1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD$
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <err.h>
39#include <kvm.h>
40#include <math.h>
41#include <nlist.h>
42#include <paths.h>
43#include <pwd.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <strings.h>
48#include <unistd.h>
49#include <vis.h>
50
51#include "top.h"
52#include "machine.h"
53#include "screen.h"
54#include "utils.h"
55#include "layout.h"
56
57#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58#define	SMPUNAMELEN	13
59#define	UPUNAMELEN	15
60
61extern struct process_select ps;
62extern char* printable(char *);
63static int smpmode;
64enum displaymodes displaymode;
65#ifdef TOP_USERNAME_LEN
66static int namelength = TOP_USERNAME_LEN;
67#else
68static int namelength = 8;
69#endif
70/* TOP_JID_LEN based on max of 999999 */
71#define TOP_JID_LEN 7
72static int jidlength;
73static int cmdlengthdelta;
74
75/* Prototypes for top internals */
76void quit(int);
77
78/* get_process_info passes back a handle.  This is what it looks like: */
79
80struct handle {
81	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
82	int remaining;			/* number of pointers remaining */
83};
84
85/* declarations for load_avg */
86#include "loadavg.h"
87
88/* define what weighted cpu is.  */
89#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
90			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
91
92/* what we consider to be process size: */
93#define PROCSIZE(pp) ((pp)->ki_size / 1024)
94
95#define RU(pp)	(&(pp)->ki_rusage)
96#define RUTOT(pp) \
97	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
98
99
100/* definitions for indices in the nlist array */
101
102/*
103 *  These definitions control the format of the per-process area
104 */
105
106static char io_header[] =
107    "  PID%*s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
108
109#define io_Proc_format \
110    "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
111
112static char smp_header_thr[] =
113    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES STATE   C   TIME %7s COMMAND";
114static char smp_header[] =
115    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES STATE   C   TIME %7s COMMAND";
116
117#define smp_Proc_format \
118    "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %6.2f%% %.*s"
119
120static char up_header_thr[] =
121    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %7s COMMAND";
122static char up_header[] =
123    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %7s COMMAND";
124
125#define up_Proc_format \
126    "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %6.2f%% %.*s"
127
128
129/* process state names for the "STATE" column of the display */
130/* the extra nulls in the string "run" are for adding a slash and
131   the processor number when needed */
132
133char *state_abbrev[] = {
134	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
135};
136
137
138static kvm_t *kd;
139
140/* values that we stash away in _init and use in later routines */
141
142static double logcpu;
143
144/* these are retrieved from the kernel in _init */
145
146static load_avg  ccpu;
147
148/* these are used in the get_ functions */
149
150static int lastpid;
151
152/* these are for calculating cpu state percentages */
153
154static long cp_time[CPUSTATES];
155static long cp_old[CPUSTATES];
156static long cp_diff[CPUSTATES];
157
158/* these are for detailing the process states */
159
160int process_states[8];
161char *procstatenames[] = {
162	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
163	" zombie, ", " waiting, ", " lock, ",
164	NULL
165};
166
167/* these are for detailing the cpu states */
168
169int cpu_states[CPUSTATES];
170char *cpustatenames[] = {
171	"user", "nice", "system", "interrupt", "idle", NULL
172};
173
174/* these are for detailing the memory statistics */
175
176int memory_stats[7];
177char *memorynames[] = {
178	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
179	"K Free", NULL
180};
181
182int arc_stats[7];
183char *arcnames[] = {
184	"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
185	NULL
186};
187
188int swap_stats[7];
189char *swapnames[] = {
190	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
191	NULL
192};
193
194
195/* these are for keeping track of the proc array */
196
197static int nproc;
198static int onproc = -1;
199static int pref_len;
200static struct kinfo_proc *pbase;
201static struct kinfo_proc **pref;
202static struct kinfo_proc *previous_procs;
203static struct kinfo_proc **previous_pref;
204static int previous_proc_count = 0;
205static int previous_proc_count_max = 0;
206static int arc_enabled;
207
208/* total number of io operations */
209static long total_inblock;
210static long total_oublock;
211static long total_majflt;
212
213/* these are for getting the memory statistics */
214
215static int pageshift;		/* log base 2 of the pagesize */
216
217/* define pagetok in terms of pageshift */
218
219#define pagetok(size) ((size) << pageshift)
220
221/* useful externals */
222long percentages();
223
224#ifdef ORDER
225/*
226 * Sorting orders.  The first element is the default.
