1/* dfa - DFA construction routines */
2
3/*  Copyright (c) 1990 The Regents of the University of California. */
4/*  All rights reserved. */
5
6/*  This code is derived from software contributed to Berkeley by */
7/*  Vern Paxson. */
8
9/*  The United States Government has rights in this work pursuant */
10/*  to contract no. DE-AC03-76SF00098 between the United States */
11/*  Department of Energy and the University of California. */
12
13/*  Redistribution and use in source and binary forms, with or without */
14/*  modification, are permitted provided that the following conditions */
15/*  are met: */
16
17/*  1. Redistributions of source code must retain the above copyright */
18/*     notice, this list of conditions and the following disclaimer. */
19/*  2. Redistributions in binary form must reproduce the above copyright */
20/*     notice, this list of conditions and the following disclaimer in the */
21/*     documentation and/or other materials provided with the distribution. */
22
23/*  Neither the name of the University nor the names of its contributors */
24/*  may be used to endorse or promote products derived from this software */
25/*  without specific prior written permission. */
26
27/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30/*  PURPOSE. */
31
32#include "flexdef.h"
33#include "tables.h"
34
35/* declare functions that have forward references */
36
37void	dump_associated_rules(FILE *, int);
38void	dump_transitions(FILE *, int[]);
39void	sympartition(int[], int, int[], int[]);
40int	symfollowset(int[], int, int, int[]);
41
42
43/* check_for_backing_up - check a DFA state for backing up
44 *
45 * synopsis
46 *     void check_for_backing_up( int ds, int state[numecs] );
47 *
48 * ds is the number of the state to check and state[] is its out-transitions,
49 * indexed by equivalence class.
50 */
51
52void check_for_backing_up (int ds, int state[])
53{
54	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
55		++num_backing_up;
56
57		if (backing_up_report) {
58			fprintf (backing_up_file,
59				 _("State #%d is non-accepting -\n"), ds);
60
61			/* identify the state */
62			dump_associated_rules (backing_up_file, ds);
63
64			/* Now identify it further using the out- and
65			 * jam-transitions.
66			 */
67			dump_transitions (backing_up_file, state);
68
69			putc ('\n', backing_up_file);
70		}
71	}
72}
73
74
75/* check_trailing_context - check to see if NFA state set constitutes
76 *                          "dangerous" trailing context
77 *
78 * synopsis
79 *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
80 *				int accset[nacc+1], int nacc );
81 *
82 * NOTES
83 *  Trailing context is "dangerous" if both the head and the trailing
84 *  part are of variable size \and/ there's a DFA state which contains
85 *  both an accepting state for the head part of the rule and NFA states
86 *  which occur after the beginning of the trailing context.
87 *
88 *  When such a rule is matched, it's impossible to tell if having been
89 *  in the DFA state indicates the beginning of the trailing context or
90 *  further-along scanning of the pattern.  In these cases, a warning
91 *  message is issued.
92 *
93 *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
94 *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
95 */
96
97void check_trailing_context (int *nfa_states, int num_states, int *accset, int nacc)
98{
99	int i, j;
100
101	for (i = 1; i <= num_states; ++i) {
102		int     ns = nfa_states[i];
103		int type = state_type[ns];
104		int ar = assoc_rule[ns];
105
106		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
107		}
108
109		else if (type == STATE_TRAILING_CONTEXT) {
110			/* Potential trouble.  Scan set of accepting numbers
111			 * for the one marking the end of the "head".  We
112			 * assume that this looping will be fairly cheap
113			 * since it's rare that an accepting number set
114			 * is large.
115			 */
116			for (j = 1; j <= nacc; ++j)
117				if (accset[j] & YY_TRAILING_HEAD_MASK) {
118					line_warning (_
119						      ("dangerous trailing context"),
120						      rule_linenum[ar]);
121					return;
122				}
123		}
124	}
125}
126
127
128/* dump_associated_rules - list the rules associated with a DFA state
129 *
130 * Goes through the set of NFA states associated with the DFA and
131 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
132 * and writes a report to the given file.
