machine.c revision 65557
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *
22 * $FreeBSD: head/usr.bin/top/machine.c 65557 2000-09-07 01:33:02Z jasone $
23 */
24
25
26#include <sys/time.h>
27#include <sys/types.h>
28#include <sys/signal.h>
29#include <sys/param.h>
30
31#include "os.h"
32#include <stdio.h>
33#include <nlist.h>
34#include <math.h>
35#include <kvm.h>
36#include <pwd.h>
37#include <sys/errno.h>
38#include <sys/sysctl.h>
39#include <sys/dkstat.h>
40#include <sys/file.h>
41#include <sys/time.h>
42#include <sys/proc.h>
43#include <sys/user.h>
44#include <sys/vmmeter.h>
45#include <sys/resource.h>
46#include <sys/rtprio.h>
47
48/* Swap */
49#include <stdlib.h>
50#include <sys/conf.h>
51
52#include <osreldate.h> /* for changes in kernel structures */
53
54#include "top.h"
55#include "machine.h"
56
57static int check_nlist __P((struct nlist *));
58static int getkval __P((unsigned long, int *, int, char *));
59extern char* printable __P((char *));
60int swapmode __P((int *retavail, int *retfree));
61static int smpmode;
62static int namelength;
63static int cmdlength;
64
65
66/* get_process_info passes back a handle.  This is what it looks like: */
67
68struct handle
69{
70    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71    int remaining;		/* number of pointers remaining */
72};
73
74/* declarations for load_avg */
75#include "loadavg.h"
76
77#define PP(pp, field) ((pp)->kp_proc . field)
78#define EP(pp, field) ((pp)->kp_eproc . field)
79#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
80
81/* define what weighted cpu is.  */
82#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
83			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
84
85/* what we consider to be process size: */
86#define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
87
88/* definitions for indices in the nlist array */
89
90static struct nlist nlst[] = {
91#define X_CCPU		0
92    { "_ccpu" },
93#define X_CP_TIME	1
94    { "_cp_time" },
95#define X_AVENRUN	2
96    { "_averunnable" },
97
98#define X_BUFSPACE	3
99	{ "_bufspace" },	/* K in buffer cache */
100#define X_CNT           4
101    { "_cnt" },		        /* struct vmmeter cnt */
102
103/* Last pid */
104#define X_LASTPID	5
105    { "_nextpid" },
106    { 0 }
107};
108
109/*
110 *  These definitions control the format of the per-process area
111 */
112
113static char smp_header[] =
114  "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
115
116#define smp_Proc_format \
117	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
118
119static char up_header[] =
120  "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
121
122#define up_Proc_format \
123	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
124
125
126
127/* process state names for the "STATE" column of the display */
128/* the extra nulls in the string "run" are for adding a slash and
129   the processor number when needed */
130
131char *state_abbrev[] =
132{
133    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "MUTEX"
134};
135
136
137static kvm_t *kd;
138
139/* values that we stash away in _init and use in later routines */
140
141static double logcpu;
142
143/* these are retrieved from the kernel in _init */
144
145static load_avg  ccpu;
146
147/* these are offsets obtained via nlist and used in the get_ functions */
148
149static unsigned long cp_time_offset;
150static unsigned long avenrun_offset;
151static unsigned long lastpid_offset;
152static long lastpid;
153static unsigned long cnt_offset;
154static unsigned long bufspace_offset;
155static long cnt;
156
157/* these are for calculating cpu state percentages */
158
159static long cp_time[CPUSTATES];
160static long cp_old[CPUSTATES];
161static long cp_diff[CPUSTATES];
162
163/* these are for detailing the process states */
164
165int process_states[8];
166char *procstatenames[] = {
167    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
168    " zombie, ", " waiting, ", " mutex, ",
169    NULL
170};
171
172/* these are for detailing the cpu states */
173
174int cpu_states[CPUSTATES];
175char *cpustatenames[] = {
176    "user", "nice", "system", "interrupt", "idle", NULL
177};
178
179/* these are for detailing the memory statistics */
180
181int memory_stats[7];
182char *memorynames[] = {
183    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
