1/*
2 * memcpy benchmark.
3 *
4 * Copyright (c) 2020-2023, Arm Limited.
5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6 */
7
8#define _GNU_SOURCE
9#include <stdint.h>
10#include <stdio.h>
11#include <string.h>
12#include <assert.h>
13#include "stringlib.h"
14#include "benchlib.h"
15
16#define ITERS  5000
17#define ITERS2 20000000
18#define ITERS3 200000
19#define NUM_TESTS 16384
20#define MIN_SIZE 32768
21#define MAX_SIZE (1024 * 1024)
22
23static uint8_t a[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64)));
24static uint8_t b[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64)));
25
26#define F(x) {#x, x},
27
28static const struct fun
29{
30  const char *name;
31  void *(*fun)(void *, const void *, size_t);
32} funtab[] =
33{
34#if __aarch64__
35  F(__memcpy_aarch64)
36# if __ARM_NEON
37  F(__memcpy_aarch64_simd)
38# endif
39# if __ARM_FEATURE_SVE
40  F(__memcpy_aarch64_sve)
41# endif
42# if WANT_MOPS
43  F(__memcpy_aarch64_mops)
44# endif
45#elif __arm__
46  F(__memcpy_arm)
47#endif
48  F(memcpy)
49#undef F
50  {0, 0}
51};
52
53typedef struct { uint16_t size; uint16_t freq; } freq_data_t;
54typedef struct { uint8_t align; uint16_t freq; } align_data_t;
55
56#define SIZE_NUM 65536
57#define SIZE_MASK (SIZE_NUM-1)
58static uint8_t size_arr[SIZE_NUM];
59
60/* Frequency data for memcpy of less than 4096 bytes based on SPEC2017.  */
61static freq_data_t size_freq[] =
62{
63{32,22320}, { 16,9554}, {  8,8915}, {152,5327}, {  4,2159}, {292,2035},
64{ 12,1608}, { 24,1343}, {1152,895}, {144, 813}, {884, 733}, {284, 721},
65{120, 661}, {  2, 649}, {882, 550}, {  5, 475}, {  7, 461}, {108, 460},
66{ 10, 361}, {  9, 361}, {  6, 334}, {  3, 326}, {464, 308}, {2048,303},
67{  1, 298}, { 64, 250}, { 11, 197}, {296, 194}, { 68, 187}, { 15, 185},
68{192, 184}, {1764,183}, { 13, 173}, {560, 126}, {160, 115}, {288,  96},
69{104,  96}, {1144, 83}, { 18,  80}, { 23,  78}, { 40,  77}, { 19,  68},
70{ 48,  63}, { 17,  57}, { 72,  54}, {1280, 51}, { 20,  49}, { 28,  47},
71{ 22,  46}, {640,  45}, { 25,  41}, { 14,  40}, { 56,  37}, { 27,  35},
72{ 35,  33}, {384,  33}, { 29,  32}, { 80,  30}, {4095, 22}, {232,  22},
73{ 36,  19}, {184,  17}, { 21,  17}, {256,  16}, { 44,  15}, { 26,  15},
74{ 31,  14}, { 88,  14}, {176,  13}, { 33,  12}, {1024, 12}, {208,  11},
75{ 62,  11}, {128,  10}, {704,  10}, {324,  10}, { 96,  10}, { 60,   9},
76{136,   9}, {124,   9}, { 34,   8}, { 30,   8}, {480,   8}, {1344,  8},
77{273,   7}, {520,   7}, {112,   6}, { 52,   6}, {344,   6}, {336,   6},
78{504,   5}, {168,   5}, {424,   5}, {  0,   4}, { 76,   3}, {200,   3},
79{512,   3}, {312,   3}, {240,   3}, {960,   3}, {264,   2}, {672,   2},
80{ 38,   2}, {328,   2}, { 84,   2}, { 39,   2}, {216,   2}, { 42,   2},
81{ 37,   2}, {1608,  2}, { 70,   2}, { 46,   2}, {536,   2}, {280,   1},
82{248,   1}, { 47,   1}, {1088,  1}, {1288,  1}, {224,   1}, { 41,   1},
83{ 50,   1}, { 49,   1}, {808,   1}, {360,   1}, {440,   1}, { 43,   1},
84{ 45,   1}, { 78,   1}, {968,   1}, {392,   1}, { 54,   1}, { 53,   1},
85{ 59,   1}, {376,   1}, {664,   1}, { 58,   1}, {272,   1}, { 66,   1},
86{2688,  1}, {472,   1}, {568,   1}, {720,   1}, { 51,   1}, { 63,   1},
87{ 86,   1}, {496,   1}, {776,   1}, { 57,   1}, {680,   1}, {792,   1},
88{122,   1}, {760,   1}, {824,   1}, {552,   1}, { 67,   1}, {456,   1},
89{984,   1}, { 74,   1}, {408,   1}, { 75,   1}, { 92,   1}, {576,   1},
90{116,   1}, { 65,   1}, {117,   1}, { 82,   1}, {352,   1}, { 55,   1},
91{100,   1}, { 90,   1}, {696,   1}, {111,   1}, {880,   1}, { 79,   1},
92{488,   1}, { 61,   1}, {114,   1}, { 94,   1}, {1032,  1}, { 98,   1},
93{ 87,   1}, {584,   1}, { 85,   1}, {648,   1}, {0, 0}