133 */
134
135void dump_associated_rules (FILE *file, int ds)
136{
137	int i, j;
138	int num_associated_rules = 0;
139	int rule_set[MAX_ASSOC_RULES + 1];
140	int *dset = dss[ds];
141	int size = dfasiz[ds];
142
143	for (i = 1; i <= size; ++i) {
144		int rule_num = rule_linenum[assoc_rule[dset[i]]];
145
146		for (j = 1; j <= num_associated_rules; ++j)
147			if (rule_num == rule_set[j])
148				break;
149
150		if (j > num_associated_rules) {	/* new rule */
151			if (num_associated_rules < MAX_ASSOC_RULES)
152				rule_set[++num_associated_rules] =
153					rule_num;
154		}
155	}
156
157	qsort (&rule_set [1], (size_t) num_associated_rules, sizeof (rule_set [1]), intcmp);
158
159	fprintf (file, _(" associated rule line numbers:"));
160
161	for (i = 1; i <= num_associated_rules; ++i) {
162		if (i % 8 == 1)
163			putc ('\n', file);
164
165		fprintf (file, "\t%d", rule_set[i]);
166	}
167
168	putc ('\n', file);
169}
170
171
172/* dump_transitions - list the transitions associated with a DFA state
173 *
174 * synopsis
175 *     dump_transitions( FILE *file, int state[numecs] );
176 *
177 * Goes through the set of out-transitions and lists them in human-readable
178 * form (i.e., not as equivalence classes); also lists jam transitions
179 * (i.e., all those which are not out-transitions, plus EOF).  The dump
180 * is done to the given file.
181 */
182
183void dump_transitions (FILE *file, int state[])
184{
185	int i, ec;
186	int out_char_set[CSIZE];
187
188	for (i = 0; i < csize; ++i) {
189		ec = ABS (ecgroup[i]);
190		out_char_set[i] = state[ec];
191	}
192
193	fprintf (file, _(" out-transitions: "));
194
195	list_character_set (file, out_char_set);
196
197	/* now invert the members of the set to get the jam transitions */
198	for (i = 0; i < csize; ++i)
199		out_char_set[i] = !out_char_set[i];
200
201	fprintf (file, _("\n jam-transitions: EOF "));
202
203	list_character_set (file, out_char_set);
204
205	putc ('\n', file);
206}
207
208
209/* epsclosure - construct the epsilon closure of a set of ndfa states
210 *
211 * synopsis
212 *    int *epsclosure( int t[num_states], int *numstates_addr,
213 *			int accset[num_rules+1], int *nacc_addr,
214 *			int *hashval_addr );
215 *
216 * NOTES
217 *  The epsilon closure is the set of all states reachable by an arbitrary
218 *  number of epsilon transitions, which themselves do not have epsilon
219 *  transitions going out, unioned with the set of states which have non-null
220 *  accepting numbers.  t is an array of size numstates of nfa state numbers.
221 *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
222 *  accset holds a list of the accepting numbers, and the size of accset is
223 *  given by *nacc_addr.  t may be subjected to reallocation if it is not
224 *  large enough to hold the epsilon closure.
225 *
226 *  hashval is the hash value for the dfa corresponding to the state set.
