machine.c revision 77098
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 77098 2001-05-23 23:01:37Z phk $
24 */
25
26
27#include <sys/time.h>
28#include <sys/types.h>
29#include <sys/signal.h>
30#include <sys/param.h>
31#include <sys/lock.h>
32
33#include "os.h"
34#include <stdio.h>
35#include <nlist.h>
36#include <math.h>
37#include <kvm.h>
38#include <pwd.h>
39#include <sys/errno.h>
40#include <sys/sysctl.h>
41#include <sys/dkstat.h>
42#include <sys/file.h>
43#include <sys/time.h>
44#include <sys/proc.h>
45#include <sys/user.h>
46#include <sys/vmmeter.h>
47#include <sys/resource.h>
48#include <sys/rtprio.h>
49
50/* Swap */
51#include <stdlib.h>
52
53#include <unistd.h>
54#include <osreldate.h> /* for changes in kernel structures */
55
56#include "top.h"
57#include "machine.h"
58#include "screen.h"
59#include "utils.h"
60
61static void getsysctl __P((char *, void *, size_t));
62
63#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
64
65extern char* printable __P((char *));
66int swapmode __P((int *retavail, int *retfree));
67static int smpmode;
68static int namelength;
69static int cmdlengthdelta;
70
71/* Prototypes for top internals */
72void quit __P((int));
73
74/* get_process_info passes back a handle.  This is what it looks like: */
75
76struct handle
77{
78    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79    int remaining;		/* number of pointers remaining */
80};
81
82/* declarations for load_avg */
83#include "loadavg.h"
84
85/* define what weighted cpu is.  */
86#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
87			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
88
89/* what we consider to be process size: */
90#define PROCSIZE(pp) ((pp)->ki_size / 1024)
91
92/* definitions for indices in the nlist array */
93
94/*
95 *  These definitions control the format of the per-process area
96 */
97
98static char smp_header[] =
99  "  PID %-*.*s PRI NICE   SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
100
101#define smp_Proc_format \
102	"%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
103
104static char up_header[] =
105  "  PID %-*.*s PRI NICE   SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
106
107#define up_Proc_format \
108	"%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
109
110
111
112/* process state names for the "STATE" column of the display */
113/* the extra nulls in the string "run" are for adding a slash and
114   the processor number when needed */
115
116char *state_abbrev[] =
117{
118    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "MUTEX"
119};
120
121
122static kvm_t *kd;
123
124/* values that we stash away in _init and use in later routines */
125
126static double logcpu;
127
128/* these are retrieved from the kernel in _init */
129
130static load_avg  ccpu;
131
132/* these are used in the get_ functions */
133
134static int lastpid;
135
136/* these are for calculating cpu state percentages */
137
138static long cp_time[CPUSTATES];
139static long cp_old[CPUSTATES];
140static long cp_diff[CPUSTATES];
141
142/* these are for detailing the process states */
143
144int process_states[8];
145char *procstatenames[] = {
146    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
147    " zombie, ", " waiting, ", " mutex, ",
148    NULL
149};
150
151/* these are for detailing the cpu states */
152
153int cpu_states[CPUSTATES];
154char *cpustatenames[] = {
155    "user", "nice", "system", "interrupt", "idle", NULL
156};
157
158/* these are for detailing the memory statistics */
159
160int memory_stats[7];
161char *memorynames[] = {
162    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
163    NULL
164};
165
166int swap_stats[7];
167char *swapnames[] = {
168/*   0           1            2           3            4       5 */
169    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
