machine.c revision 76169
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 76169 2001-05-01 08:46:02Z markm $
24 */
25
26
27#include <sys/time.h>
28#include <sys/types.h>
29#include <sys/signal.h>
30#include <sys/param.h>
31#include <sys/lock.h>
32
33#include "os.h"
34#include <stdio.h>
35#include <nlist.h>
36#include <math.h>
37#include <kvm.h>
38#include <pwd.h>
39#include <sys/errno.h>
40#include <sys/sysctl.h>
41#include <sys/dkstat.h>
42#include <sys/file.h>
43#include <sys/time.h>
44#include <sys/proc.h>
45#include <sys/user.h>
46#include <sys/vmmeter.h>
47#include <sys/resource.h>
48#include <sys/rtprio.h>
49
50/* Swap */
51#include <stdlib.h>
52#include <sys/conf.h>
53
54#include <unistd.h>
55#include <osreldate.h> /* for changes in kernel structures */
56
57#include "top.h"
58#include "machine.h"
59#include "screen.h"
60#include "utils.h"
61
62static void getsysctl __P((char *, void *, size_t));
63
64#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
65
66extern char* printable __P((char *));
67int swapmode __P((int *retavail, int *retfree));
68static int smpmode;
69static int namelength;
70static int cmdlengthdelta;
71
72/* Prototypes for top internals */
73void quit __P((int));
74
75/* get_process_info passes back a handle.  This is what it looks like: */
76
77struct handle
78{
79    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
80    int remaining;		/* number of pointers remaining */
81};
82
83/* declarations for load_avg */
84#include "loadavg.h"
85
86/* define what weighted cpu is.  */
87#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
88			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
89
90/* what we consider to be process size: */
91#define PROCSIZE(pp) ((pp)->ki_size / 1024)
92
93/* definitions for indices in the nlist array */
94
95/*
96 *  These definitions control the format of the per-process area
97 */
98
99static char smp_header[] =
100  "  PID %-*.*s PRI NICE   SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
101
102#define smp_Proc_format \
103	"%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
104
105static char up_header[] =
106  "  PID %-*.*s PRI NICE   SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
107
108#define up_Proc_format \
109	"%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
110
111
112
113/* process state names for the "STATE" column of the display */
114/* the extra nulls in the string "run" are for adding a slash and
115   the processor number when needed */
116
117char *state_abbrev[] =
118{
119    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "MUTEX"
120};
121
122
123static kvm_t *kd;
124
125/* values that we stash away in _init and use in later routines */
126
127static double logcpu;
128
129/* these are retrieved from the kernel in _init */
130
131static load_avg  ccpu;
132
133/* these are used in the get_ functions */
134
135static int lastpid;
136
137/* these are for calculating cpu state percentages */
138
139static long cp_time[CPUSTATES];
140static long cp_old[CPUSTATES];
141static long cp_diff[CPUSTATES];
142
143/* these are for detailing the process states */
144
145int process_states[8];
146char *procstatenames[] = {
147    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
148    " zombie, ", " waiting, ", " mutex, ",
149    NULL
150};
151
152/* these are for detailing the cpu states */
153
154int cpu_states[CPUSTATES];
155char *cpustatenames[] = {
156    "user", "nice", "system", "interrupt", "idle", NULL
157};
158
159/* these are for detailing the memory statistics */
160
161int memory_stats[7];
162char *memorynames[] = {
163    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
164    NULL
165};
166
167int swap_stats[7];
168char *swapnames[] = {
169/*   0           1            2           3            4       5 */
170    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