227 */
228
229int    *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, int *hv_addr)
230{
231	int     stkpos, ns, tsp;
232	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
233	int     stkend, nstate;
234	static int did_stk_init = false, *stk;
235
236#define MARK_STATE(state) \
237do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
238
239#define IS_MARKED(state) (trans1[state] < 0)
240
241#define UNMARK_STATE(state) \
242do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
243
244#define CHECK_ACCEPT(state) \
245do{ \
246nfaccnum = accptnum[state]; \
247if ( nfaccnum != NIL ) \
248accset[++nacc] = nfaccnum; \
249}while(0)
250
251#define DO_REALLOCATION() \
252do { \
253current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
254++num_reallocs; \
255t = reallocate_integer_array( t, current_max_dfa_size ); \
256stk = reallocate_integer_array( stk, current_max_dfa_size ); \
257}while(0) \
258
259#define PUT_ON_STACK(state) \
260do { \
261if ( ++stkend >= current_max_dfa_size ) \
262DO_REALLOCATION(); \
263stk[stkend] = state; \
264MARK_STATE(state); \
265}while(0)
266
267#define ADD_STATE(state) \
268do { \
269if ( ++numstates >= current_max_dfa_size ) \
270DO_REALLOCATION(); \
271t[numstates] = state; \
272hashval += state; \
273}while(0)
274
275#define STACK_STATE(state) \
276do { \
277PUT_ON_STACK(state); \
278CHECK_ACCEPT(state); \
279if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
280ADD_STATE(state); \
281}while(0)
282
283
284	if (!did_stk_init) {
285		stk = allocate_integer_array (current_max_dfa_size);
286		did_stk_init = true;
287	}
288
289	nacc = stkend = hashval = 0;
290
291	for (nstate = 1; nstate <= numstates; ++nstate) {
292		ns = t[nstate];
293
294		/* The state could be marked if we've already pushed it onto
295		 * the stack.
296		 */
297		if (!IS_MARKED (ns)) {
298			PUT_ON_STACK (ns);
299			CHECK_ACCEPT (ns);
300			hashval += ns;
301		}
302	}
303
304	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
305		ns = stk[stkpos];
306		transsym = transchar[ns];
307
308		if (transsym == SYM_EPSILON) {
309			tsp = trans1[ns] + MARKER_DIFFERENCE;
310
311			if (tsp != NO_TRANSITION) {
312				if (!IS_MARKED (tsp))
313					STACK_STATE (tsp);
314
315				tsp = trans2[ns];
316
317				if (tsp != NO_TRANSITION
318				    && !IS_MARKED (tsp))
319					STACK_STATE (tsp);
320			}
321		}
322	}
323
324	/* Clear out "visit" markers. */
325
326	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
327		if (IS_MARKED (stk[stkpos]))
328			UNMARK_STATE (stk[stkpos]);
329		else
330			flexfatal (_
331				   ("consistency check failed in epsclosure()"));
332	}
333
334	*ns_addr = numstates;
335	*hv_addr = hashval;
336	*nacc_addr = nacc;
337
338	return t;
339}
340
341
342/* increase_max_dfas - increase the maximum number of DFAs */
343
344void increase_max_dfas (void)
345{
346	current_max_dfas += MAX_DFAS_INCREMENT;
347
348	++num_reallocs;
349
350	base = reallocate_integer_array (base, current_max_dfas);
351	def = reallocate_integer_array (def, current_max_dfas);
352	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
353	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
354	dhash = reallocate_integer_array (dhash, current_max_dfas);
355	dss = reallocate_int_ptr_array (dss, current_max_dfas);
356	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
357
358	if (nultrans)
359		nultrans =
360			reallocate_integer_array (nultrans,
361						  current_max_dfas);
362}
363
364
365/* ntod - convert an ndfa to a dfa
366 *
367 * Creates the dfa corresponding to the ndfa we've constructed.  The
368 * dfa starts out in state #1.
369 */
370
371void ntod (void)
372{
373	int    *accset, ds, nacc, newds;
374	int     sym, hashval, numstates, dsize;
375	int     num_full_table_rows=0;	/* used only for -f */
376	int    *nset, *dset;
377	int     targptr, totaltrans, i, comstate, comfreq, targ;
378	int     symlist[CSIZE + 1];
379	int     num_start_states;
380	int     todo_head, todo_next;
381
382	struct yytbl_data *yynxt_tbl = 0;
383	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
384
385	/* Note that the following are indexed by *equivalence classes*
386	 * and not by characters.  Since equivalence classes are indexed
387	 * beginning with 1, even if the scanner accepts NUL's, this
388	 * means that (since every character is potentially in its own
389	 * equivalence class) these arrays must have room for indices
390	 * from 1 to CSIZE, so their size must be CSIZE + 1.
