machine.c revision 43053
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x system
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *
22 * $Id: machine.c,v 1.18 1999/01/09 20:25:02 obrien Exp $
23 */
24
25
26#include <sys/time.h>
27#include <sys/types.h>
28#include <sys/signal.h>
29#include <sys/param.h>
30
31#include "os.h"
32#include <stdio.h>
33#include <nlist.h>
34#include <math.h>
35#include <kvm.h>
36#include <pwd.h>
37#include <sys/errno.h>
38#include <sys/sysctl.h>
39#include <sys/dkstat.h>
40#include <sys/file.h>
41#include <sys/time.h>
42#include <sys/proc.h>
43#include <sys/user.h>
44#include <sys/vmmeter.h>
45#include <sys/resource.h>
46#include <sys/rtprio.h>
47
48/* Swap */
49#include <stdlib.h>
50#include <sys/rlist.h>
51#include <sys/conf.h>
52
53#include <osreldate.h> /* for changes in kernel structures */
54
55#include "top.h"
56#include "machine.h"
57
58static int check_nlist __P((struct nlist *));
59static int getkval __P((unsigned long, int *, int, char *));
60extern char* printable __P((char *));
61int swapmode __P((int *retavail, int *retfree));
62static int smpmode;
63static int namelength;
64static int cmdlength;
65
66
67/* get_process_info passes back a handle.  This is what it looks like: */
68
69struct handle
70{
71    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
72    int remaining;		/* number of pointers remaining */
73};
74
75/* declarations for load_avg */
76#include "loadavg.h"
77
78#define PP(pp, field) ((pp)->kp_proc . field)
79#define EP(pp, field) ((pp)->kp_eproc . field)
80#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
81
82/* define what weighted cpu is.  */
83#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
84			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
85
86/* what we consider to be process size: */
87#define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
88
89/* definitions for indices in the nlist array */
90
91static struct nlist nlst[] = {
92#define X_CCPU		0
93    { "_ccpu" },
94#define X_CP_TIME	1
95    { "_cp_time" },
96#define X_AVENRUN	2
97    { "_averunnable" },
98
99#define X_BUFSPACE	3
100	{ "_bufspace" },	/* K in buffer cache */
101#define X_CNT           4
102    { "_cnt" },		        /* struct vmmeter cnt */
103
104/* Last pid */
105#define X_LASTPID	5
106    { "_nextpid" },
107    { 0 }
108};
109
110/*
111 *  These definitions control the format of the per-process area
112 */
113
114static char smp_header[] =
115  "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
116
117#define smp_Proc_format \
118	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
119
120static char up_header[] =
121  "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
122
123#define up_Proc_format \
124	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
125
126
127
128/* process state names for the "STATE" column of the display */
129/* the extra nulls in the string "run" are for adding a slash and
130   the processor number when needed */
131
132char *state_abbrev[] =
133{
134    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
135};
136
137
138static kvm_t *kd;
139
140/* values that we stash away in _init and use in later routines */
141
142static double logcpu;
143
144/* these are retrieved from the kernel in _init */
145
146static load_avg  ccpu;
147
148/* these are offsets obtained via nlist and used in the get_ functions */
149
150static unsigned long cp_time_offset;
151static unsigned long avenrun_offset;
152static unsigned long lastpid_offset;
153static long lastpid;
154static unsigned long cnt_offset;
155static unsigned long bufspace_offset;
156static long cnt;
157
158/* these are for calculating cpu state percentages */
159
160static long cp_time[CPUSTATES];
161static long cp_old[CPUSTATES];
162static long cp_diff[CPUSTATES];
163
164/* these are for detailing the process states */
165
166int process_states[6];
167char *procstatenames[] = {
168    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
169    " zombie, ",
170    NULL
171};
172
173/* these are for detailing the cpu states */
174
175int cpu_states[CPUSTATES];
176char *cpustatenames[] = {
177    "user", "nice", "system", "interrupt", "idle", NULL
178};
179
180/* these are for detailing the memory statistics */
181
182int memory_stats[7];
183char *memorynames[] = {
184    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
185    NULL
186};
187
188int swap_stats[7];
189char *swapnames[] = {
190/*   0           1            2           3            4       5 */
191    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
192    NULL
193};
194
195
196/* these are for keeping track of the proc array */
197
198static int nproc;
199static int onproc = -1;
200static int pref_len;
201static struct kinfo_proc *pbase;
202static struct kinfo_proc **pref;
203
204/* these are for getting the memory statistics */
205
206static int pageshift;		/* log base 2 of the pagesize */
207
208/* define pagetok in terms of pageshift */
209
210#define pagetok(size) ((size) << pageshift)
211
212/* useful externals */
213long percentages();
214
215#ifdef ORDER
216/* sorting orders. first is default */
217char *ordernames[] = {
218    "cpu", "size", "res", "time", "pri", NULL
219};
220#endif
221
222int
223machine_init(statics)
224
225struct statics *statics;
226
227{
228    register int i = 0;
229    register int pagesize;
230    int modelen;
231    struct passwd *pw;
232
233    modelen = sizeof(smpmode);
234    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
235         sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
236	modelen != sizeof(smpmode))
237	    smpmode = 0;
238
239    while ((pw = getpwent()) != NULL) {
240	if (strlen(pw->pw_name) > namelength)
241	    namelength = strlen(pw->pw_name);
242    }
243    if (namelength < 8)
244	namelength = 8;
245    if (namelength > 16)
246	namelength = 16;
247
248    if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
249	return -1;