227 */
228char *ordernames[] = {
229	"cpu", "size", "res", "time", "pri", "threads",
230	"total", "read", "write", "fault", "vcsw", "ivcsw",
231	"jid", NULL
232};
233#endif
234
235/* Per-cpu time states */
236static int maxcpu;
237static int maxid;
238static int ncpus;
239static u_long cpumask;
240static long *times;
241static long *pcpu_cp_time;
242static long *pcpu_cp_old;
243static long *pcpu_cp_diff;
244static int *pcpu_cpu_states;
245
246static int compare_jid(const void *a, const void *b);
247static int compare_pid(const void *a, const void *b);
248static int compare_tid(const void *a, const void *b);
249static const char *format_nice(const struct kinfo_proc *pp);
250static void getsysctl(const char *name, void *ptr, size_t len);
251static int swapmode(int *retavail, int *retfree);
252static void update_layout(void);
253
254void
255toggle_pcpustats(void)
256{
257
258	if (ncpus == 1)
259		return;
260	update_layout();
261}
262
263/* Adjust display based on ncpus and the ARC state. */
264static void
265update_layout(void)
266{
267
268	y_mem = 3;
269	y_arc = 4;
270	y_swap = 4 + arc_enabled;
271	y_idlecursor = 5 + arc_enabled;
272	y_message = 5 + arc_enabled;
273	y_header = 6 + arc_enabled;
274	y_procs = 7 + arc_enabled;
275	Header_lines = 7 + arc_enabled;
276
277	if (pcpu_stats) {
278		y_mem += ncpus - 1;
279		y_arc += ncpus - 1;
280		y_swap += ncpus - 1;
281		y_idlecursor += ncpus - 1;
282		y_message += ncpus - 1;
283		y_header += ncpus - 1;
284		y_procs += ncpus - 1;
285		Header_lines += ncpus - 1;
286	}
287}
288
289int
290machine_init(struct statics *statics, char do_unames)
291{
292	int i, j, empty, pagesize;
293	uint64_t arc_size;
294	size_t size;
295	struct passwd *pw;
296
297	size = sizeof(smpmode);
298	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
299	    NULL, 0) != 0 &&
300	    sysctlbyname("kern.smp.active", &smpmode, &size,
301	    NULL, 0) != 0) ||
302	    size != sizeof(smpmode))
303		smpmode = 0;
304
305	size = sizeof(arc_size);
306	if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
307	    NULL, 0) == 0 && arc_size != 0)
308		arc_enabled = 1;
309
310	if (do_unames) {
311	    while ((pw = getpwent()) != NULL) {
312		if (strlen(pw->pw_name) > namelength)
313			namelength = strlen(pw->pw_name);
314	    }
315	}
316	if (smpmode && namelength > SMPUNAMELEN)
317		namelength = SMPUNAMELEN;
318	else if (namelength > UPUNAMELEN)
319		namelength = UPUNAMELEN;
320
321	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
322	if (kd == NULL)
323		return (-1);
324
325	GETSYSCTL("kern.ccpu", ccpu);
326
327	/* this is used in calculating WCPU -- calculate it ahead of time */
328	logcpu = log(loaddouble(ccpu));
329
330	pbase = NULL;
331	pref = NULL;
332	nproc = 0;
333	onproc = -1;
334
335	/* get the page size and calculate pageshift from it */
336	pagesize = getpagesize();
337	pageshift = 0;
338	while (pagesize > 1) {
339		pageshift++;
340		pagesize >>= 1;
341	}
342
343	/* we only need the amount of log(2)1024 for our conversion */
344	pageshift -= LOG1024;
345
346	/* fill in the statics information */
347	statics->procstate_names = procstatenames;
348	statics->cpustate_names = cpustatenames;
349	statics->memory_names = memorynames;
350	if (arc_enabled)
351		statics->arc_names = arcnames;
352	else
353		statics->arc_names = NULL;
354	statics->swap_names = swapnames;
355#ifdef ORDER
356	statics->order_names = ordernames;
357#endif
358
359	/* Allocate state for per-CPU stats. */
360	cpumask = 0;
361	ncpus = 0;
362	GETSYSCTL("kern.smp.maxcpus", maxcpu);
363	size = sizeof(long) * maxcpu * CPUSTATES;
364	times = malloc(size);
365	if (times == NULL)
366		err(1, "malloc %zd bytes", size);
367	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
368		err(1, "sysctlbyname kern.cp_times");
369	pcpu_cp_time = calloc(1, size);
370	maxid = (size / CPUSTATES / sizeof(long)) - 1;
371	for (i = 0; i <= maxid; i++) {
372		empty = 1;
373		for (j = 0; empty && j < CPUSTATES; j++) {
374			if (times[i * CPUSTATES + j] != 0)
375				empty = 0;
376		}
377		if (!empty) {
378			cpumask |= (1ul << i);
379			ncpus++;
380		}
381	}
382	size = sizeof(long) * ncpus * CPUSTATES;
383	pcpu_cp_old = calloc(1, size);
384	pcpu_cp_diff = calloc(1, size);
385	pcpu_cpu_states = calloc(1, size);
386	statics->ncpus = ncpus;
387
388	update_layout();
389
390	/* all done! */
391	return (0);
392}
393
394char *
395format_header(char *uname_field)
396{
397	static char Header[128];
398	const char *prehead;
399
400	if (ps.jail)
401		jidlength = TOP_JID_LEN + 1;	/* +1 for extra left space. */
402	else
403		jidlength = 0;
404
405	switch (displaymode) {
406	case DISP_CPU:
407		/*
408		 * The logic of picking the right header format seems reverse
409		 * here because we only want to display a THR column when
410		 * "thread mode" is off (and threads are not listed as
411		 * separate lines).
412		 */
413		prehead = smpmode ?