391	 */
392	int     duplist[CSIZE + 1], state[CSIZE + 1];
393	int     targfreq[CSIZE + 1] = {0}, targstate[CSIZE + 1];
394
395	/* accset needs to be large enough to hold all of the rules present
396	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
397	 */
398	accset = allocate_integer_array ((num_rules + 1) * 2);
399	nset = allocate_integer_array (current_max_dfa_size);
400
401	/* The "todo" queue is represented by the head, which is the DFA
402	 * state currently being processed, and the "next", which is the
403	 * next DFA state number available (not in use).  We depend on the
404	 * fact that snstods() returns DFA's \in increasing order/, and thus
405	 * need only know the bounds of the dfas to be processed.
406	 */
407	todo_head = todo_next = 0;
408
409	for (i = 0; i <= csize; ++i) {
410		duplist[i] = NIL;
411		symlist[i] = false;
412	}
413
414	for (i = 0; i <= num_rules; ++i)
415		accset[i] = NIL;
416
417	if (trace) {
418		dumpnfa (scset[1]);
419		fputs (_("\n\nDFA Dump:\n\n"), stderr);
420	}
421
422	inittbl ();
423
424	/* Check to see whether we should build a separate table for
425	 * transitions on NUL characters.  We don't do this for full-speed
426	 * (-F) scanners, since for them we don't have a simple state
427	 * number lying around with which to index the table.  We also
428	 * don't bother doing it for scanners unless (1) NUL is in its own
429	 * equivalence class (indicated by a positive value of
430	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
431	 * equivalence class, and (3) the number of equivalence classes is
432	 * the same as the number of characters.  This latter case comes
433	 * about when useecs is false or when it's true but every character
434	 * still manages to land in its own class (unlikely, but it's
435	 * cheap to check for).  If all these things are true then the
436	 * character code needed to represent NUL's equivalence class for
437	 * indexing the tables is going to take one more bit than the
438	 * number of characters, and therefore we won't be assured of
439	 * being able to fit it into a YY_CHAR variable.  This rules out
440	 * storing the transitions in a compressed table, since the code
441	 * for interpreting them uses a YY_CHAR variable (perhaps it
442	 * should just use an integer, though; this is worth pondering ...
443	 * ###).
444	 *
445	 * Finally, for full tables, we want the number of entries in the
446	 * table to be a power of two so the array references go fast (it
447	 * will just take a shift to compute the major index).  If
448	 * encoding NUL's transitions in the table will spoil this, we
449	 * give it its own table (note that this will be the case if we're
450	 * not using equivalence classes).
451	 */
452
453	/* Note that the test for ecgroup[0] == numecs below accomplishes
454	 * both (1) and (2) above
455	 */
456	if (!fullspd && ecgroup[0] == numecs) {
457		/* NUL is alone in its equivalence class, which is the
458		 * last one.
459		 */
460		int     use_NUL_table = (numecs == csize);
461
462		if (fulltbl && !use_NUL_table) {
463			/* We still may want to use the table if numecs
464			 * is a power of 2.
465			 */
466			if (numecs <= csize && is_power_of_2(numecs)) {
467				use_NUL_table = true;
468			}
469		}
470
471		if (use_NUL_table)
472			nultrans =
473				allocate_integer_array (current_max_dfas);
474
475		/* From now on, nultrans != nil indicates that we're
476		 * saving null transitions for later, separate encoding.
477		 */
478	}
479
480
481	if (fullspd) {
482		for (i = 0; i <= numecs; ++i)
483			state[i] = 0;
484
485		place_state (state, 0, 0);
486		dfaacc[0].dfaacc_state = 0;
487	}
488
489	else if (fulltbl) {
490		if (nultrans)
491			/* We won't be including NUL's transitions in the
492			 * table, so build it for entries from 0 .. numecs - 1.