184    NULL
185};
186
187int swap_stats[7];
188char *swapnames[] = {
189/*   0           1            2           3            4       5 */
190    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
191    NULL
192};
193
194
195/* these are for keeping track of the proc array */
196
197static int nproc;
198static int onproc = -1;
199static int pref_len;
200static struct kinfo_proc *pbase;
201static struct kinfo_proc **pref;
202
203/* these are for getting the memory statistics */
204
205static int pageshift;		/* log base 2 of the pagesize */
206
207/* define pagetok in terms of pageshift */
208
209#define pagetok(size) ((size) << pageshift)
210
211/* useful externals */
212long percentages();
213
214#ifdef ORDER
215/* sorting orders. first is default */
216char *ordernames[] = {
217    "cpu", "size", "res", "time", "pri", NULL
218};
219#endif
220
221int
222machine_init(statics)
223
224struct statics *statics;
225
226{
227    register int i = 0;
228    register int pagesize;
229    int modelen;
230    struct passwd *pw;
231
232    modelen = sizeof(smpmode);
233    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
234         sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
235	modelen != sizeof(smpmode))
236	    smpmode = 0;
237
238    while ((pw = getpwent()) != NULL) {
239	if (strlen(pw->pw_name) > namelength)
240	    namelength = strlen(pw->pw_name);
241    }
242    if (namelength < 8)
243	namelength = 8;
244    if (namelength > 15)
245	namelength = 15;
246
247    if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
248	return -1;
249
250
251    /* get the list of symbols we want to access in the kernel */
252    (void) kvm_nlist(kd, nlst);
253    if (nlst[0].n_type == 0)
254    {
255	fprintf(stderr, "top: nlist failed\n");
256	return(-1);
257    }
258
259    /* make sure they were all found */
260    if (i > 0 && check_nlist(nlst) > 0)
261    {
262	return(-1);
263    }
264
265    (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
266	    nlst[X_CCPU].n_name);
267
268    /* stash away certain offsets for later use */
269    cp_time_offset = nlst[X_CP_TIME].n_value;
270    avenrun_offset = nlst[X_AVENRUN].n_value;
271    lastpid_offset =  nlst[X_LASTPID].n_value;
272    cnt_offset = nlst[X_CNT].n_value;
273    bufspace_offset = nlst[X_BUFSPACE].n_value;
274
275    /* this is used in calculating WCPU -- calculate it ahead of time */
276    logcpu = log(loaddouble(ccpu));
277
278    pbase = NULL;
279    pref = NULL;
280    nproc = 0;
281    onproc = -1;
282    /* get the page size with "getpagesize" and calculate pageshift from it */
283    pagesize = getpagesize();
284    pageshift = 0;
285    while (pagesize > 1)
286    {
287	pageshift++;
288	pagesize >>= 1;
289    }
290
291    /* we only need the amount of log(2)1024 for our conversion */
292    pageshift -= LOG1024;
293
294    /* fill in the statics information */
295    statics->procstate_names = procstatenames;
296    statics->cpustate_names = cpustatenames;
297    statics->memory_names = memorynames;
298    statics->swap_names = swapnames;
299#ifdef ORDER
300    statics->order_names = ordernames;
301#endif
302
303    /* all done! */
304    return(0);
305}
306
307char *format_header(uname_field)
308
309register char *uname_field;
310
311{
312    register char *ptr;
313    static char Header[128];
314
315    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
316	     namelength, namelength, uname_field);
317
318    cmdlength = 80 - strlen(Header) + 6;
319
320    return Header;
321}
322
323static int swappgsin = -1;
324static int swappgsout = -1;
325extern struct timeval timeout;
326
327void
328get_system_info(si)
329
330struct system_info *si;
331
332{
333    long total;
334    load_avg avenrun[3];
335    int mib[2];
336    struct timeval boottime;
337    size_t bt_size;
338
339    /* get the cp_time array */
340    (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
341		   nlst[X_CP_TIME].n_name);
342    (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
343		   nlst[X_AVENRUN].n_name);
344
345    (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
346		   "!");
347
348    /* convert load averages to doubles */
349    {
350	register int i;
351	register double *infoloadp;
352	load_avg *avenrunp;
353
354#ifdef notyet