170    NULL
171};
172
173
174/* these are for keeping track of the proc array */
175
176static int nproc;
177static int onproc = -1;
178static int pref_len;
179static struct kinfo_proc *pbase;
180static struct kinfo_proc **pref;
181
182/* these are for getting the memory statistics */
183
184static int pageshift;		/* log base 2 of the pagesize */
185
186/* define pagetok in terms of pageshift */
187
188#define pagetok(size) ((size) << pageshift)
189
190/* useful externals */
191long percentages();
192
193#ifdef ORDER
194/* sorting orders. first is default */
195char *ordernames[] = {
196    "cpu", "size", "res", "time", "pri", NULL
197};
198#endif
199
200int
201machine_init(statics)
202
203struct statics *statics;
204
205{
206    register int pagesize;
207    size_t modelen;
208    struct passwd *pw;
209
210    modelen = sizeof(smpmode);
211    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
212         sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
213	modelen != sizeof(smpmode))
214	    smpmode = 0;
215
216    while ((pw = getpwent()) != NULL) {
217	if (strlen(pw->pw_name) > namelength)
218	    namelength = strlen(pw->pw_name);
219    }
220    if (namelength < 8)
221	namelength = 8;
222    if (smpmode && namelength > 13)
223	namelength = 13;
224    else if (namelength > 15)
225	namelength = 15;
226
227    if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL)
228	return -1;
229
230    GETSYSCTL("kern.ccpu", ccpu);
231
232    /* this is used in calculating WCPU -- calculate it ahead of time */
233    logcpu = log(loaddouble(ccpu));
234
235    pbase = NULL;
236    pref = NULL;
237    nproc = 0;
238    onproc = -1;
239    /* get the page size with "getpagesize" and calculate pageshift from it */
240    pagesize = getpagesize();
241    pageshift = 0;
242    while (pagesize > 1)
243    {
244	pageshift++;
245	pagesize >>= 1;
246    }
247
248    /* we only need the amount of log(2)1024 for our conversion */
249    pageshift -= LOG1024;
250
251    /* fill in the statics information */
252    statics->procstate_names = procstatenames;
253    statics->cpustate_names = cpustatenames;
254    statics->memory_names = memorynames;
255    statics->swap_names = swapnames;
256#ifdef ORDER
257    statics->order_names = ordernames;
258#endif
259
260    /* all done! */
261    return(0);
262}
263
264char *format_header(uname_field)
265
266register char *uname_field;
267
268{
269    static char Header[128];
270
271    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
272	     namelength, namelength, uname_field);
273
274    cmdlengthdelta = strlen(Header) - 7;
275
276    return Header;
277}
278
279static int swappgsin = -1;
280static int swappgsout = -1;
281extern struct timeval timeout;
282
283void
284get_system_info(si)
285
286struct system_info *si;
287
288{
289    long total;
290    struct loadavg sysload;
291    int mib[2];
292    struct timeval boottime;
293    size_t bt_size;
294
295    /* get the cp_time array */
296    GETSYSCTL("kern.cp_time", cp_time);
297    GETSYSCTL("vm.loadavg", sysload);
298    GETSYSCTL("kern.lastpid", lastpid);
299
300    /* convert load averages to doubles */
301    {
302	register int i;
303	register double *infoloadp;
304
305	infoloadp = si->load_avg;
306	for (i = 0; i < 3; i++)
307	{
308#ifdef notyet
309	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
310#endif
311	    *infoloadp++ = loaddouble(sysload.ldavg[i]);
312	}
313    }
314
315    /* convert cp_time counts to percentages */
316    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
317
318    /* sum memory & swap statistics */
319    {
320	static unsigned int swap_delay = 0;
321	static int swapavail = 0;
322	static int swapfree = 0;
323	static int bufspace = 0;
324	static int nspgsin, nspgsout;
325
326	GETSYSCTL("vfs.bufspace", bufspace);