493			 */
494			num_full_table_rows = numecs;
495
496		else
497			/* Take into account the fact that we'll be including
498			 * the NUL entries in the transition table.  Build it
499			 * from 0 .. numecs.
500			 */
501			num_full_table_rows = numecs + 1;
502
503		/* Begin generating yy_nxt[][]
504		 * This spans the entire LONG function.
505		 * This table is tricky because we don't know how big it will be.
506		 * So we'll have to realloc() on the way...
507		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
508		 */
509		yynxt_tbl = calloc(1, sizeof (struct yytbl_data));
510
511		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
512		yynxt_tbl->td_hilen = 1;
513		yynxt_tbl->td_lolen = (flex_uint32_t) num_full_table_rows;
514		yynxt_tbl->td_data = yynxt_data =
515			calloc(yynxt_tbl->td_lolen *
516					    yynxt_tbl->td_hilen,
517					    sizeof (flex_int32_t));
518		yynxt_curr = 0;
519
520		buf_prints (&yydmap_buf,
521			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
522			    long_align ? "flex_int32_t" : "flex_int16_t");
523
524		/* Unless -Ca, declare it "short" because it's a real
525		 * long-shot that that won't be large enough.
526		 */
527		if (gentables)
528			out_str_dec
529				("static const %s yy_nxt[][%d] =\n    {\n",
530				 long_align ? "flex_int32_t" : "flex_int16_t",
531				 num_full_table_rows);
532		else {
533			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
534			out_str ("static const %s *yy_nxt =0;\n",
535				 long_align ? "flex_int32_t" : "flex_int16_t");
536		}
537
538
539		if (gentables)
540			outn ("    {");
541
542		/* Generate 0 entries for state #0. */
543		for (i = 0; i < num_full_table_rows; ++i) {
544			mk2data (0);
545			yynxt_data[yynxt_curr++] = 0;
546		}
547
548		dataflush ();
549		if (gentables)
550			outn ("    },\n");
551	}
552
553	/* Create the first states. */
554
555	num_start_states = lastsc * 2;
556
557	for (i = 1; i <= num_start_states; ++i) {
558		numstates = 1;
559
560		/* For each start condition, make one state for the case when
561		 * we're at the beginning of the line (the '^' operator) and
562		 * one for the case when we're not.
563		 */
564		if (i % 2 == 1)
565			nset[numstates] = scset[(i / 2) + 1];
566		else
567			nset[numstates] =
568				mkbranch (scbol[i / 2], scset[i / 2]);
569
570		nset = epsclosure (nset, &numstates, accset, &nacc,
571				   &hashval);
572
573		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
574			numas += nacc;
575			totnst += numstates;
576			++todo_next;
577
578			if (variable_trailing_context_rules && nacc > 0)
579				check_trailing_context (nset, numstates,
580							accset, nacc);
581		}
582	}
583
584	if (!fullspd) {
585		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
586			flexfatal (_
587				   ("could not create unique end-of-buffer state"));
588
589		++numas;
590		++num_start_states;
591		++todo_next;
592	}
593
594
595	while (todo_head < todo_next) {
596		targptr = 0;
597		totaltrans = 0;
598
599		for (i = 1; i <= numecs; ++i)
600			state[i] = 0;
601
602		ds = ++todo_head;
603
604		dset = dss[ds];
605		dsize = dfasiz[ds];
606
607		if (trace)
608			fprintf (stderr, _("state # %d:\n"), ds);
609
610		sympartition (dset, dsize, symlist, duplist);
611
612		for (sym = 1; sym <= numecs; ++sym) {
613			if (symlist[sym]) {
614				symlist[sym] = 0;
615
616				if (duplist[sym] == NIL) {
617					/* Symbol has unique out-transitions. */
618					numstates =
619						symfollowset (dset, dsize,
620							      sym, nset);
621					nset = epsclosure (nset,
622							   &numstates,
623							   accset, &nacc,
624							   &hashval);
625
626					if (snstods
627					    (nset, numstates, accset, nacc,
628					     hashval, &newds)) {
629						totnst = totnst +
630							numstates;
631						++todo_next;
632						numas += nacc;
633
634						if (variable_trailing_context_rules && nacc > 0)
635							check_trailing_context
636								(nset,
637								 numstates,
638								 accset,
639								 nacc);
640					}
641
642					state[sym] = newds;
643
644					if (trace)
645						fprintf (stderr,
646							 "\t%d\t%d\n", sym,
647							 newds);
648
649					targfreq[++targptr] = 1;
650					targstate[targptr] = newds;
651					++numuniq;
652				}
653
654				else {
655					/* sym's equivalence class has the same
656					 * transitions as duplist(sym)'s
657					 * equivalence class.