171    NULL
172};
173
174
175/* these are for keeping track of the proc array */
176
177static int nproc;
178static int onproc = -1;
179static int pref_len;
180static struct kinfo_proc *pbase;
181static struct kinfo_proc **pref;
182
183/* these are for getting the memory statistics */
184
185static int pageshift;		/* log base 2 of the pagesize */
186
187/* define pagetok in terms of pageshift */
188
189#define pagetok(size) ((size) << pageshift)
190
191/* useful externals */
192long percentages();
193
194#ifdef ORDER
195/* sorting orders. first is default */
196char *ordernames[] = {
197    "cpu", "size", "res", "time", "pri", NULL
198};
199#endif
200
201int
202machine_init(statics)
203
204struct statics *statics;
205
206{
207    register int pagesize;
208    size_t modelen;
209    struct passwd *pw;
210
211    modelen = sizeof(smpmode);
212    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
213         sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
214	modelen != sizeof(smpmode))
215	    smpmode = 0;
216
217    while ((pw = getpwent()) != NULL) {
218	if (strlen(pw->pw_name) > namelength)
219	    namelength = strlen(pw->pw_name);
220    }
221    if (namelength < 8)
222	namelength = 8;
223    if (smpmode && namelength > 13)
224	namelength = 13;
225    else if (namelength > 15)
226	namelength = 15;
227
228    if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL)
229	return -1;
230
231    GETSYSCTL("kern.ccpu", ccpu);
232
233    /* this is used in calculating WCPU -- calculate it ahead of time */
234    logcpu = log(loaddouble(ccpu));
235
236    pbase = NULL;
237    pref = NULL;
238    nproc = 0;
239    onproc = -1;
240    /* get the page size with "getpagesize" and calculate pageshift from it */
241    pagesize = getpagesize();
242    pageshift = 0;
243    while (pagesize > 1)
244    {
245	pageshift++;
246	pagesize >>= 1;
247    }
248
249    /* we only need the amount of log(2)1024 for our conversion */
250    pageshift -= LOG1024;
251
252    /* fill in the statics information */
253    statics->procstate_names = procstatenames;
254    statics->cpustate_names = cpustatenames;
255    statics->memory_names = memorynames;
256    statics->swap_names = swapnames;
257#ifdef ORDER
258    statics->order_names = ordernames;
259#endif
260
261    /* all done! */
262    return(0);
263}
264
265char *format_header(uname_field)
266
267register char *uname_field;
268
269{
270    static char Header[128];
271
272    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
273	     namelength, namelength, uname_field);
274
275    cmdlengthdelta = strlen(Header) - 7;
276
277    return Header;
278}
279
280static int swappgsin = -1;
281static int swappgsout = -1;
282extern struct timeval timeout;
283
284void
285get_system_info(si)
286
287struct system_info *si;
288
289{
290    long total;
291    struct loadavg sysload;
292    int mib[2];
293    struct timeval boottime;
294    size_t bt_size;
295
296    /* get the cp_time array */
297    GETSYSCTL("kern.cp_time", cp_time);
298    GETSYSCTL("vm.loadavg", sysload);
299    GETSYSCTL("kern.lastpid", lastpid);
300
301    /* convert load averages to doubles */
302    {
303	register int i;
304	register double *infoloadp;
305
306	infoloadp = si->load_avg;
307	for (i = 0; i < 3; i++)
308	{
309#ifdef notyet
310	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
311#endif
312	    *infoloadp++ = loaddouble(sysload.ldavg[i]);
313	}
314    }
315
316    /* convert cp_time counts to percentages */
317    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
318
319    /* sum memory & swap statistics */
320    {
321	static unsigned int swap_delay = 0;
322	static int swapavail = 0;
323	static int swapfree = 0;
324	static int bufspace = 0;
325	static int nspgsin, nspgsout;
326
327	GETSYSCTL("vfs.bufspace", bufspace);