327	GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
328	GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
329	GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
330	GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
331	GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
332	GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
333	GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
334	/* convert memory stats to Kbytes */
335	memory_stats[0] = pagetok(memory_stats[0]);
336	memory_stats[1] = pagetok(memory_stats[1]);
337	memory_stats[2] = pagetok(memory_stats[2]);
338	memory_stats[3] = pagetok(memory_stats[3]);
339	memory_stats[4] = bufspace / 1024;
340	memory_stats[5] = pagetok(memory_stats[5]);
341	memory_stats[6] = -1;
342
343	/* first interval */
344        if (swappgsin < 0) {
345	    swap_stats[4] = 0;
346	    swap_stats[5] = 0;
347	}
348
349	/* compute differences between old and new swap statistic */
350	else {
351	    swap_stats[4] = pagetok(((nspgsin - swappgsin)));
352	    swap_stats[5] = pagetok(((nspgsout - swappgsout)));
353	}
354
355        swappgsin = nspgsin;
356	swappgsout = nspgsout;
357
358	/* call CPU heavy swapmode() only for changes */
359        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
360	    swap_stats[3] = swapmode(&swapavail, &swapfree);
361	    swap_stats[0] = swapavail;
362	    swap_stats[1] = swapavail - swapfree;
363	    swap_stats[2] = swapfree;
364	}
365        swap_delay = 1;
366	swap_stats[6] = -1;
367    }
368
369    /* set arrays and strings */
370    si->cpustates = cpu_states;
371    si->memory = memory_stats;
372    si->swap = swap_stats;
373
374
375    if(lastpid > 0) {
376	si->last_pid = lastpid;
377    } else {
378	si->last_pid = -1;
379    }
380
381    /*
382     * Print how long system has been up.
383     * (Found by looking getting "boottime" from the kernel)
384     */
385    mib[0] = CTL_KERN;
386    mib[1] = KERN_BOOTTIME;
387    bt_size = sizeof(boottime);
388    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
389	boottime.tv_sec != 0) {
390	si->boottime = boottime;
391    } else {
392	si->boottime.tv_sec = -1;
393    }
394}
395
396static struct handle handle;
397
398caddr_t get_process_info(si, sel, compare)
399
400struct system_info *si;
401struct process_select *sel;
402int (*compare)();
403
404{
405    register int i;
406    register int total_procs;
407    register int active_procs;
408    register struct kinfo_proc **prefp;
409    register struct kinfo_proc *pp;
410
411    /* these are copied out of sel for speed */
412    int show_idle;
413    int show_self;
414    int show_system;
415    int show_uid;
416    int show_command;
417
418
419    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
420    if (nproc > onproc)
421	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
422		* (onproc = nproc));
423    if (pref == NULL || pbase == NULL) {
424	(void) fprintf(stderr, "top: Out of memory.\n");
425	quit(23);
426    }
427    /* get a pointer to the states summary array */
428    si->procstates = process_states;
429
430    /* set up flags which define what we are going to select */
431    show_idle = sel->idle;
432    show_self = sel->self;
433    show_system = sel->system;
434    show_uid = sel->uid != -1;
435    show_command = sel->command != NULL;
436
437    /* count up process states and get pointers to interesting procs */
438    total_procs = 0;
439    active_procs = 0;
440    memset((char *)process_states, 0, sizeof(process_states));
441    prefp = pref;
442    for (pp = pbase, i = 0; i < nproc; pp++, i++)
443    {
444	/*
445	 *  Place pointers to each valid proc structure in pref[].
446	 *  Process slots that are actually in use have a non-zero
447	 *  status field.  Processes with P_SYSTEM set are system
448	 *  processes---these get ignored unless show_sysprocs is set.