414		    (ps.thread ? smp_header : smp_header_thr) :
415		    (ps.thread ? up_header : up_header_thr);
416		snprintf(Header, sizeof(Header), prehead,
417		    jidlength, ps.jail ? " JID" : "",
418		    namelength, namelength, uname_field,
419		    ps.wcpu ? "WCPU" : "CPU");
420		break;
421	case DISP_IO:
422		prehead = io_header;
423		snprintf(Header, sizeof(Header), prehead,
424		    jidlength, ps.jail ? " JID" : "",
425		    namelength, namelength, uname_field);
426		break;
427	}
428	cmdlengthdelta = strlen(Header) - 7;
429	return (Header);
430}
431
432static int swappgsin = -1;
433static int swappgsout = -1;
434extern struct timeval timeout;
435
436
437void
438get_system_info(struct system_info *si)
439{
440	long total;
441	struct loadavg sysload;
442	int mib[2];
443	struct timeval boottime;
444	uint64_t arc_stat, arc_stat2;
445	int i, j;
446	size_t size;
447
448	/* get the CPU stats */
449	size = (maxid + 1) * CPUSTATES * sizeof(long);
450	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
451		err(1, "sysctlbyname kern.cp_times");
452	GETSYSCTL("kern.cp_time", cp_time);
453	GETSYSCTL("vm.loadavg", sysload);
454	GETSYSCTL("kern.lastpid", lastpid);
455
456	/* convert load averages to doubles */
457	for (i = 0; i < 3; i++)
458		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
459
460	/* convert cp_time counts to percentages */
461	for (i = j = 0; i <= maxid; i++) {
462		if ((cpumask & (1ul << i)) == 0)
463			continue;
464		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
465		    &pcpu_cp_time[j * CPUSTATES],
466		    &pcpu_cp_old[j * CPUSTATES],
467		    &pcpu_cp_diff[j * CPUSTATES]);
468		j++;
469	}
470	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
471
472	/* sum memory & swap statistics */
473	{
474		static unsigned int swap_delay = 0;
475		static int swapavail = 0;
476		static int swapfree = 0;
477		static long bufspace = 0;
478		static int nspgsin, nspgsout;
479
480		GETSYSCTL("vfs.bufspace", bufspace);
481		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
482		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
483		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
484		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
485		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
486		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
487		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
488		/* convert memory stats to Kbytes */
489		memory_stats[0] = pagetok(memory_stats[0]);
490		memory_stats[1] = pagetok(memory_stats[1]);
491		memory_stats[2] = pagetok(memory_stats[2]);
492		memory_stats[3] = pagetok(memory_stats[3]);
493		memory_stats[4] = bufspace / 1024;
494		memory_stats[5] = pagetok(memory_stats[5]);
495		memory_stats[6] = -1;
496
497		/* first interval */
498		if (swappgsin < 0) {
499			swap_stats[4] = 0;
500			swap_stats[5] = 0;
501		}
502
503		/* compute differences between old and new swap statistic */
504		else {
505			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
506			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
507		}
508
509		swappgsin = nspgsin;
510		swappgsout = nspgsout;
511
512		/* call CPU heavy swapmode() only for changes */
513		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
514			swap_stats[3] = swapmode(&swapavail, &swapfree);
515			swap_stats[0] = swapavail;
516			swap_stats[1] = swapavail - swapfree;
517			swap_stats[2] = swapfree;
518		}
519		swap_delay = 1;
520		swap_stats[6] = -1;
521	}
522
523	if (arc_enabled) {
524		GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
525		arc_stats[0] = arc_stat >> 10;
526		GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
527		arc_stats[1] = arc_stat >> 10;
528		GETSYSCTL("vfs.zfs.mru_size", arc_stat);
529		arc_stats[2] = arc_stat >> 10;
530		GETSYSCTL("vfs.zfs.anon_size", arc_stat);
531		arc_stats[3] = arc_stat >> 10;
532		GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
533		GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
534		arc_stats[4] = arc_stat + arc_stat2 >> 10;
535		GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
536		arc_stats[5] = arc_stat >> 10;
537		si->arc = arc_stats;
538	}
539
540	/* set arrays and strings */
541	if (pcpu_stats) {
542		si->cpustates = pcpu_cpu_states;
543		si->ncpus = ncpus;
544	} else {
545		si->cpustates = cpu_states;
546		si->ncpus = 1;
547	}
548	si->memory = memory_stats;
549	si->swap = swap_stats;
550
551
552	if (lastpid > 0) {
553		si->last_pid = lastpid;
554	} else {
555		si->last_pid = -1;
556	}
557
558	/*
559	 * Print how long system has been up.
560	 * (Found by looking getting "boottime" from the kernel)
561	 */
562	mib[0] = CTL_KERN;
563	mib[1] = KERN_BOOTTIME;
564	size = sizeof(boottime);
565	if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
566	    boottime.tv_sec != 0) {
567		si->boottime = boottime;
568	} else {
569		si->boottime.tv_sec = -1;
570	}
571}
572
573#define NOPROC	((void *)-1)
574
575/*
576 * We need to compare data from the old process entry with the new
577 * process entry.
578 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
579 * structure to cache the mapping.  We also use a negative cache pointer
580 * of NOPROC to avoid duplicate lookups.
581 * XXX: this could be done when the actual processes are fetched, we do
582 * it here out of laziness.
583 */
584const struct kinfo_proc *
585get_old_proc(struct kinfo_proc *pp)
586{
587	struct kinfo_proc **oldpp, *oldp;
588
589	/*
590	 * If this is the first fetch of the kinfo_procs then we don't have
591	 * any previous entries.
592	 */
593	if (previous_proc_count == 0)
594		return (NULL);
595	/* negative cache? */
596	if (pp->ki_udata == NOPROC)
597		return (NULL);
598	/* cached? */
599	if (pp->ki_udata != NULL)
600		return (pp->ki_udata);
601	/*
602	 * Not cached,
603	 * 1) look up based on pid.