658					 */
659					targ = state[duplist[sym]];
660					state[sym] = targ;
661
662					if (trace)
663						fprintf (stderr,
664							 "\t%d\t%d\n", sym,
665							 targ);
666
667					/* Update frequency count for
668					 * destination state.
669					 */
670
671					i = 0;
672					while (targstate[++i] != targ) ;
673
674					++targfreq[i];
675					++numdup;
676				}
677
678				++totaltrans;
679				duplist[sym] = NIL;
680			}
681		}
682
683
684		numsnpairs += totaltrans;
685
686		if (ds > num_start_states)
687			check_for_backing_up (ds, state);
688
689		if (nultrans) {
690			nultrans[ds] = state[NUL_ec];
691			state[NUL_ec] = 0;	/* remove transition */
692		}
693
694		if (fulltbl) {
695
696			/* Each time we hit here, it's another td_hilen, so we realloc. */
697			yynxt_tbl->td_hilen++;
698			yynxt_tbl->td_data = yynxt_data =
699				realloc (yynxt_data,
700						     yynxt_tbl->td_hilen *
701						     yynxt_tbl->td_lolen *
702						     sizeof (flex_int32_t));
703
704
705			if (gentables)
706				outn ("    {");
707
708			/* Supply array's 0-element. */
709			if (ds == end_of_buffer_state) {
710				mk2data (-end_of_buffer_state);
711				yynxt_data[yynxt_curr++] =
712					-end_of_buffer_state;
713			}
714			else {
715				mk2data (end_of_buffer_state);
716				yynxt_data[yynxt_curr++] =
717					end_of_buffer_state;
718			}
719
720			for (i = 1; i < num_full_table_rows; ++i) {
721				/* Jams are marked by negative of state
722				 * number.
723				 */
724				mk2data (state[i] ? state[i] : -ds);
725				yynxt_data[yynxt_curr++] =
726					state[i] ? state[i] : -ds;
727			}
728
729			dataflush ();
730			if (gentables)
731				outn ("    },\n");
732		}
733
734		else if (fullspd)
735			place_state (state, ds, totaltrans);
736
737		else if (ds == end_of_buffer_state)
738			/* Special case this state to make sure it does what
739			 * it's supposed to, i.e., jam on end-of-buffer.
740			 */
741			stack1 (ds, 0, 0, JAMSTATE);
742
743		else {		/* normal, compressed state */
744
745			/* Determine which destination state is the most
746			 * common, and how many transitions to it there are.
747			 */
748
749			comfreq = 0;
750			comstate = 0;
751
752			for (i = 1; i <= targptr; ++i)
753				if (targfreq[i] > comfreq) {
754					comfreq = targfreq[i];
755					comstate = targstate[i];
756				}
757
758			bldtbl (state, ds, totaltrans, comstate, comfreq);
759		}
760	}
761
762	if (fulltbl) {
763		dataend ();
764		if (tablesext) {
765			yytbl_data_compress (yynxt_tbl);
766			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
767				flexerror (_
768					   ("Could not write yynxt_tbl[][]"));
769		}
770		if (yynxt_tbl) {
771			yytbl_data_destroy (yynxt_tbl);
772			yynxt_tbl = 0;
773		}
774	}
775
776	else if (!fullspd) {
777		cmptmps ();	/* create compressed template entries */
778
779		/* Create tables for all the states with only one
780		 * out-transition.