355	struct loadavg sysload;
356	int size;
357	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
358#endif
359
360	infoloadp = si->load_avg;
361	avenrunp = avenrun;
362	for (i = 0; i < 3; i++)
363	{
364#ifdef notyet
365	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
366#endif
367	    *infoloadp++ = loaddouble(*avenrunp++);
368	}
369    }
370
371    /* convert cp_time counts to percentages */
372    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
373
374    /* sum memory & swap statistics */
375    {
376	struct vmmeter sum;
377	static unsigned int swap_delay = 0;
378	static int swapavail = 0;
379	static int swapfree = 0;
380	static int bufspace = 0;
381
382        (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
383		   "_cnt");
384        (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
385		   "_bufspace");
386
387	/* convert memory stats to Kbytes */
388	memory_stats[0] = pagetok(sum.v_active_count);
389	memory_stats[1] = pagetok(sum.v_inactive_count);
390	memory_stats[2] = pagetok(sum.v_wire_count);
391	memory_stats[3] = pagetok(sum.v_cache_count);
392	memory_stats[4] = bufspace / 1024;
393	memory_stats[5] = pagetok(sum.v_free_count);
394	memory_stats[6] = -1;
395
396	/* first interval */
397        if (swappgsin < 0) {
398	    swap_stats[4] = 0;
399	    swap_stats[5] = 0;
400	}
401
402	/* compute differences between old and new swap statistic */
403	else {
404	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
405	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
406	}
407
408        swappgsin = sum.v_swappgsin;
409	swappgsout = sum.v_swappgsout;
410
411	/* call CPU heavy swapmode() only for changes */
412        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
413	    swap_stats[3] = swapmode(&swapavail, &swapfree);
414	    swap_stats[0] = swapavail;
415	    swap_stats[1] = swapavail - swapfree;
416	    swap_stats[2] = swapfree;
417	}
418        swap_delay = 1;
419	swap_stats[6] = -1;
420    }
421
422    /* set arrays and strings */
423    si->cpustates = cpu_states;
424    si->memory = memory_stats;
425    si->swap = swap_stats;
426
427
428    if(lastpid > 0) {
429	si->last_pid = lastpid;
430    } else {
431	si->last_pid = -1;
432    }
433
434    /*
435     * Print how long system has been up.
436     * (Found by looking getting "boottime" from the kernel)
437     */
438    mib[0] = CTL_KERN;
439    mib[1] = KERN_BOOTTIME;
440    bt_size = sizeof(boottime);
441    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
442	boottime.tv_sec != 0) {
443	si->boottime = boottime;
444    } else {
445	si->boottime.tv_sec = -1;
446    }
447}
448
449static struct handle handle;
450
451caddr_t get_process_info(si, sel, compare)
452
453struct system_info *si;
454struct process_select *sel;
455int (*compare)();
456
457{
458    register int i;
459    register int total_procs;
460    register int active_procs;
461    register struct kinfo_proc **prefp;
462    register struct kinfo_proc *pp;
463
464    /* these are copied out of sel for speed */
465    int show_idle;
466    int show_self;
467    int show_system;
468    int show_uid;
469    int show_command;
470
471
472    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
473    if (nproc > onproc)
474	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
475		* (onproc = nproc));
476    if (pref == NULL || pbase == NULL) {
477	(void) fprintf(stderr, "top: Out of memory.\n");
478	quit(23);
479    }
480    /* get a pointer to the states summary array */
481    si->procstates = process_states;
482
483    /* set up flags which define what we are going to select */
484    show_idle = sel->idle;
485    show_self = sel->self;
486    show_system = sel->system;
487    show_uid = sel->uid != -1;
488    show_command = sel->command != NULL;
489
490    /* count up process states and get pointers to interesting procs */
491    total_procs = 0;
492    active_procs = 0;
493    memset((char *)process_states, 0, sizeof(process_states));
494    prefp = pref;
495    for (pp = pbase, i = 0; i < nproc; pp++, i++)
496    {
497	/*
498	 *  Place pointers to each valid proc structure in pref[].
499	 *  Process slots that are actually in use have a non-zero
500	 *  status field.  Processes with P_SYSTEM set are system
501	 *  processes---these get ignored unless show_sysprocs is set.