94};
95
96#define ALIGN_NUM 1024
97#define ALIGN_MASK (ALIGN_NUM-1)
98static uint8_t src_align_arr[ALIGN_NUM];
99static uint8_t dst_align_arr[ALIGN_NUM];
100
101/* Source alignment frequency for memcpy based on SPEC2017.  */
102static align_data_t src_align_freq[] =
103{
104  {8, 300}, {16, 292}, {32, 168}, {64, 153}, {4, 79}, {2, 14}, {1, 18}, {0, 0}
105};
106
107static align_data_t dst_align_freq[] =
108{
109  {8, 265}, {16, 263}, {64, 209}, {32, 174}, {4, 90}, {2, 10}, {1, 13}, {0, 0}
110};
111
112typedef struct
113{
114  uint64_t src : 24;
115  uint64_t dst : 24;
116  uint64_t len : 16;
117} copy_t;
118
119static copy_t test_arr[NUM_TESTS];
120
121typedef char *(*proto_t) (char *, const char *, size_t);
122
123static void
124init_copy_distribution (void)
125{
126  int i, j, freq, size, n;
127
128  for (n = i = 0; (freq = size_freq[i].freq) != 0; i++)
129    for (j = 0, size = size_freq[i].size; j < freq; j++)
130      size_arr[n++] = size;
131  assert (n == SIZE_NUM);
132
133  for (n = i = 0; (freq = src_align_freq[i].freq) != 0; i++)
134    for (j = 0, size = src_align_freq[i].align; j < freq; j++)
135      src_align_arr[n++] = size - 1;
136  assert (n == ALIGN_NUM);
137
138  for (n = i = 0; (freq = dst_align_freq[i].freq) != 0; i++)
139    for (j = 0, size = dst_align_freq[i].align; j < freq; j++)
140      dst_align_arr[n++] = size - 1;
141  assert (n == ALIGN_NUM);
142}
143
144static size_t
145init_copies (size_t max_size)
146{
147  size_t total = 0;
148  /* Create a random set of copies with the given size and alignment
149     distributions.  */
150  for (int i = 0; i < NUM_TESTS; i++)
151    {
152      test_arr[i].dst = (rand32 (0) & (max_size - 1));
153      test_arr[i].dst &= ~dst_align_arr[rand32 (0) & ALIGN_MASK];
154      test_arr[i].src = (rand32 (0) & (max_size - 1));
155      test_arr[i].src &= ~src_align_arr[rand32 (0) & ALIGN_MASK];
156      test_arr[i].len = size_arr[rand32 (0) & SIZE_MASK];
157      total += test_arr[i].len;
158    }
159
160  return total;
161}
162
163int main (void)
164{
165  init_copy_distribution ();
166
167  memset (a, 1, sizeof (a));
168  memset (b, 2, sizeof (b));
169
170  printf("Random memcpy (bytes/ns):\n");
171  for (int f = 0; funtab[f].name != 0; f++)
172    {
173      size_t total = 0;
174      uint64_t tsum = 0;
175      printf ("%22s ", funtab[f].name);
176      rand32 (0x12345678);
177
178      for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2)
179	{
180	  size_t copy_size = init_copies (size) * ITERS;
181
182	  for (int c = 0; c < NUM_TESTS; c++)
183	    funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src,
184			   test_arr[c].len);
185
186	  uint64_t t = clock_get_ns ();
187	  for (int i = 0; i < ITERS; i++)
188	    for (int c = 0; c < NUM_TESTS; c++)
189	      funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src,
190			     test_arr[c].len);
191	  t = clock_get_ns () - t;
192	  total += copy_size;
193	  tsum += t;
194	  printf ("%dK: %.2f ", size / 1024, (double)copy_size / t);
195	}
196      printf( "avg %.2f\n", (double)total / tsum);
197    }
198
199  size_t total = 0;
200  uint64_t tsum = 0;
201  printf ("%22s ", "memcpy_call");
202  rand32 (0x12345678);
203
204  for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2)
205    {
206      size_t copy_size = init_copies (size) * ITERS;
207
208      for (int c = 0; c < NUM_TESTS; c++)
209	memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len);
210
211      uint64_t t = clock_get_ns ();
212      for (int i = 0; i < ITERS; i++)
213	for (int c = 0; c < NUM_TESTS; c++)
214	  memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len);
215      t = clock_get_ns () - t;