781		 */
782		while (onesp > 0) {
783			mk1tbl (onestate[onesp], onesym[onesp],
784				onenext[onesp], onedef[onesp]);
785			--onesp;
786		}
787
788		mkdeftbl ();
789	}
790
791	free(accset);
792	free(nset);
793}
794
795
796/* snstods - converts a set of ndfa states into a dfa state
797 *
798 * synopsis
799 *    is_new_state = snstods( int sns[numstates], int numstates,
800 *				int accset[num_rules+1], int nacc,
801 *				int hashval, int *newds_addr );
802 *
803 * On return, the dfa state number is in newds.
804 */
805
806int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, int *newds_addr)
807{
808	int didsort = 0;
809	int i, j;
810	int newds, *oldsns;
811
812	for (i = 1; i <= lastdfa; ++i)
813		if (hashval == dhash[i]) {
814			if (numstates == dfasiz[i]) {
815				oldsns = dss[i];
816
817				if (!didsort) {
818					/* We sort the states in sns so we
819					 * can compare it to oldsns quickly.
820					 */
821					qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
822					didsort = 1;
823				}
824
825				for (j = 1; j <= numstates; ++j)
826					if (sns[j] != oldsns[j])
827						break;
828
829				if (j > numstates) {
830					++dfaeql;
831					*newds_addr = i;
832					return 0;
833				}
834
835				++hshcol;
836			}
837
838			else
839				++hshsave;
840		}
841
842	/* Make a new dfa. */
843
844	if (++lastdfa >= current_max_dfas)
845		increase_max_dfas ();
846
847	newds = lastdfa;
848
849	dss[newds] = allocate_integer_array (numstates + 1);
850
851	/* If we haven't already sorted the states in sns, we do so now,
852	 * so that future comparisons with it can be made quickly.
853	 */
854
855	if (!didsort)
856          	qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
857
858	for (i = 1; i <= numstates; ++i)
859		dss[newds][i] = sns[i];
860
861	dfasiz[newds] = numstates;
862	dhash[newds] = hashval;
863
864	if (nacc == 0) {
865		if (reject)
866			dfaacc[newds].dfaacc_set = NULL;
867		else
868			dfaacc[newds].dfaacc_state = 0;
869
870		accsiz[newds] = 0;
871	}
872
873	else if (reject) {
874		/* We sort the accepting set in increasing order so the
875		 * disambiguating rule that the first rule listed is considered
876		 * match in the event of ties will work.
877		 */
878
879		qsort (&accset [1], (size_t) nacc, sizeof (accset [1]), intcmp);
880
881		dfaacc[newds].dfaacc_set =
882			allocate_integer_array (nacc + 1);
883
884		/* Save the accepting set for later */
885		for (i = 1; i <= nacc; ++i) {
886			dfaacc[newds].dfaacc_set[i] = accset[i];
887
888			if (accset[i] <= num_rules)
889				/* Who knows, perhaps a REJECT can yield
890				 * this rule.
891				 */
892				rule_useful[accset[i]] = true;
893		}
894
895		accsiz[newds] = nacc;
896	}
897
898	else {
899		/* Find lowest numbered rule so the disambiguating rule
900		 * will work.