328	GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
329	GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
330	GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
331	GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
332	GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
333	GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
334	GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
335	/* convert memory stats to Kbytes */
336	memory_stats[0] = pagetok(memory_stats[0]);
337	memory_stats[1] = pagetok(memory_stats[1]);
338	memory_stats[2] = pagetok(memory_stats[2]);
339	memory_stats[3] = pagetok(memory_stats[3]);
340	memory_stats[4] = bufspace / 1024;
341	memory_stats[5] = pagetok(memory_stats[5]);
342	memory_stats[6] = -1;
343
344	/* first interval */
345        if (swappgsin < 0) {
346	    swap_stats[4] = 0;
347	    swap_stats[5] = 0;
348	}
349
350	/* compute differences between old and new swap statistic */
351	else {
352	    swap_stats[4] = pagetok(((nspgsin - swappgsin)));
353	    swap_stats[5] = pagetok(((nspgsout - swappgsout)));
354	}
355
356        swappgsin = nspgsin;
357	swappgsout = nspgsout;
358
359	/* call CPU heavy swapmode() only for changes */
360        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
361	    swap_stats[3] = swapmode(&swapavail, &swapfree);
362	    swap_stats[0] = swapavail;
363	    swap_stats[1] = swapavail - swapfree;
364	    swap_stats[2] = swapfree;
365	}
366        swap_delay = 1;
367	swap_stats[6] = -1;
368    }
369
370    /* set arrays and strings */
371    si->cpustates = cpu_states;
372    si->memory = memory_stats;
373    si->swap = swap_stats;
374
375
376    if(lastpid > 0) {
377	si->last_pid = lastpid;
378    } else {
379	si->last_pid = -1;
380    }
381
382    /*
383     * Print how long system has been up.
384     * (Found by looking getting "boottime" from the kernel)
385     */
386    mib[0] = CTL_KERN;
387    mib[1] = KERN_BOOTTIME;
388    bt_size = sizeof(boottime);
389    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
390	boottime.tv_sec != 0) {
391	si->boottime = boottime;
392    } else {
393	si->boottime.tv_sec = -1;
394    }
395}
396
397static struct handle handle;
398
399caddr_t get_process_info(si, sel, compare)
400
401struct system_info *si;
402struct process_select *sel;
403int (*compare)();
404
405{
406    register int i;
407    register int total_procs;
408    register int active_procs;
409    register struct kinfo_proc **prefp;
410    register struct kinfo_proc *pp;
411
412    /* these are copied out of sel for speed */
413    int show_idle;
414    int show_self;
415    int show_system;
416    int show_uid;
417    int show_command;
418
419
420    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
421    if (nproc > onproc)
422	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
423		* (onproc = nproc));
424    if (pref == NULL || pbase == NULL) {
425	(void) fprintf(stderr, "top: Out of memory.\n");
426	quit(23);
427    }
428    /* get a pointer to the states summary array */
429    si->procstates = process_states;
430
431    /* set up flags which define what we are going to select */
432    show_idle = sel->idle;
433    show_self = sel->self;
434    show_system = sel->system;
435    show_uid = sel->uid != -1;
436    show_command = sel->command != NULL;
437
438    /* count up process states and get pointers to interesting procs */
439    total_procs = 0;
440    active_procs = 0;
441    memset((char *)process_states, 0, sizeof(process_states));
442    prefp = pref;
443    for (pp = pbase, i = 0; i < nproc; pp++, i++)
444    {
445	/*
446	 *  Place pointers to each valid proc structure in pref[].
447	 *  Process slots that are actually in use have a non-zero
448	 *  status field.  Processes with P_SYSTEM set are system
449	 *  processes---these get ignored unless show_sysprocs is set.