604	 * 2) compare process start.
605	 * If we fail here, then setup a negative cache entry, otherwise
606	 * cache it.
607	 */
608	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
609	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
610	if (oldpp == NULL) {
611		pp->ki_udata = NOPROC;
612		return (NULL);
613	}
614	oldp = *oldpp;
615	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
616		pp->ki_udata = NOPROC;
617		return (NULL);
618	}
619	pp->ki_udata = oldp;
620	return (oldp);
621}
622
623/*
624 * Return the total amount of IO done in blocks in/out and faults.
625 * store the values individually in the pointers passed in.
626 */
627long
628get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
629    long *vcsw, long *ivcsw)
630{
631	const struct kinfo_proc *oldp;
632	static struct kinfo_proc dummy;
633	long ret;
634
635	oldp = get_old_proc(pp);
636	if (oldp == NULL) {
637		bzero(&dummy, sizeof(dummy));
638		oldp = &dummy;
639	}
640	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
641	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
642	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
643	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
644	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
645	ret =
646	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
647	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
648	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
649	return (ret);
650}
651
652/*
653 * Return the total number of block in/out and faults by a process.
654 */
655long
656get_io_total(struct kinfo_proc *pp)
657{
658	long dummy;
659
660	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
661}
662
663static struct handle handle;
664
665caddr_t
666get_process_info(struct system_info *si, struct process_select *sel,
667    int (*compare)(const void *, const void *))
668{
669	int i;
670	int total_procs;
671	long p_io;
672	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
673	int active_procs;
674	struct kinfo_proc **prefp;
675	struct kinfo_proc *pp;
676
677	/* these are copied out of sel for speed */
678	int show_idle;
679	int show_jid;
680	int show_self;
681	int show_system;
682	int show_uid;
683	int show_command;
684	int show_kidle;
685
686	/*
687	 * Save the previous process info.
688	 */
689	if (previous_proc_count_max < nproc) {
690		free(previous_procs);
691		previous_procs = malloc(nproc * sizeof(*previous_procs));
692		free(previous_pref);
693		previous_pref = malloc(nproc * sizeof(*previous_pref));
694		if (previous_procs == NULL || previous_pref == NULL) {
695			(void) fprintf(stderr, "top: Out of memory.\n");
696			quit(23);
697		}
698		previous_proc_count_max = nproc;
699	}
700	if (nproc) {
701		for (i = 0; i < nproc; i++)
702			previous_pref[i] = &previous_procs[i];
703		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
704		qsort(previous_pref, nproc, sizeof(*previous_pref),
705		    ps.thread ? compare_tid : compare_pid);
706	}
707	previous_proc_count = nproc;
708
709	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
710	    0, &nproc);
711	if (nproc > onproc)
712		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
713	if (pref == NULL || pbase == NULL) {
714		(void) fprintf(stderr, "top: Out of memory.\n");
715		quit(23);
716	}
717	/* get a pointer to the states summary array */
718	si->procstates = process_states;
719
720	/* set up flags which define what we are going to select */
721	show_idle = sel->idle;
722	show_jid = sel->jid != -1;
723	show_self = sel->self == -1;
724	show_system = sel->system;
725	show_uid = sel->uid != -1;
726	show_command = sel->command != NULL;
727	show_kidle = sel->kidle;
728
729	/* count up process states and get pointers to interesting procs */
730	total_procs = 0;
731	active_procs = 0;
732	total_inblock = 0;
733	total_oublock = 0;
734	total_majflt = 0;
735	memset((char *)process_states, 0, sizeof(process_states));
736	prefp = pref;
737	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
738
739		if (pp->ki_stat == 0)
740			/* not in use */
741			continue;
742
743		if (!show_self && pp->ki_pid == sel->self)
744			/* skip self */
745			continue;
746
747		if (!show_system && (pp->ki_flag & P_SYSTEM))
748			/* skip system process */
749			continue;
750
751		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
752		    &p_vcsw, &p_ivcsw);
753		total_inblock += p_inblock;
754		total_oublock += p_oublock;
755		total_majflt += p_majflt;
756		total_procs++;
757		process_states[pp->ki_stat]++;
758
759		if (pp->ki_stat == SZOMB)
760			/* skip zombies */
761			continue;
762
763		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
764			/* skip kernel idle process */
765			continue;
766
767		if (displaymode == DISP_CPU && !show_idle &&
768		    (pp->ki_pctcpu == 0 ||
769		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
770			/* skip idle or non-running processes */
771			continue;
772
773		if (displaymode == DISP_IO && !show_idle && p_io == 0)
774			/* skip processes that aren't doing I/O */
775			continue;
776
777		if (show_jid && pp->ki_jid != sel->jid)
778			/* skip proc. that don't belong to the selected JID */
779			continue;
780
781		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
782			/* skip proc. that don't belong to the selected UID */
783			continue;
784
785		*prefp++ = pp;
786		active_procs++;
787	}
788
789	/* if requested, sort the "interesting" processes */
790	if (compare != NULL)
791		qsort(pref, active_procs, sizeof(*pref), compare);
792
793	/* remember active and total counts */
794	si->p_total = total_procs;
795	si->p_active = pref_len = active_procs;
796
797	/* pass back a handle */
798	handle.next_proc = pref;
799	handle.remaining = active_procs;
800	return ((caddr_t)&handle);
801}
802
803static char fmt[128];	/* static area where result is built */
804
805char *
806format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
807{
808	struct kinfo_proc *pp;
809	const struct kinfo_proc *oldp;
810	long cputime;
811	double pct;
812	struct handle *hp;
813	char status[16];
814	int cpu, state;
815	struct rusage ru, *rup;
816	long p_tot, s_tot;
817	char *proc_fmt, thr_buf[6], jid_buf[TOP_JID_LEN + 1];
818	char *cmdbuf = NULL;
819	char **args;
820
821	/* find and remember the next proc structure */
822	hp = (struct handle *)handle;
823	pp = *(hp->next_proc++);
824	hp->remaining--;
825
826	/* get the process's command name */
827	if ((pp->ki_flag & P_INMEM) == 0) {
828		/*
829		 * Print swapped processes as <pname>
830		 */
831		size_t len;
832
833		len = strlen(pp->ki_comm);
834		if (len > sizeof(pp->ki_comm) - 3)
835			len = sizeof(pp->ki_comm) - 3;
836		memmove(pp->ki_comm + 1, pp->ki_comm, len);
837		pp->ki_comm[0] = '<';
838		pp->ki_comm[len + 1] = '>';
839		pp->ki_comm[len + 2] = '\0';
840	}
841
842	/*
843	 * Convert the process's runtime from microseconds to seconds.  This
844	 * time includes the interrupt time although that is not wanted here.