449	 */
450	if (pp->ki_stat != 0 &&
451	    (show_self != pp->ki_pid) &&
452	    (show_system || ((pp->ki_flag & P_SYSTEM) == 0)))
453	{
454	    total_procs++;
455	    process_states[(unsigned char) pp->ki_stat]++;
456	    if ((pp->ki_stat != SZOMB) &&
457		(show_idle || (pp->ki_pctcpu != 0) ||
458		 (pp->ki_stat == SRUN)) &&
459		(!show_uid || pp->ki_ruid == (uid_t)sel->uid))
460	    {
461		*prefp++ = pp;
462		active_procs++;
463	    }
464	}
465    }
466
467    /* if requested, sort the "interesting" processes */
468    if (compare != NULL)
469    {
470	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
471    }
472
473    /* remember active and total counts */
474    si->p_total = total_procs;
475    si->p_active = pref_len = active_procs;
476
477    /* pass back a handle */
478    handle.next_proc = pref;
479    handle.remaining = active_procs;
480    return((caddr_t)&handle);
481}
482
483char fmt[128];		/* static area where result is built */
484
485char *format_next_process(handle, get_userid)
486
487caddr_t handle;
488char *(*get_userid)();
489
490{
491    register struct kinfo_proc *pp;
492    register long cputime;
493    register double pct;
494    struct handle *hp;
495    char status[16];
496    int state;
497
498    /* find and remember the next proc structure */
499    hp = (struct handle *)handle;
500    pp = *(hp->next_proc++);
501    hp->remaining--;
502
503    /* get the process's command name */
504    if ((pp->ki_sflag & PS_INMEM) == 0) {
505	/*
506	 * Print swapped processes as <pname>
507	 */
508	char *comm = pp->ki_comm;
509#define COMSIZ sizeof(pp->ki_comm)
510	char buf[COMSIZ];
511	(void) strncpy(buf, comm, COMSIZ);
512	comm[0] = '<';
513	(void) strncpy(&comm[1], buf, COMSIZ - 2);
514	comm[COMSIZ - 2] = '\0';
515	(void) strncat(comm, ">", COMSIZ - 1);
516	comm[COMSIZ - 1] = '\0';
517    }
518
519    /*
520     * Convert the process's runtime from microseconds to seconds.  This
521     * time includes the interrupt time although that is not wanted here.
522     * ps(1) is similarly sloppy.
523     */
524    cputime = (pp->ki_runtime + 500000) / 1000000;
525
526    /* calculate the base for cpu percentages */
527    pct = pctdouble(pp->ki_pctcpu);
528
529    /* generate "STATE" field */
530    switch (state = pp->ki_stat) {
531	case SRUN:
532	    if (smpmode && pp->ki_oncpu != 0xff)
533		sprintf(status, "CPU%d", pp->ki_oncpu);
534	    else
535		strcpy(status, "RUN");
536	    break;
537	case SMTX:
538	    if (pp->ki_kiflag & KI_MTXBLOCK) {
539		sprintf(status, "*%.6s", pp->ki_mtxname);
540	        break;
541	    }
542	    /* fall through */
543	case SSLEEP:
544	    if (pp->ki_wmesg != NULL) {
545		sprintf(status, "%.6s", pp->ki_wmesg);
546		break;
547	    }
548	    /* fall through */
549	default:
550
551	    if (state >= 0 &&
552	        state < sizeof(state_abbrev) / sizeof(*state_abbrev))
553		    sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
554	    else
555		    sprintf(status, "?%5d", state);
556	    break;
557    }
558
559    /* format this entry */
560    sprintf(fmt,
561	    smpmode ? smp_Proc_format : up_Proc_format,
562	    pp->ki_pid,
563	    namelength, namelength,
564	    (*get_userid)(pp->ki_ruid),
565	    pp->ki_pri.pri_level - PZERO,
566
567	    /*
568	     * normal time      -> nice value -20 - +20
569	     * real time 0 - 31 -> nice value -52 - -21
570	     * idle time 0 - 31 -> nice value +21 - +52
571	     */
572	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
573	    	pp->ki_nice - NZERO :
574	    	(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
575		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
576		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
577	    format_k2(PROCSIZE(pp)),
578	    format_k2(pagetok(pp->ki_rssize)),
579	    status,
580	    smpmode ? pp->ki_lastcpu : 0,
581	    format_time(cputime),
582	    100.0 * weighted_cpu(pct, pp),
583	    100.0 * pct,
584	    screen_width > cmdlengthdelta ?