450	 */
451	if (pp->ki_stat != 0 &&
452	    (show_self != pp->ki_pid) &&
453	    (show_system || ((pp->ki_flag & P_SYSTEM) == 0)))
454	{
455	    total_procs++;
456	    process_states[(unsigned char) pp->ki_stat]++;
457	    if ((pp->ki_stat != SZOMB) &&
458		(show_idle || (pp->ki_pctcpu != 0) ||
459		 (pp->ki_stat == SRUN)) &&
460		(!show_uid || pp->ki_ruid == (uid_t)sel->uid))
461	    {
462		*prefp++ = pp;
463		active_procs++;
464	    }
465	}
466    }
467
468    /* if requested, sort the "interesting" processes */
469    if (compare != NULL)
470    {
471	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
472    }
473
474    /* remember active and total counts */
475    si->p_total = total_procs;
476    si->p_active = pref_len = active_procs;
477
478    /* pass back a handle */
479    handle.next_proc = pref;
480    handle.remaining = active_procs;
481    return((caddr_t)&handle);
482}
483
484char fmt[128];		/* static area where result is built */
485
486char *format_next_process(handle, get_userid)
487
488caddr_t handle;
489char *(*get_userid)();
490
491{
492    register struct kinfo_proc *pp;
493    register long cputime;
494    register double pct;
495    struct handle *hp;
496    char status[16];
497    int state;
498
499    /* find and remember the next proc structure */
500    hp = (struct handle *)handle;
501    pp = *(hp->next_proc++);
502    hp->remaining--;
503
504    /* get the process's command name */
505    if ((pp->ki_sflag & PS_INMEM) == 0) {
506	/*
507	 * Print swapped processes as <pname>
508	 */
509	char *comm = pp->ki_comm;
510#define COMSIZ sizeof(pp->ki_comm)
511	char buf[COMSIZ];
512	(void) strncpy(buf, comm, COMSIZ);
513	comm[0] = '<';
514	(void) strncpy(&comm[1], buf, COMSIZ - 2);
515	comm[COMSIZ - 2] = '\0';
516	(void) strncat(comm, ">", COMSIZ - 1);
517	comm[COMSIZ - 1] = '\0';
518    }
519
520    /*
521     * Convert the process's runtime from microseconds to seconds.  This
522     * time includes the interrupt time although that is not wanted here.
523     * ps(1) is similarly sloppy.
524     */
525    cputime = (pp->ki_runtime + 500000) / 1000000;
526
527    /* calculate the base for cpu percentages */
528    pct = pctdouble(pp->ki_pctcpu);
529
530    /* generate "STATE" field */
531    switch (state = pp->ki_stat) {
532	case SRUN:
533	    if (smpmode && pp->ki_oncpu != 0xff)
534		sprintf(status, "CPU%d", pp->ki_oncpu);
535	    else
536		strcpy(status, "RUN");
537	    break;
538	case SMTX:
539	    if (pp->ki_kiflag & KI_MTXBLOCK) {
540		sprintf(status, "*%.6s", pp->ki_mtxname);
541	        break;
542	    }
543	    /* fall through */
544	case SSLEEP:
545	    if (pp->ki_wmesg != NULL) {
546		sprintf(status, "%.6s", pp->ki_wmesg);
547		break;
548	    }
549	    /* fall through */
550	default:
551
552	    if (state >= 0 &&
553	        state < sizeof(state_abbrev) / sizeof(*state_abbrev))
554		    sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
555	    else
556		    sprintf(status, "?%5d", state);
557	    break;
558    }
559
560    /* format this entry */
561    sprintf(fmt,
562	    smpmode ? smp_Proc_format : up_Proc_format,
563	    pp->ki_pid,
564	    namelength, namelength,
565	    (*get_userid)(pp->ki_ruid),
566	    pp->ki_pri.pri_level - PZERO,
567
568	    /*
569	     * normal time      -> nice value -20 - +20
570	     * real time 0 - 31 -> nice value -52 - -21
571	     * idle time 0 - 31 -> nice value +21 - +52
572	     */
573	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
574	    	pp->ki_nice - NZERO :
575	    	(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
576		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
577		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
578	    format_k2(PROCSIZE(pp)),
579	    format_k2(pagetok(pp->ki_rssize)),
580	    status,
581	    smpmode ? pp->ki_lastcpu : 0,
582	    format_time(cputime),
583	    100.0 * weighted_cpu(pct, pp),
584	    100.0 * pct,
585	    screen_width > cmdlengthdelta ?