845	 * ps(1) is similarly sloppy.
846	 */
847	cputime = (pp->ki_runtime + 500000) / 1000000;
848
849	/* calculate the base for cpu percentages */
850	pct = pctdouble(pp->ki_pctcpu);
851
852	/* generate "STATE" field */
853	switch (state = pp->ki_stat) {
854	case SRUN:
855		if (smpmode && pp->ki_oncpu != 0xff)
856			sprintf(status, "CPU%d", pp->ki_oncpu);
857		else
858			strcpy(status, "RUN");
859		break;
860	case SLOCK:
861		if (pp->ki_kiflag & KI_LOCKBLOCK) {
862			sprintf(status, "*%.6s", pp->ki_lockname);
863			break;
864		}
865		/* fall through */
866	case SSLEEP:
867		if (pp->ki_wmesg != NULL) {
868			sprintf(status, "%.6s", pp->ki_wmesg);
869			break;
870		}
871		/* FALLTHROUGH */
872	default:
873
874		if (state >= 0 &&
875		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
876			sprintf(status, "%.6s", state_abbrev[state]);
877		else
878			sprintf(status, "?%5d", state);
879		break;
880	}
881
882	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
883	if (cmdbuf == NULL) {
884		warn("malloc(%d)", cmdlengthdelta + 1);
885		return NULL;
886	}
887
888	if (!(flags & FMT_SHOWARGS)) {
889		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
890		    pp->ki_tdname[0]) {
891			snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm,
892			    pp->ki_tdname);
893		} else {
894			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
895		}
896	} else {
897		if (pp->ki_flag & P_SYSTEM ||
898		    pp->ki_args == NULL ||
899		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
900		    !(*args)) {
901			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
902		    	    pp->ki_tdname[0]) {
903				snprintf(cmdbuf, cmdlengthdelta,
904				    "[%s{%s}]", pp->ki_comm, pp->ki_tdname);
905			} else {
906				snprintf(cmdbuf, cmdlengthdelta,
907				    "[%s]", pp->ki_comm);
908			}
909		} else {
910			char *src, *dst, *argbuf;
911			char *cmd;
912			size_t argbuflen;
913			size_t len;
914
915			argbuflen = cmdlengthdelta * 4;
916			argbuf = (char *)malloc(argbuflen + 1);
917			if (argbuf == NULL) {
918				warn("malloc(%d)", argbuflen + 1);
919				free(cmdbuf);
920				return NULL;
921			}
922
923			dst = argbuf;
924
925			/* Extract cmd name from argv */
926			cmd = strrchr(*args, '/');
927			if (cmd == NULL)
928				cmd = *args;
929			else
930				cmd++;
931
932			for (; (src = *args++) != NULL; ) {
933				if (*src == '\0')
934					continue;
935				len = (argbuflen - (dst - argbuf) - 1) / 4;
936				strvisx(dst, src,
937				    strlen(src) < len ? strlen(src) : len,
938				    VIS_NL | VIS_CSTYLE);
939				while (*dst != '\0')
940					dst++;
941				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
942					*dst++ = ' '; /* add delimiting space */
943			}
944			if (dst != argbuf && dst[-1] == ' ')
945				dst--;
946			*dst = '\0';
947
948			if (strcmp(cmd, pp->ki_comm) != 0 ) {
949				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
950				    pp->ki_tdname[0])
951					snprintf(cmdbuf, cmdlengthdelta,
952					    "%s (%s){%s}", argbuf, pp->ki_comm,
953					    pp->ki_tdname);
954				else
955					snprintf(cmdbuf, cmdlengthdelta,
956					    "%s (%s)", argbuf, pp->ki_comm);
957			} else {
958				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
959				    pp->ki_tdname[0])
960					snprintf(cmdbuf, cmdlengthdelta,
961					    "%s{%s}", argbuf, pp->ki_tdname);
962				else
963					strlcpy(cmdbuf, argbuf, cmdlengthdelta);
964			}
965			free(argbuf);
966		}
967	}
968
969	if (ps.jail == 0)
970		jid_buf[0] = '\0';
971	else
972		snprintf(jid_buf, sizeof(jid_buf), "%*d",
973		    jidlength - 1, pp->ki_jid);
974
975	if (displaymode == DISP_IO) {
976		oldp = get_old_proc(pp);
977		if (oldp != NULL) {
978			ru.ru_inblock = RU(pp)->ru_inblock -
979			    RU(oldp)->ru_inblock;
980			ru.ru_oublock = RU(pp)->ru_oublock -
981			    RU(oldp)->ru_oublock;
982			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
983			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
984			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
985			rup = &ru;
986		} else {
987			rup = RU(pp);
988		}
989		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
990		s_tot = total_inblock + total_oublock + total_majflt;
991
992		snprintf(fmt, sizeof(fmt), io_Proc_format,
993		    pp->ki_pid,
994		    jidlength, jid_buf,
995		    namelength, namelength, (*get_userid)(pp->ki_ruid),
996		    rup->ru_nvcsw,
997		    rup->ru_nivcsw,
998		    rup->ru_inblock,
999		    rup->ru_oublock,
1000		    rup->ru_majflt,
1001		    p_tot,
1002		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
1003		    screen_width > cmdlengthdelta ?