502	 */
503	if (PP(pp, p_stat) != 0 &&
504	    (show_self != PP(pp, p_pid)) &&
505	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
506	{
507	    total_procs++;
508	    process_states[(unsigned char) PP(pp, p_stat)]++;
509	    if ((PP(pp, p_stat) != SZOMB) &&
510		(show_idle || (PP(pp, p_pctcpu) != 0) ||
511		 (PP(pp, p_stat) == SRUN)) &&
512		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
513	    {
514		*prefp++ = pp;
515		active_procs++;
516	    }
517	}
518    }
519
520    /* if requested, sort the "interesting" processes */
521    if (compare != NULL)
522    {
523	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
524    }
525
526    /* remember active and total counts */
527    si->p_total = total_procs;
528    si->p_active = pref_len = active_procs;
529
530    /* pass back a handle */
531    handle.next_proc = pref;
532    handle.remaining = active_procs;
533    return((caddr_t)&handle);
534}
535
536char fmt[128];		/* static area where result is built */
537
538char *format_next_process(handle, get_userid)
539
540caddr_t handle;
541char *(*get_userid)();
542
543{
544    register struct kinfo_proc *pp;
545    register long cputime;
546    register double pct;
547    struct handle *hp;
548    char status[16];
549    int state;
550
551    /* find and remember the next proc structure */
552    hp = (struct handle *)handle;
553    pp = *(hp->next_proc++);
554    hp->remaining--;
555
556    /* get the process's command name */
557    if ((PP(pp, p_flag) & P_INMEM) == 0) {
558	/*
559	 * Print swapped processes as <pname>
560	 */
561	char *comm = PP(pp, p_comm);
562#define COMSIZ sizeof(PP(pp, p_comm))
563	char buf[COMSIZ];
564	(void) strncpy(buf, comm, COMSIZ);
565	comm[0] = '<';
566	(void) strncpy(&comm[1], buf, COMSIZ - 2);
567	comm[COMSIZ - 2] = '\0';
568	(void) strncat(comm, ">", COMSIZ - 1);
569	comm[COMSIZ - 1] = '\0';
570    }
571
572    /*
573     * Convert the process's runtime from microseconds to seconds.  This
574     * time includes the interrupt time although that is not wanted here.
575     * ps(1) is similarly sloppy.
576     */
577    cputime = (PP(pp, p_runtime) + 500000) / 1000000;
578
579    /* calculate the base for cpu percentages */
580    pct = pctdouble(PP(pp, p_pctcpu));
581
582    /* generate "STATE" field */
583    switch (state = PP(pp, p_stat)) {
584	case SRUN:
585	    if (smpmode && PP(pp, p_oncpu) != 0xff)
586		sprintf(status, "CPU%d", PP(pp, p_oncpu));
587	    else
588		strcpy(status, "RUN");
589	    break;
590	case SSLEEP:
591	    if (PP(pp, p_wmesg) != NULL) {
592		sprintf(status, "%.6s", EP(pp, e_wmesg));
593		break;
594	    }
595	    /* fall through */
596	default:
597
598	    if (state >= 0 &&
599	        state < sizeof(state_abbrev) / sizeof(*state_abbrev))
600		    sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
601	    else
602		    sprintf(status, "?%5d", state);
603	    break;
604    }
605
606    /* format this entry */
607    sprintf(fmt,
608	    smpmode ? smp_Proc_format : up_Proc_format,
609	    PP(pp, p_pid),
610	    namelength, namelength,
611	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
612	    PP(pp, p_priority) - PZERO,
613
614	    /*
615	     * normal time      -> nice value -20 - +20
616	     * real time 0 - 31 -> nice value -52 - -21
617	     * idle time 0 - 31 -> nice value +21 - +52
618	     */
619	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
620	    	PP(pp, p_nice) - NZERO :
621	    	(RTP_PRIO_IS_REALTIME(PP(pp, p_rtprio.type)) ?
622		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
623		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
624	    format_k2(PROCSIZE(pp)),
625	    format_k2(pagetok(VP(pp, vm_rssize))),
626	    status,
627	    smpmode ? PP(pp, p_lastcpu) : 0,
628	    format_time(cputime),
629	    100.0 * weighted_cpu(pct, pp),
630	    100.0 * pct,
631	    cmdlength,
632	    printable(PP(pp, p_comm)));
633
634    /* return the result */
635    return(fmt);
636}
637
638
639/*
640 * check_nlist(nlst) - checks the nlist to see if any symbols were not
641 *		found.  For every symbol that was not found, a one-line
642 *		message is printed to stderr.  The routine returns the
643 *		number of symbols NOT found.