586		screen_width - cmdlengthdelta :
587		0,
588	    printable(pp->ki_comm));
589
590    /* return the result */
591    return(fmt);
592}
593
594static void getsysctl (name, ptr, len)
595
596char *name;
597void *ptr;
598size_t len;
599
600{
601    size_t nlen = len;
602    if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
603	    fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
604		strerror(errno));
605	    quit(23);
606    }
607    if (nlen != len) {
608	    fprintf(stderr, "top: sysctl(%s...) expected %d, got %d\n", name,
609		len, nlen);
610	    quit(23);
611    }
612}
613
614/* comparison routines for qsort */
615
616/*
617 *  proc_compare - comparison function for "qsort"
618 *	Compares the resource consumption of two processes using five
619 *  	distinct keys.  The keys (in descending order of importance) are:
620 *  	percent cpu, cpu ticks, state, resident set size, total virtual
621 *  	memory usage.  The process states are ordered as follows (from least
622 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
623 *  	array declaration below maps a process state index into a number
624 *  	that reflects this ordering.
625 */
626
627static unsigned char sorted_state[] =
628{
629    0,	/* not used		*/
630    3,	/* sleep		*/
631    1,	/* ABANDONED (WAIT)	*/
632    6,	/* run			*/
633    5,	/* start		*/
634    2,	/* zombie		*/
635    4	/* stop			*/
636};
637
638
639#define ORDERKEY_PCTCPU \
640  if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \
641     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
642
643#define ORDERKEY_CPTICKS \
644  if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \
645                p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0)
646
647#define ORDERKEY_STATE \
648  if ((result = sorted_state[(unsigned char) p2->ki_stat] - \
649                sorted_state[(unsigned char) p1->ki_stat]) == 0)
650
651#define ORDERKEY_PRIO \
652  if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0)
653
654#define ORDERKEY_RSSIZE \
655  if ((result = p2->ki_rssize - p1->ki_rssize) == 0)
656
657#define ORDERKEY_MEM \
658  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
659
660/* compare_cpu - the comparison function for sorting by cpu percentage */
661
662int
663#ifdef ORDER
664compare_cpu(pp1, pp2)
665#else
666proc_compare(pp1, pp2)
667#endif
668
669struct proc **pp1;
670struct proc **pp2;
671
672{
673    register struct kinfo_proc *p1;
674    register struct kinfo_proc *p2;
675    register int result;
676    register pctcpu lresult;
677
678    /* remove one level of indirection */
679    p1 = *(struct kinfo_proc **) pp1;
680    p2 = *(struct kinfo_proc **) pp2;
681
682    ORDERKEY_PCTCPU
683    ORDERKEY_CPTICKS
684    ORDERKEY_STATE
685    ORDERKEY_PRIO
686    ORDERKEY_RSSIZE
687    ORDERKEY_MEM
688    ;
689
690    return(result);
691}
692
693#ifdef ORDER
694/* compare routines */
695int compare_size(), compare_res(), compare_time(), compare_prio();
696
697int (*proc_compares[])() = {
698    compare_cpu,
699    compare_size,
700    compare_res,
701    compare_time,
702    compare_prio,
703    NULL
704};
705
706/* compare_size - the comparison function for sorting by total memory usage */
707
708int
709compare_size(pp1, pp2)
710
711struct proc **pp1;
712struct proc **pp2;
713
714{
715    register struct kinfo_proc *p1;
716    register struct kinfo_proc *p2;
717    register int result;
718    register pctcpu lresult;
719
720    /* remove one level of indirection */