1004		    screen_width - cmdlengthdelta : 0,
1005		    printable(cmdbuf));
1006
1007		free(cmdbuf);
1008
1009		return (fmt);
1010	}
1011
1012	/* format this entry */
1013	if (smpmode) {
1014		if (state == SRUN && pp->ki_oncpu != 0xff)
1015			cpu = pp->ki_oncpu;
1016		else
1017			cpu = pp->ki_lastcpu;
1018	} else
1019		cpu = 0;
1020	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
1021	if (ps.thread != 0)
1022		thr_buf[0] = '\0';
1023	else
1024		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
1025		    sizeof(thr_buf) - 2, pp->ki_numthreads);
1026
1027	snprintf(fmt, sizeof(fmt), proc_fmt,
1028	    pp->ki_pid,
1029	    jidlength, jid_buf,
1030	    namelength, namelength, (*get_userid)(pp->ki_ruid),
1031	    thr_buf,
1032	    pp->ki_pri.pri_level - PZERO,
1033	    format_nice(pp),
1034	    format_k2(PROCSIZE(pp)),
1035	    format_k2(pagetok(pp->ki_rssize)),
1036	    status,
1037	    cpu,
1038	    format_time(cputime),
1039	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
1040	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
1041	    printable(cmdbuf));
1042
1043	free(cmdbuf);
1044
1045	/* return the result */
1046	return (fmt);
1047}
1048
1049static void
1050getsysctl(const char *name, void *ptr, size_t len)
1051{
1052	size_t nlen = len;
1053
1054	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1055		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1056		    strerror(errno));
1057		quit(23);
1058	}
1059	if (nlen != len) {
1060		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1061		    name, (unsigned long)len, (unsigned long)nlen);
1062		quit(23);
1063	}
1064}
1065
1066static const char *
1067format_nice(const struct kinfo_proc *pp)
1068{
1069	const char *fifo, *kthread;
1070	int rtpri;
1071	static char nicebuf[4 + 1];
1072
1073	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1074	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
1075	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1076	case PRI_ITHD:
1077		return ("-");
1078	case PRI_REALTIME:
1079		/*
1080		 * XXX: the kernel doesn't tell us the original rtprio and
1081		 * doesn't really know what it was, so to recover it we
1082		 * must be more chummy with the implementation than the
1083		 * implementation is with itself.  pri_user gives a
1084		 * constant "base" priority, but is only initialized
1085		 * properly for user threads.  pri_native gives what the
1086		 * kernel calls the "base" priority, but it isn't constant
1087		 * since it is changed by priority propagation.  pri_native
1088		 * also isn't properly initialized for all threads, but it
1089		 * is properly initialized for kernel realtime and idletime
1090		 * threads.  Thus we use pri_user for the base priority of
1091		 * user threads (it is always correct) and pri_native for
1092		 * the base priority of kernel realtime and idletime threads
1093		 * (there is nothing better, and it is usually correct).
1094		 *
1095		 * The field width and thus the buffer are too small for
1096		 * values like "kr31F", but such values shouldn't occur,
1097		 * and if they do then the tailing "F" is not displayed.
1098		 */
1099		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1100		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1101		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1102		    kthread, rtpri, fifo);
1103		break;
1104	case PRI_TIMESHARE:
1105		if (pp->ki_flag & P_KTHREAD)
1106			return ("-");
1107		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1108		break;
1109	case PRI_IDLE:
1110		/* XXX: as above. */
1111		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1112		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1113		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1114		    kthread, rtpri, fifo);
1115		break;
1116	default:
1117		return ("?");
1118	}
1119	return (nicebuf);
1120}
1121
1122/* comparison routines for qsort */
1123
1124static int
1125compare_pid(const void *p1, const void *p2)
1126{
1127	const struct kinfo_proc * const *pp1 = p1;
1128	const struct kinfo_proc * const *pp2 = p2;
1129
1130	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1131		abort();
1132
1133	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1134}
1135
1136static int
1137compare_tid(const void *p1, const void *p2)
1138{
1139	const struct kinfo_proc * const *pp1 = p1;
1140	const struct kinfo_proc * const *pp2 = p2;
1141
1142	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1143		abort();
1144
1145	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1146}
1147
1148/*
1149 *  proc_compare - comparison function for "qsort"
1150 *	Compares the resource consumption of two processes using five
1151 *	distinct keys.  The keys (in descending order of importance) are:
1152 *	percent cpu, cpu ticks, state, resident set size, total virtual
1153 *	memory usage.  The process states are ordered as follows (from least
1154 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1155 *	array declaration below maps a process state index into a number
1156 *	that reflects this ordering.