644 */
645
646static int check_nlist(nlst)
647
648register struct nlist *nlst;
649
650{
651    register int i;
652
653    /* check to see if we got ALL the symbols we requested */
654    /* this will write one line to stderr for every symbol not found */
655
656    i = 0;
657    while (nlst->n_name != NULL)
658    {
659	if (nlst->n_type == 0)
660	{
661	    /* this one wasn't found */
662	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
663			   nlst->n_name);
664	    i = 1;
665	}
666	nlst++;
667    }
668
669    return(i);
670}
671
672
673/*
674 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
675 *	"offset" is the byte offset into the kernel for the desired value,
676 *  	"ptr" points to a buffer into which the value is retrieved,
677 *  	"size" is the size of the buffer (and the object to retrieve),
678 *  	"refstr" is a reference string used when printing error meessages,
679 *	    if "refstr" starts with a '!', then a failure on read will not
680 *  	    be fatal (this may seem like a silly way to do things, but I
681 *  	    really didn't want the overhead of another argument).
682 *
683 */
684
685static int getkval(offset, ptr, size, refstr)
686
687unsigned long offset;
688int *ptr;
689int size;
690char *refstr;
691
692{
693    if (kvm_read(kd, offset, (char *) ptr, size) != size)
694    {
695	if (*refstr == '!')
696	{
697	    return(0);
698	}
699	else
700	{
701	    fprintf(stderr, "top: kvm_read for %s: %s\n",
702		refstr, strerror(errno));
703	    quit(23);
704	}
705    }
706    return(1);
707}
708
709/* comparison routines for qsort */
710
711/*
712 *  proc_compare - comparison function for "qsort"
713 *	Compares the resource consumption of two processes using five
714 *  	distinct keys.  The keys (in descending order of importance) are:
715 *  	percent cpu, cpu ticks, state, resident set size, total virtual
716 *  	memory usage.  The process states are ordered as follows (from least
717 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
718 *  	array declaration below maps a process state index into a number
719 *  	that reflects this ordering.
720 */
721
722static unsigned char sorted_state[] =
723{
724    0,	/* not used		*/
725    3,	/* sleep		*/
726    1,	/* ABANDONED (WAIT)	*/
727    6,	/* run			*/
728    5,	/* start		*/
729    2,	/* zombie		*/
730    4	/* stop			*/
731};
732
733
734#define ORDERKEY_PCTCPU \
735  if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \
736     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
737
738#define ORDERKEY_CPTICKS \
739  if ((result = PP(p2, p_runtime) > PP(p1, p_runtime) ? 1 : \
740                PP(p2, p_runtime) < PP(p1, p_runtime) ? -1 : 0) == 0)
741
742#define ORDERKEY_STATE \
743  if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
744                sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
745
746#define ORDERKEY_PRIO \
747  if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
748
749#define ORDERKEY_RSSIZE \
750  if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
751
752#define ORDERKEY_MEM \
753  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
754
755/* compare_cpu - the comparison function for sorting by cpu percentage */
756
757int
758#ifdef ORDER
759compare_cpu(pp1, pp2)
760#else
761proc_compare(pp1, pp2)
762#endif
763
764struct proc **pp1;
765struct proc **pp2;
766
767{
768    register struct kinfo_proc *p1;
769    register struct kinfo_proc *p2;
770    register int result;
771    register pctcpu lresult;
772
773    /* remove one level of indirection */
774    p1 = *(struct kinfo_proc **) pp1;
775    p2 = *(struct kinfo_proc **) pp2;
776
777    ORDERKEY_PCTCPU
778    ORDERKEY_CPTICKS
779    ORDERKEY_STATE
780    ORDERKEY_PRIO
781    ORDERKEY_RSSIZE
782    ORDERKEY_MEM
783    ;
784
785    return(result);
786}
787
788#ifdef ORDER
789/* compare routines */
790int compare_size(), compare_res(), compare_time(), compare_prio();
791
792int (*proc_compares[])() = {
793    compare_cpu,
794    compare_size,
795    compare_res,
796    compare_time,
797    compare_prio,
798    NULL
799};
800
801/* compare_size - the comparison function for sorting by total memory usage */
802
803int
804compare_size(pp1, pp2)
805
806struct proc **pp1;
807struct proc **pp2;
808
809{
810    register struct kinfo_proc *p1;
811    register struct kinfo_proc *p2;
812    register int result;
813    register pctcpu lresult;