585		screen_width - cmdlengthdelta :
586		0,
587	    printable(pp->ki_comm));
588
589    /* return the result */
590    return(fmt);
591}
592
593static void getsysctl (name, ptr, len)
594
595char *name;
596void *ptr;
597size_t len;
598
599{
600    size_t nlen = len;
601    if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
602	    fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
603		strerror(errno));
604	    quit(23);
605    }
606    if (nlen != len) {
607	    fprintf(stderr, "top: sysctl(%s...) expected %d, got %d\n", name,
608		len, nlen);
609	    quit(23);
610    }
611}
612
613/* comparison routines for qsort */
614
615/*
616 *  proc_compare - comparison function for "qsort"
617 *	Compares the resource consumption of two processes using five
618 *  	distinct keys.  The keys (in descending order of importance) are:
619 *  	percent cpu, cpu ticks, state, resident set size, total virtual
620 *  	memory usage.  The process states are ordered as follows (from least
621 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
622 *  	array declaration below maps a process state index into a number
623 *  	that reflects this ordering.
624 */
625
626static unsigned char sorted_state[] =
627{
628    0,	/* not used		*/
629    3,	/* sleep		*/
630    1,	/* ABANDONED (WAIT)	*/
631    6,	/* run			*/
632    5,	/* start		*/
633    2,	/* zombie		*/
634    4	/* stop			*/
635};
636
637
638#define ORDERKEY_PCTCPU \
639  if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \
640     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
641
642#define ORDERKEY_CPTICKS \
643  if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \
644                p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0)
645
646#define ORDERKEY_STATE \
647  if ((result = sorted_state[(unsigned char) p2->ki_stat] - \
648                sorted_state[(unsigned char) p1->ki_stat]) == 0)
649
650#define ORDERKEY_PRIO \
651  if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0)
652
653#define ORDERKEY_RSSIZE \
654  if ((result = p2->ki_rssize - p1->ki_rssize) == 0)
655
656#define ORDERKEY_MEM \
657  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
658
659/* compare_cpu - the comparison function for sorting by cpu percentage */
660
661int
662#ifdef ORDER
663compare_cpu(pp1, pp2)
664#else
665proc_compare(pp1, pp2)
666#endif
667
668struct proc **pp1;
669struct proc **pp2;
670
671{
672    register struct kinfo_proc *p1;
673    register struct kinfo_proc *p2;
674    register int result;
675    register pctcpu lresult;
676
677    /* remove one level of indirection */
678    p1 = *(struct kinfo_proc **) pp1;
679    p2 = *(struct kinfo_proc **) pp2;
680
681    ORDERKEY_PCTCPU
682    ORDERKEY_CPTICKS
683    ORDERKEY_STATE
684    ORDERKEY_PRIO
685    ORDERKEY_RSSIZE
686    ORDERKEY_MEM
687    ;
688
689    return(result);
690}
691
692#ifdef ORDER
693/* compare routines */
694int compare_size(), compare_res(), compare_time(), compare_prio();
695
696int (*proc_compares[])() = {
697    compare_cpu,
698    compare_size,
699    compare_res,
700    compare_time,
701    compare_prio,
702    NULL
703};
704
705/* compare_size - the comparison function for sorting by total memory usage */
706
707int
708compare_size(pp1, pp2)
709
710struct proc **pp1;
711struct proc **pp2;
712
713{
714    register struct kinfo_proc *p1;
715    register struct kinfo_proc *p2;
716    register int result;
717    register pctcpu lresult;
718
719    /* remove one level of indirection */
