return "this exception should never be thrown";
5308    }
5309  };
5310
5311  // If the matchee raises an exception of a wrong type, we'd like to
5312  // catch it and print its message and type. To do that, we add an additional
5313  // catch clause:
5314  //
5315  //     try { ... }
5316  //     catch (const Err&) { /* an expected exception */ }
5317  //     catch (const std::exception&) { /* exception of a wrong type */ }
5318  //
5319  // However, if the `Err` itself is `std::exception`, we'd end up with two
5320  // identical `catch` clauses:
5321  //
5322  //     try { ... }
5323  //     catch (const std::exception&) { /* an expected exception */ }
5324  //     catch (const std::exception&) { /* exception of a wrong type */ }
5325  //
5326  // This can cause a warning or an error in some compilers. To resolve
5327  // the issue, we use a fake error type whenever `Err` is `std::exception`:
5328  //
5329  //     try { ... }
5330  //     catch (const std::exception&) { /* an expected exception */ }
5331  //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5332  using DefaultExceptionType = typename std::conditional<
5333      std::is_same<typename std::remove_cv<
5334                       typename std::remove_reference<Err>::type>::type,
5335                   std::exception>::value,
5336      const NeverThrown&, const std::exception&>::type;
5337
5338 public:
5339  ExceptionMatcherImpl(Matcher<const Err&> matcher)
5340      : matcher_(std::move(matcher)) {}
5341
5342  void DescribeTo(std::ostream* os) const {
5343    *os << "throws an exception which is a " << GetTypeName<Err>();
5344    *os << " which ";
5345    matcher_.DescribeTo(os);
5346  }
5347
5348  void DescribeNegationTo(std::ostream* os) const {
5349    *os << "throws an exception which is not a " << GetTypeName<Err>();
5350    *os << " which ";
5351    matcher_.DescribeNegationTo(os);
5352  }
5353
5354  template <typename T>
5355  bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5356    try {
5357      (void)(std::forward<T>(x)());
5358    } catch (const Err& err) {
5359      *listener << "throws an exception which is a " << GetTypeName<Err>();
5360      *listener << " ";
5361      return matcher_.MatchAndExplain(err, listener);
5362    } catch (DefaultExceptionType err) {
5363#if GTEST_HAS_RTTI
5364      *listener << "throws an exception of type " << GetTypeName(typeid(err));
5365      *listener << " ";
5366#else
5367      *listener << "throws an std::exception-derived type ";
5368#endif
5369      *listener << "with description \"" << err.what() << "\"";
5370      return false;
5371    } catch (...) {
5372      *listener << "throws an exception of an unknown type";
5373      return false;
5374    }
5375
5376    *listener << "does not throw any exception";
5377    return false;
5378  }
5379
5380 private:
5381  const Matcher<const Err&> matcher_;
5382};
5383
5384}  // namespace internal
5385
5386// Throws()
5387// Throws(exceptionMatcher)
5388// ThrowsMessage(messageMatcher)
5389//
5390// This matcher accepts a callable and verifies that when invoked, it throws
5391// an exception with the given type and properties.
5392//
5393// Examples:
5394//
5395//   EXPECT_THAT(
5396//       []() { throw std::runtime_error("message"); },
5397//       Throws<std::runtime_error>());
5398//
5399//   EXPECT_THAT(
5400//       []() { throw std::runtime_error("message"); },
5401//       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5402//
5403//   EXPECT_THAT(
5404//       []() { throw std::runtime_error("message"); },
5405//       Throws<std::runtime_error>(
5406//           Property(&std::runtime_error::what, HasSubstr("message"))));
5407
5408template <typename Err>
5409PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5410  return MakePolymorphicMatcher(
5411      internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5412}
5413
5414template <typename Err, typename ExceptionMatcher>
5415PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5416    const ExceptionMatcher& exception_matcher) {
5417  // Using matcher cast allows users to pass a matcher of a more broad type.
5418  // For example user may want to pass Matcher<std::exception>
5419  // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5420  return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5421      SafeMatcherCast<const Err&>(exception_matcher)));
5422}
5423
5424template <typename Err, typename MessageMatcher>
5425PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5426    MessageMatcher&& message_matcher) {
5427  static_assert(std::is_base_of<std::exception, Err>::value,
5428                "expected an std::exception-derived type");
5429  return Throws<Err>(internal::WithWhat(
5430      MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5431}
5432
5433#endif  // GTEST_HAS_EXCEPTIONS
5434
5435// These macros allow using matchers to check values in Google Test
5436// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5437// succeed if and only if the value matches the matcher.  If the assertion
5438// fails, the value and the description of the matcher will be printed.
5439#define ASSERT_THAT(value, matcher) \
5440  ASSERT_PRED_FORMAT1(              \
5441      ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5442#define EXPECT_THAT(value, matcher) \
5443  EXPECT_PRED_FORMAT1(              \
5444      ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5445
5446// MATCHER* macros itself are listed below.