814
815    /* remove one level of indirection */
816    p1 = *(struct kinfo_proc **) pp1;
817    p2 = *(struct kinfo_proc **) pp2;
818
819    ORDERKEY_MEM
820    ORDERKEY_RSSIZE
821    ORDERKEY_PCTCPU
822    ORDERKEY_CPTICKS
823    ORDERKEY_STATE
824    ORDERKEY_PRIO
825    ;
826
827    return(result);
828}
829
830/* compare_res - the comparison function for sorting by resident set size */
831
832int
833compare_res(pp1, pp2)
834
835struct proc **pp1;
836struct proc **pp2;
837
838{
839    register struct kinfo_proc *p1;
840    register struct kinfo_proc *p2;
841    register int result;
842    register pctcpu lresult;
843
844    /* remove one level of indirection */
845    p1 = *(struct kinfo_proc **) pp1;
846    p2 = *(struct kinfo_proc **) pp2;
847
848    ORDERKEY_RSSIZE
849    ORDERKEY_MEM
850    ORDERKEY_PCTCPU
851    ORDERKEY_CPTICKS
852    ORDERKEY_STATE
853    ORDERKEY_PRIO
854    ;
855
856    return(result);
857}
858
859/* compare_time - the comparison function for sorting by total cpu time */
860
861int
862compare_time(pp1, pp2)
863
864struct proc **pp1;
865struct proc **pp2;
866
867{
868    register struct kinfo_proc *p1;
869    register struct kinfo_proc *p2;
870    register int result;
871    register pctcpu lresult;
872
873    /* remove one level of indirection */
874    p1 = *(struct kinfo_proc **) pp1;
875    p2 = *(struct kinfo_proc **) pp2;
876
877    ORDERKEY_CPTICKS
878    ORDERKEY_PCTCPU
879    ORDERKEY_STATE
880    ORDERKEY_PRIO
881    ORDERKEY_RSSIZE
882    ORDERKEY_MEM
883    ;
884
885      return(result);
886  }
887
888/* compare_prio - the comparison function for sorting by cpu percentage */
889
890int
891compare_prio(pp1, pp2)
892
893struct proc **pp1;
894struct proc **pp2;
895
896{
897    register struct kinfo_proc *p1;
898    register struct kinfo_proc *p2;
899    register int result;
900    register pctcpu lresult;
901
902    /* remove one level of indirection */
903    p1 = *(struct kinfo_proc **) pp1;
904    p2 = *(struct kinfo_proc **) pp2;
905
906    ORDERKEY_PRIO
907    ORDERKEY_CPTICKS
908    ORDERKEY_PCTCPU
909    ORDERKEY_STATE
910    ORDERKEY_RSSIZE
911    ORDERKEY_MEM
912    ;
913
914    return(result);
915}
916#endif
917
918/*
919 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
920 *		the process does not exist.
921 *		It is EXTREMLY IMPORTANT that this function work correctly.
922 *		If top runs setuid root (as in SVR4), then this function
923 *		is the only thing that stands in the way of a serious
924 *		security problem.  It validates requests for the "kill"
925 *		and "renice" commands.
926 */
927
928int proc_owner(pid)
929
930int pid;
931
932{
933    register int cnt;
934    register struct kinfo_proc **prefp;
935    register struct kinfo_proc *pp;
936
937    prefp = pref;
938    cnt = pref_len;
939    while (--cnt >= 0)
940    {
941	pp = *prefp++;
942	if (PP(pp, p_pid) == (pid_t)pid)
943	{
944	    return((int)EP(pp, e_pcred.p_ruid));
945	}
946    }
947    return(-1);
948}
949
950
951/*
952 * swapmode is based on a program called swapinfo written
953 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
954 */
955
956#define	SVAR(var) __STRING(var)	/* to force expansion */
957#define	KGET(idx, var)							\
958	KGET1(idx, &var, sizeof(var), SVAR(var))
959#define	KGET1(idx, p, s, msg)						\
960	KGET2(nlst[idx].n_value, p, s, msg)
961#define	KGET2(addr, p, s, msg)						\
962	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
963		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
964		return (0);                                             \
965       }
966#define	KGETRET(addr, p, s, msg)					\
967	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
968		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
969		return (0);						\
970	}
971
972
973int
974swapmode(retavail, retfree)
975	int *retavail;
976	int *retfree;
977{
978	int n;
979	int pagesize = getpagesize();
980	struct kvm_swap swapary[1];
981
982	*retavail = 0;
983	*retfree = 0;
984
985#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
986
987	n = kvm_getswapinfo(kd, swapary, 1, 0);
988	if (n < 0 || swapary[0].ksw_total == 0)
989		return(0);
990
991	*retavail = CONVERT(swapary[0].ksw_total);
992	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
993
994	n = (int)((double)swapary[0].ksw_used * 100.0 /
995	    (double)swapary[0].ksw_total);
996	return(n);
997}
998
999