720    p1 = *(struct kinfo_proc **) pp1;
721    p2 = *(struct kinfo_proc **) pp2;
722
723    ORDERKEY_MEM
724    ORDERKEY_RSSIZE
725    ORDERKEY_PCTCPU
726    ORDERKEY_CPTICKS
727    ORDERKEY_STATE
728    ORDERKEY_PRIO
729    ;
730
731    return(result);
732}
733
734/* compare_res - the comparison function for sorting by resident set size */
735
736int
737compare_res(pp1, pp2)
738
739struct proc **pp1;
740struct proc **pp2;
741
742{
743    register struct kinfo_proc *p1;
744    register struct kinfo_proc *p2;
745    register int result;
746    register pctcpu lresult;
747
748    /* remove one level of indirection */
749    p1 = *(struct kinfo_proc **) pp1;
750    p2 = *(struct kinfo_proc **) pp2;
751
752    ORDERKEY_RSSIZE
753    ORDERKEY_MEM
754    ORDERKEY_PCTCPU
755    ORDERKEY_CPTICKS
756    ORDERKEY_STATE
757    ORDERKEY_PRIO
758    ;
759
760    return(result);
761}
762
763/* compare_time - the comparison function for sorting by total cpu time */
764
765int
766compare_time(pp1, pp2)
767
768struct proc **pp1;
769struct proc **pp2;
770
771{
772    register struct kinfo_proc *p1;
773    register struct kinfo_proc *p2;
774    register int result;
775    register pctcpu lresult;
776
777    /* remove one level of indirection */
778    p1 = *(struct kinfo_proc **) pp1;
779    p2 = *(struct kinfo_proc **) pp2;
780
781    ORDERKEY_CPTICKS
782    ORDERKEY_PCTCPU
783    ORDERKEY_STATE
784    ORDERKEY_PRIO
785    ORDERKEY_RSSIZE
786    ORDERKEY_MEM
787    ;
788
789      return(result);
790  }
791
792/* compare_prio - the comparison function for sorting by cpu percentage */
793
794int
795compare_prio(pp1, pp2)
796
797struct proc **pp1;
798struct proc **pp2;
799
800{
801    register struct kinfo_proc *p1;
802    register struct kinfo_proc *p2;
803    register int result;
804    register pctcpu lresult;
805
806    /* remove one level of indirection */
807    p1 = *(struct kinfo_proc **) pp1;
808    p2 = *(struct kinfo_proc **) pp2;
809
810    ORDERKEY_PRIO
811    ORDERKEY_CPTICKS
812    ORDERKEY_PCTCPU
813    ORDERKEY_STATE
814    ORDERKEY_RSSIZE
815    ORDERKEY_MEM
816    ;
817
818    return(result);
819}
820#endif
821
822/*
823 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
824 *		the process does not exist.
825 *		It is EXTREMLY IMPORTANT that this function work correctly.
826 *		If top runs setuid root (as in SVR4), then this function
827 *		is the only thing that stands in the way of a serious
828 *		security problem.  It validates requests for the "kill"
829 *		and "renice" commands.
830 */
831
832int proc_owner(pid)
833
834int pid;
835
836{
837    register int cnt;
838    register struct kinfo_proc **prefp;
839    register struct kinfo_proc *pp;
840
841    prefp = pref;
842    cnt = pref_len;
843    while (--cnt >= 0)
844    {
845	pp = *prefp++;
846	if (pp->ki_pid == (pid_t)pid)
847	{
848	    return((int)pp->ki_ruid);
849	}
850    }
851    return(-1);
852}
853
854int
855swapmode(retavail, retfree)
856	int *retavail;
857	int *retfree;
858{
859	int n;
860	int pagesize = getpagesize();
861	struct kvm_swap swapary[1];
862
863	*retavail = 0;
864	*retfree = 0;
865
866#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
867
868	n = kvm_getswapinfo(kd, swapary, 1, 0);
869	if (n < 0 || swapary[0].ksw_total == 0)
870		return(0);
871
872	*retavail = CONVERT(swapary[0].ksw_total);
873	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
874
875	n = (int)((double)swapary[0].ksw_used * 100.0 /
876	    (double)swapary[0].ksw_total);
877	return(n);
878}
879
880