901		 */
902		j = num_rules + 1;
903
904		for (i = 1; i <= nacc; ++i)
905			if (accset[i] < j)
906				j = accset[i];
907
908		dfaacc[newds].dfaacc_state = j;
909
910		if (j <= num_rules)
911			rule_useful[j] = true;
912	}
913
914	*newds_addr = newds;
915
916	return 1;
917}
918
919
920/* symfollowset - follow the symbol transitions one step
921 *
922 * synopsis
923 *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
924 *				int transsym, int nset[current_max_dfa_size] );
925 */
926
927int symfollowset (int ds[], int dsize, int transsym, int nset[])
928{
929	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
930
931	numstates = 0;
932
933	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
934		ns = ds[i];
935		sym = transchar[ns];
936		tsp = trans1[ns];
937
938		if (sym < 0) {	/* it's a character class */
939			sym = -sym;
940			ccllist = cclmap[sym];
941			lenccl = ccllen[sym];
942
943			if (cclng[sym]) {
944				for (j = 0; j < lenccl; ++j) {
945					/* Loop through negated character
946					 * class.
947					 */
948					ch = ccltbl[ccllist + j];
949
950					if (ch == 0)
951						ch = NUL_ec;
952
953					if (ch > transsym)
954						/* Transsym isn't in negated
955						 * ccl.
956						 */
957						break;
958
959					else if (ch == transsym)
960						/* next 2 */
961						goto bottom;
962				}
963
964				/* Didn't find transsym in ccl. */
965				nset[++numstates] = tsp;
966			}
967
968			else
969				for (j = 0; j < lenccl; ++j) {
970					ch = ccltbl[ccllist + j];
971
972					if (ch == 0)
973						ch = NUL_ec;
974
975					if (ch > transsym)
976						break;
977					else if (ch == transsym) {
978						nset[++numstates] = tsp;
979						break;
980					}
981				}
982		}
983
984		else if (sym == SYM_EPSILON) {	/* do nothing */
985		}
986
987		else if (ABS (ecgroup[sym]) == transsym)
988			nset[++numstates] = tsp;
989
990	      bottom:;
991	}
992
993	return numstates;
994}
995
996
997/* sympartition - partition characters with same out-transitions
998 *
999 * synopsis
1000 *    sympartition( int ds[current_max_dfa_size], int numstates,
1001 *			int symlist[numecs], int duplist[numecs] );
1002 */
1003
1004void sympartition (int ds[], int numstates, int symlist[], int duplist[])
1005{
1006	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1007
1008	/* Partitioning is done by creating equivalence classes for those
1009	 * characters which have out-transitions from the given state.  Thus
1010	 * we are really creating equivalence classes of equivalence classes.
1011	 */
1012
1013	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1014		duplist[i] = i - 1;
1015		dupfwd[i] = i + 1;
1016	}
1017
1018	duplist[1] = NIL;
1019	dupfwd[numecs] = NIL;
1020
1021	for (i = 1; i <= numstates; ++i) {
1022		ns = ds[i];
1023		tch = transchar[ns];
1024
1025		if (tch != SYM_EPSILON) {
1026			if (tch < -lastccl || tch >= csize) {
1027				flexfatal (_
1028					   ("bad transition character detected in sympartition()"));
1029			}
1030
1031			if (tch >= 0) {	/* character transition */
1032				int     ec = ecgroup[tch];
1033
1034				mkechar (ec, dupfwd, duplist);
1035				symlist[ec] = 1;
1036			}
1037
1038			else {	/* character class */
1039				tch = -tch;
1040
1041				lenccl = ccllen[tch];
1042				cclp = cclmap[tch];
1043				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1044					duplist, numecs, NUL_ec);
1045
1046				if (cclng[tch]) {
1047					j = 0;
1048
1049					for (k = 0; k < lenccl; ++k) {
1050						ich = ccltbl[cclp + k];
1051
1052						if (ich == 0)
1053							ich = NUL_ec;
1054
1055						for (++j; j < ich; ++j)
1056							symlist[j] = 1;
1057					}
1058
1059					for (++j; j <= numecs; ++j)
1060						symlist[j] = 1;
1061				}
1062
1063				else
1064					for (k = 0; k < lenccl; ++k) {
1065						ich = ccltbl[cclp + k];
1066
1067						if (ich == 0)
1068							ich = NUL_ec;
1069
1070						symlist[ich] = 1;
1071					}
1072			}
1073		}
1074	}
1075}
1076