216      total += copy_size;
217      tsum += t;
218      printf ("%dK: %.2f ", size / 1024, (double)copy_size / t);
219    }
220  printf( "avg %.2f\n", (double)total / tsum);
221
222
223  printf ("\nAligned medium memcpy (bytes/ns):\n");
224  for (int f = 0; funtab[f].name != 0; f++)
225    {
226      printf ("%22s ", funtab[f].name);
227
228      for (int size = 8; size <= 512; size *= 2)
229	{
230	  uint64_t t = clock_get_ns ();
231	  for (int i = 0; i < ITERS2; i++)
232	    funtab[f].fun (b, a, size);
233	  t = clock_get_ns () - t;
234	  printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
235	}
236      printf ("\n");
237    }
238
239  printf ("%22s ", "memcpy_call");
240  for (int size = 8; size <= 512; size *= 2)
241    {
242      uint64_t t = clock_get_ns ();
243      for (int i = 0; i < ITERS2; i++)
244	memcpy (b, a, size);
245      t = clock_get_ns () - t;
246      printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
247    }
248  printf ("\n");
249
250
251  printf ("\nUnaligned medium memcpy (bytes/ns):\n");
252  for (int f = 0; funtab[f].name != 0; f++)
253    {
254      printf ("%22s ", funtab[f].name);
255
256      for (int size = 8; size <= 512; size *= 2)
257	{
258	  uint64_t t = clock_get_ns ();
259	  for (int i = 0; i < ITERS2; i++)
260	    funtab[f].fun (b + 3, a + 1, size);
261	  t = clock_get_ns () - t;
262	  printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
263	}
264      printf ("\n");
265    }
266
267  printf ("%22s ", "memcpy_call");
268  for (int size = 8; size <= 512; size *= 2)
269    {
270      uint64_t t = clock_get_ns ();
271      for (int i = 0; i < ITERS2; i++)
272	memcpy (b + 3, a + 1, size);
273      t = clock_get_ns () - t;
274      printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
275    }
276  printf ("\n");
277
278
279  printf ("\nLarge memcpy (bytes/ns):\n");
280  for (int f = 0; funtab[f].name != 0; f++)
281    {
282      printf ("%22s ", funtab[f].name);
283
284      for (int size = 1024; size <= 65536; size *= 2)
285	{
286	  uint64_t t = clock_get_ns ();
287	  for (int i = 0; i < ITERS3; i++)
288	    funtab[f].fun (b, a, size);
289	  t = clock_get_ns () - t;
290	  printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
291	}
292      printf ("\n");
293    }
294
295  printf ("%22s ", "memcpy_call");
296  for (int size = 1024; size <= 65536; size *= 2)
297    {
298      uint64_t t = clock_get_ns ();
299      for (int i = 0; i < ITERS3; i++)
300	memcpy (b, a, size);
301      t = clock_get_ns () - t;
302      printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
303    }
304  printf ("\n");
305
306
307  printf ("\nUnaligned forwards memmove (bytes/ns):\n");
308  for (int f = 0; funtab[f].name != 0; f++)
309    {
310      printf ("%22s ", funtab[f].name);
311
312      for (int size = 1024; size <= 65536; size *= 2)
313	{
314	  uint64_t t = clock_get_ns ();
315	  for (int i = 0; i < ITERS3; i++)
316	    funtab[f].fun (a, a + 256 + (i & 31), size);
317	  t = clock_get_ns () - t;
318	  printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
319	}
320      printf ("\n");
321    }
322
323
324  printf ("\nUnaligned backwards memmove (bytes/ns):\n");
325  for (int f = 0; funtab[f].name != 0; f++)
326    {
327      printf ("%22s ", funtab[f].name);
328
329      for (int size = 1024; size <= 65536; size *= 2)
330	{
331	  uint64_t t = clock_get_ns ();
332	  for (int i = 0; i < ITERS3; i++)
333	    funtab[f].fun (a + 256 + (i & 31), a, size);
334	  t = clock_get_ns () - t;
335	  printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
336	}
337      printf ("\n");
338    }
339  printf ("\n");
340
341  return 0;
342}
343