721    p1 = *(struct kinfo_proc **) pp1;
722    p2 = *(struct kinfo_proc **) pp2;
723
724    ORDERKEY_MEM
725    ORDERKEY_RSSIZE
726    ORDERKEY_PCTCPU
727    ORDERKEY_CPTICKS
728    ORDERKEY_STATE
729    ORDERKEY_PRIO
730    ;
731
732    return(result);
733}
734
735/* compare_res - the comparison function for sorting by resident set size */
736
737int
738compare_res(pp1, pp2)
739
740struct proc **pp1;
741struct proc **pp2;
742
743{
744    register struct kinfo_proc *p1;
745    register struct kinfo_proc *p2;
746    register int result;
747    register pctcpu lresult;
748
749    /* remove one level of indirection */
750    p1 = *(struct kinfo_proc **) pp1;
751    p2 = *(struct kinfo_proc **) pp2;
752
753    ORDERKEY_RSSIZE
754    ORDERKEY_MEM
755    ORDERKEY_PCTCPU
756    ORDERKEY_CPTICKS
757    ORDERKEY_STATE
758    ORDERKEY_PRIO
759    ;
760
761    return(result);
762}
763
764/* compare_time - the comparison function for sorting by total cpu time */
765
766int
767compare_time(pp1, pp2)
768
769struct proc **pp1;
770struct proc **pp2;
771
772{
773    register struct kinfo_proc *p1;
774    register struct kinfo_proc *p2;
775    register int result;
776    register pctcpu lresult;
777
778    /* remove one level of indirection */
779    p1 = *(struct kinfo_proc **) pp1;
780    p2 = *(struct kinfo_proc **) pp2;
781
782    ORDERKEY_CPTICKS
783    ORDERKEY_PCTCPU
784    ORDERKEY_STATE
785    ORDERKEY_PRIO
786    ORDERKEY_RSSIZE
787    ORDERKEY_MEM
788    ;
789
790      return(result);
791  }
792
793/* compare_prio - the comparison function for sorting by cpu percentage */
794
795int
796compare_prio(pp1, pp2)
797
798struct proc **pp1;
799struct proc **pp2;
800
801{
802    register struct kinfo_proc *p1;
803    register struct kinfo_proc *p2;
804    register int result;
805    register pctcpu lresult;
806
807    /* remove one level of indirection */
808    p1 = *(struct kinfo_proc **) pp1;
809    p2 = *(struct kinfo_proc **) pp2;
810
811    ORDERKEY_PRIO
812    ORDERKEY_CPTICKS
813    ORDERKEY_PCTCPU
814    ORDERKEY_STATE
815    ORDERKEY_RSSIZE
816    ORDERKEY_MEM
817    ;
818
819    return(result);
820}
821#endif
822
823/*
824 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
825 *		the process does not exist.
826 *		It is EXTREMLY IMPORTANT that this function work correctly.
827 *		If top runs setuid root (as in SVR4), then this function
828 *		is the only thing that stands in the way of a serious
829 *		security problem.  It validates requests for the "kill"
830 *		and "renice" commands.
831 */
832
833int proc_owner(pid)
834
835int pid;
836
837{
838    register int cnt;
839    register struct kinfo_proc **prefp;
840    register struct kinfo_proc *pp;
841
842    prefp = pref;
843    cnt = pref_len;
844    while (--cnt >= 0)
845    {
846	pp = *prefp++;
847	if (pp->ki_pid == (pid_t)pid)
848	{
849	    return((int)pp->ki_ruid);
850	}
851    }
852    return(-1);
853}
854
855int
856swapmode(retavail, retfree)
857	int *retavail;
858	int *retfree;
859{
860	int n;
861	int pagesize = getpagesize();
862	struct kvm_swap swapary[1];
863
864	*retavail = 0;
865	*retfree = 0;
866
867#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
868
869	n = kvm_getswapinfo(kd, swapary, 1, 0);
870	if (n < 0 || swapary[0].ksw_total == 0)
871		return(0);
872
873	*retavail = CONVERT(swapary[0].ksw_total);
874	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
875
876	n = (int)((double)swapary[0].ksw_used * 100.0 /
877	    (double)swapary[0].ksw_total);
878	return(n);
879}
880
881