1157 */
1158
1159static int sorted_state[] = {
1160	0,	/* not used		*/
1161	3,	/* sleep		*/
1162	1,	/* ABANDONED (WAIT)	*/
1163	6,	/* run			*/
1164	5,	/* start		*/
1165	2,	/* zombie		*/
1166	4	/* stop			*/
1167};
1168
1169
1170#define ORDERKEY_PCTCPU(a, b) do { \
1171	long diff; \
1172	if (ps.wcpu) \
1173		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1174		    (b))) - \
1175		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1176		    (a))); \
1177	else \
1178		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1179	if (diff != 0) \
1180		return (diff > 0 ? 1 : -1); \
1181} while (0)
1182
1183#define ORDERKEY_CPTICKS(a, b) do { \
1184	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1185	if (diff != 0) \
1186		return (diff > 0 ? 1 : -1); \
1187} while (0)
1188
1189#define ORDERKEY_STATE(a, b) do { \
1190	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1191	if (diff != 0) \
1192		return (diff > 0 ? 1 : -1); \
1193} while (0)
1194
1195#define ORDERKEY_PRIO(a, b) do { \
1196	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1197	if (diff != 0) \
1198		return (diff > 0 ? 1 : -1); \
1199} while (0)
1200
1201#define	ORDERKEY_THREADS(a, b) do { \
1202	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1203	if (diff != 0) \
1204		return (diff > 0 ? 1 : -1); \
1205} while (0)
1206
1207#define ORDERKEY_RSSIZE(a, b) do { \
1208	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1209	if (diff != 0) \
1210		return (diff > 0 ? 1 : -1); \
1211} while (0)
1212
1213#define ORDERKEY_MEM(a, b) do { \
1214	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1215	if (diff != 0) \
1216		return (diff > 0 ? 1 : -1); \
1217} while (0)
1218
1219#define ORDERKEY_JID(a, b) do { \
1220	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1221	if (diff != 0) \
1222		return (diff > 0 ? 1 : -1); \
1223} while (0)
1224
1225/* compare_cpu - the comparison function for sorting by cpu percentage */
1226
1227int
1228#ifdef ORDER
1229compare_cpu(void *arg1, void *arg2)
1230#else
1231proc_compare(void *arg1, void *arg2)
1232#endif
1233{
1234	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1235	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1236
1237	ORDERKEY_PCTCPU(p1, p2);
1238	ORDERKEY_CPTICKS(p1, p2);
1239	ORDERKEY_STATE(p1, p2);
1240	ORDERKEY_PRIO(p1, p2);
1241	ORDERKEY_RSSIZE(p1, p2);
1242	ORDERKEY_MEM(p1, p2);
1243
1244	return (0);
1245}
1246
1247#ifdef ORDER
1248/* "cpu" compare routines */
1249int compare_size(), compare_res(), compare_time(), compare_prio(),
1250    compare_threads();
1251
1252/*
1253 * "io" compare routines.  Context switches aren't i/o, but are displayed
1254 * on the "io" display.
1255 */
1256int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1257    compare_vcsw(), compare_ivcsw();
1258
1259int (*compares[])() = {
1260	compare_cpu,
1261	compare_size,
1262	compare_res,
1263	compare_time,
1264	compare_prio,
1265	compare_threads,
1266	compare_iototal,
1267	compare_ioread,
1268	compare_iowrite,
1269	compare_iofault,
1270	compare_vcsw,
1271	compare_ivcsw,
1272	compare_jid,
1273	NULL
1274};
1275
1276/* compare_size - the comparison function for sorting by total memory usage */
1277
1278int
1279compare_size(void *arg1, void *arg2)
1280{
1281	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1282	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1283
1284	ORDERKEY_MEM(p1, p2);
1285	ORDERKEY_RSSIZE(p1, p2);
1286	ORDERKEY_PCTCPU(p1, p2);
1287	ORDERKEY_CPTICKS(p1, p2);
1288	ORDERKEY_STATE(p1, p2);
1289	ORDERKEY_PRIO(p1, p2);
1290
1291	return (0);
1292}
1293
1294/* compare_res - the comparison function for sorting by resident set size */
1295
1296int
1297compare_res(void *arg1, void *arg2)
1298{
1299	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1300	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1301
1302	ORDERKEY_RSSIZE(p1, p2);
1303	ORDERKEY_MEM(p1, p2);
1304	ORDERKEY_PCTCPU(p1, p2);
1305	ORDERKEY_CPTICKS(p1, p2);
1306	ORDERKEY_STATE(p1, p2);
1307	ORDERKEY_PRIO(p1, p2);
1308
1309	return (0);
1310}
1311
1312/* compare_time - the comparison function for sorting by total cpu time */
1313
1314int
1315compare_time(void *arg1, void *arg2)
1316{
1317	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1318	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1319
1320	ORDERKEY_CPTICKS(p1, p2);
1321	ORDERKEY_PCTCPU(p1, p2);
1322	ORDERKEY_STATE(p1, p2);
1323	ORDERKEY_PRIO(p1, p2);
1324	ORDERKEY_RSSIZE(p1, p2);
1325	ORDERKEY_MEM(p1, p2);
1326
1327	return (0);
1328}
1329
1330/* compare_prio - the comparison function for sorting by priority */
1331
1332int
1333compare_prio(void *arg1, void *arg2)
1334{
1335	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1336	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1337