5447#define MATCHER(name, description)                                             \
5448  class name##Matcher                                                          \
5449      : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
5450   public:                                                                     \
5451    template <typename arg_type>                                               \
5452    class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5453     public:                                                                   \
5454      gmock_Impl() {}                                                          \
5455      bool MatchAndExplain(                                                    \
5456          const arg_type& arg,                                                 \
5457          ::testing::MatchResultListener* result_listener) const override;     \
5458      void DescribeTo(::std::ostream* gmock_os) const override {               \
5459        *gmock_os << FormatDescription(false);                                 \
5460      }                                                                        \
5461      void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5462        *gmock_os << FormatDescription(true);                                  \
5463      }                                                                        \
5464                                                                               \
5465     private:                                                                  \
5466      ::std::string FormatDescription(bool negation) const {                   \
5467        /* NOLINTNEXTLINE readability-redundant-string-init */                 \
5468        ::std::string gmock_description = (description);                       \
5469        if (!gmock_description.empty()) {                                      \
5470          return gmock_description;                                            \
5471        }                                                                      \
5472        return ::testing::internal::FormatMatcherDescription(negation, #name,  \
5473                                                             {}, {});          \
5474      }                                                                        \
5475    };                                                                         \
5476  };                                                                           \
5477  inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH()                           \
5478      GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function")               \
5479          GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function")    \
5480              name GMOCK_INTERNAL_WARNING_POP()() {                            \
5481    return {};                                                                 \
5482  }                                                                            \
5483  template <typename arg_type>                                                 \
5484  bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
5485      const arg_type& arg,                                                     \
5486      ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5487      const
5488
5489#define MATCHER_P(name, p0, description) \
5490  GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5491#define MATCHER_P2(name, p0, p1, description)                            \
5492  GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5493                         (p0, p1))
5494#define MATCHER_P3(name, p0, p1, p2, description)                             \
5495  GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5496                         (p0, p1, p2))
5497#define MATCHER_P4(name, p0, p1, p2, p3, description)        \
5498  GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5499                         (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5500#define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5501  GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5502                         (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5503#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5504  GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5505                         (#p0, #p1, #p2, #p3, #p4, #p5),      \
5506                         (p0, p1, p2, p3, p4, p5))
5507#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5508  GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5509                         (#p0, #p1, #p2, #p3, #p4, #p5, #p6),     \
5510                         (p0, p1, p2, p3, p4, p5, p6))
5511#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5512  GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5513                         (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7),    \
5514                         (p0, p1, p2, p3, p4, p5, p6, p7))
5515#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5516  GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5517                         (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8),   \
5518                         (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5519#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5520  GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5521                         (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9),   \
5522                         (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5523
5524#define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args)  \
5525  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5526  class full_name : public ::testing::internal::MatcherBaseImpl<               \
5527                        full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5528   public:                                                                     \
5529    using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5530    template <typename arg_type>                                               \
5531    class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5532     public:                                                                   \
5533      explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5534          : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5535      bool MatchAndExplain(                                                    \
5536          const arg_type& arg,                                                 \
5537          ::testing::MatchResultListener* result_listener) const override;     \
5538      void DescribeTo(::std::ostream* gmock_os) const override {               \
5539        *gmock_os << FormatDescription(false);                                 \
5540      }                                                                        \
5541      void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5542        *gmock_os << FormatDescription(true);                                  \
5543      }                                                                        \
5544      GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5545                                                                               \
5546     private:                                                                  \
5547      ::std::string FormatDescription(bool negation) const {                   \
5548        ::std::string gmock_description;                                       \
5549        gmock_description = (description);                                     \
5550        if (!gmock_description.empty()) {                                      \
5551          return gmock_description;                                            \
5552        }                                                                      \
5553        return ::testing::internal::FormatMatcherDescription(                  \
5554            negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)},              \
5555            ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5556                ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5557                    GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5558      }                                                                        \
5559    };                                                                         \
5560  };                                                                           \
5561  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5562  inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5563      GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5564    return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5565        GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5566  }                                                                            \
5567  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5568  template <typename arg_type>                                                 \
5569  bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
5570      arg_type>::MatchAndExplain(const arg_type& arg,                          \
5571                                 ::testing::MatchResultListener*               \
5572                                     result_listener GTEST_ATTRIBUTE_UNUSED_)  \
5573      const
5574
5575#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5576  GMOCK_PP_TAIL(                                     \
5577      GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5578#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5579  , typename arg##_type
5580
5581#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5582  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5583#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5584  , arg##_type
5585
5586#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5587  GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5588      GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5589#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5590  , arg##_type gmock_p##i
5591
5592#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5593  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5594#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5595  , arg(::std::forward<arg##_type>(gmock_p##i))
5596
5597#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5598  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5599#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5600  const arg##_type arg;
5601
5602#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5603  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5604#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5605
5606#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5607  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5608#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5609  , gmock_p##i
5610
5611// To prevent ADL on certain functions we put them on a separate namespace.
5612using namespace no_adl;  // NOLINT
5613
5614}  // namespace testing
5615
5616GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5617
5618// Include any custom callback matchers added by the local installation.
5619// We must include this header at the end to make sure it can use the
5620// declarations from this file.
5621#include "gmock/internal/custom/gmock-matchers.h"
5622
5623#endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5624