1338	ORDERKEY_PRIO(p1, p2);
1339	ORDERKEY_CPTICKS(p1, p2);
1340	ORDERKEY_PCTCPU(p1, p2);
1341	ORDERKEY_STATE(p1, p2);
1342	ORDERKEY_RSSIZE(p1, p2);
1343	ORDERKEY_MEM(p1, p2);
1344
1345	return (0);
1346}
1347
1348/* compare_threads - the comparison function for sorting by threads */
1349int
1350compare_threads(void *arg1, void *arg2)
1351{
1352	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1353	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1354
1355	ORDERKEY_THREADS(p1, p2);
1356	ORDERKEY_PCTCPU(p1, p2);
1357	ORDERKEY_CPTICKS(p1, p2);
1358	ORDERKEY_STATE(p1, p2);
1359	ORDERKEY_PRIO(p1, p2);
1360	ORDERKEY_RSSIZE(p1, p2);
1361	ORDERKEY_MEM(p1, p2);
1362
1363	return (0);
1364}
1365
1366/* compare_jid - the comparison function for sorting by jid */
1367static int
1368compare_jid(const void *arg1, const void *arg2)
1369{
1370	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1371	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1372
1373	ORDERKEY_JID(p1, p2);
1374	ORDERKEY_PCTCPU(p1, p2);
1375	ORDERKEY_CPTICKS(p1, p2);
1376	ORDERKEY_STATE(p1, p2);
1377	ORDERKEY_PRIO(p1, p2);
1378	ORDERKEY_RSSIZE(p1, p2);
1379	ORDERKEY_MEM(p1, p2);
1380
1381	return (0);
1382}
1383#endif /* ORDER */
1384
1385/* assorted comparison functions for sorting by i/o */
1386
1387int
1388#ifdef ORDER
1389compare_iototal(void *arg1, void *arg2)
1390#else
1391io_compare(void *arg1, void *arg2)
1392#endif
1393{
1394	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1395	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1396
1397	return (get_io_total(p2) - get_io_total(p1));
1398}
1399
1400#ifdef ORDER
1401int
1402compare_ioread(void *arg1, void *arg2)
1403{
1404	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1405	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1406	long dummy, inp1, inp2;
1407
1408	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1409	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1410
1411	return (inp2 - inp1);
1412}
1413
1414int
1415compare_iowrite(void *arg1, void *arg2)
1416{
1417	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1418	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1419	long dummy, oup1, oup2;
1420
1421	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1422	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1423
1424	return (oup2 - oup1);
1425}
1426
1427int
1428compare_iofault(void *arg1, void *arg2)
1429{
1430	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1431	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1432	long dummy, flp1, flp2;
1433
1434	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1435	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1436
1437	return (flp2 - flp1);
1438}
1439
1440int
1441compare_vcsw(void *arg1, void *arg2)
1442{
1443	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1444	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1445	long dummy, flp1, flp2;
1446
1447	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1448	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1449
1450	return (flp2 - flp1);
1451}
1452
1453int
1454compare_ivcsw(void *arg1, void *arg2)
1455{
1456	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1457	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1458	long dummy, flp1, flp2;
1459
1460	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1461	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1462
1463	return (flp2 - flp1);
1464}
1465#endif /* ORDER */
1466
1467/*
1468 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1469 *		the process does not exist.
1470 *		It is EXTREMLY IMPORTANT that this function work correctly.
1471 *		If top runs setuid root (as in SVR4), then this function
1472 *		is the only thing that stands in the way of a serious
1473 *		security problem.  It validates requests for the "kill"
1474 *		and "renice" commands.
1475 */
1476
1477int
1478proc_owner(int pid)
1479{
1480	int cnt;
1481	struct kinfo_proc **prefp;
1482	struct kinfo_proc *pp;
1483
1484	prefp = pref;
1485	cnt = pref_len;
1486	while (--cnt >= 0) {
1487		pp = *prefp++;
1488		if (pp->ki_pid == (pid_t)pid)
1489			return ((int)pp->ki_ruid);
1490	}
1491	return (-1);
1492}
1493
1494static int
1495swapmode(int *retavail, int *retfree)
1496{
1497	int n;
1498	int pagesize = getpagesize();
1499	struct kvm_swap swapary[1];
1500
1501	*retavail = 0;
1502	*retfree = 0;
1503
1504#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1505
1506	n = kvm_getswapinfo(kd, swapary, 1, 0);
1507	if (n < 0 || swapary[0].ksw_total == 0)
1508		return (0);
1509
1510	*retavail = CONVERT(swapary[0].ksw_total);
1511	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1512
1513	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1514	return (n);
1515}
1516