250
251
252    /* get the list of symbols we want to access in the kernel */
253    (void) kvm_nlist(kd, nlst);
254    if (nlst[0].n_type == 0)
255    {
256	fprintf(stderr, "top: nlist failed\n");
257	return(-1);
258    }
259
260    /* make sure they were all found */
261    if (i > 0 && check_nlist(nlst) > 0)
262    {
263	return(-1);
264    }
265
266    (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
267	    nlst[X_CCPU].n_name);
268
269    /* stash away certain offsets for later use */
270    cp_time_offset = nlst[X_CP_TIME].n_value;
271    avenrun_offset = nlst[X_AVENRUN].n_value;
272    lastpid_offset =  nlst[X_LASTPID].n_value;
273    cnt_offset = nlst[X_CNT].n_value;
274    bufspace_offset = nlst[X_BUFSPACE].n_value;
275
276    /* this is used in calculating WCPU -- calculate it ahead of time */
277    logcpu = log(loaddouble(ccpu));
278
279    pbase = NULL;
280    pref = NULL;
281    nproc = 0;
282    onproc = -1;
283    /* get the page size with "getpagesize" and calculate pageshift from it */
284    pagesize = getpagesize();
285    pageshift = 0;
286    while (pagesize > 1)
287    {
288	pageshift++;
289	pagesize >>= 1;
290    }
291
292    /* we only need the amount of log(2)1024 for our conversion */
293    pageshift -= LOG1024;
294
295    /* fill in the statics information */
296    statics->procstate_names = procstatenames;
297    statics->cpustate_names = cpustatenames;
298    statics->memory_names = memorynames;
299    statics->swap_names = swapnames;
300#ifdef ORDER
301    statics->order_names = ordernames;
302#endif
303
304    /* all done! */
305    return(0);
306}
307
308char *format_header(uname_field)
309
310register char *uname_field;
311
312{
313    register char *ptr;
314    static char Header[128];
315
316    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
317	     namelength, namelength, uname_field);
318
319    cmdlength = 80 - strlen(Header) + 6;
320
321    return Header;
322}
323
324static int swappgsin = -1;
325static int swappgsout = -1;
326extern struct timeval timeout;
327
328void
329get_system_info(si)
330
331struct system_info *si;
332
333{
334    long total;
335    load_avg avenrun[3];
336    int mib[2];
337    struct timeval boottime;
338    size_t bt_size;
339
340    /* get the cp_time array */
341    (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
342		   nlst[X_CP_TIME].n_name);
343    (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
344		   nlst[X_AVENRUN].n_name);
345
346    (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
347		   "!");
348
349    /* convert load averages to doubles */
350    {
351	register int i;
352	register double *infoloadp;
353	load_avg *avenrunp;
354
355#ifdef notyet
356	struct loadavg sysload;
357	int size;
358	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
359#endif
360
361	infoloadp = si->load_avg;
362	avenrunp = avenrun;
363	for (i = 0; i < 3; i++)
364	{
365#ifdef notyet
366	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
367#endif
368	    *infoloadp++ = loaddouble(*avenrunp++);
369	}
370    }
371
372    /* convert cp_time counts to percentages */
373    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
374
375    /* sum memory & swap statistics */
376    {
377	struct vmmeter sum;
378	static unsigned int swap_delay = 0;
379	static int swapavail = 0;
380	static int swapfree = 0;
381	static int bufspace = 0;
382
383        (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
384		   "_cnt");
385        (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
386		   "_bufspace");
387
388	/* convert memory stats to Kbytes */
389	memory_stats[0] = pagetok(sum.v_active_count);
390	memory_stats[1] = pagetok(sum.v_inactive_count);
391	memory_stats[2] = pagetok(sum.v_wire_count);
392	memory_stats[3] = pagetok(sum.v_cache_count);
393	memory_stats[4] = bufspace / 1024;
394	memory_stats[5] = pagetok(sum.v_free_count);
395	memory_stats[6] = -1;
396
397	/* first interval */
398        if (swappgsin < 0) {
399	    swap_stats[4] = 0;
400	    swap_stats[5] = 0;
401	}
402
403	/* compute differences between old and new swap statistic */
404	else {
405	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
406	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
407	}
408
409        swappgsin = sum.v_swappgsin;
410	swappgsout = sum.v_swappgsout;
411
412	/* call CPU heavy swapmode() only for changes */
413        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
414	    swap_stats[3] = swapmode(&swapavail, &swapfree);
415	    swap_stats[0] = swapavail;
416	    swap_stats[1] = swapavail - swapfree;
417	    swap_stats[2] = swapfree;
418	}
419        swap_delay = 1;
420	swap_stats[6] = -1;
421    }
422
423    /* set arrays and strings */
424    si->cpustates = cpu_states;
425    si->memory = memory_stats;
426    si->swap = swap_stats;
427
428
429    if(lastpid > 0) {
430	si->last_pid = lastpid;
431    } else {
432	si->last_pid = -1;
433    }
434
435    /*
436     * Print how long system has been up.
437     * (Found by looking getting "boottime" from the kernel)
438     */
439    mib[0] = CTL_KERN;
440    mib[1] = KERN_BOOTTIME;
441    bt_size = sizeof(boottime);
442    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
443	boottime.tv_sec != 0) {
444	si->boottime = boottime;
445    } else {
446	si->boottime.tv_sec = -1;
447    }
448}
449
450static struct handle handle;
451
452caddr_t get_process_info(si, sel, compare)
453
454struct system_info *si;
455struct process_select *sel;
456int (*compare)();
457
458{
459    register int i;
460    register int total_procs;
461    register int active_procs;
462    register struct kinfo_proc **prefp;
463    register struct kinfo_proc *pp;
464
465    /* these are copied out of sel for speed */
466    int show_idle;
467    int show_self;
468    int show_system;
469    int show_uid;
470    int show_command;
471
472
473    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
474    if (nproc > onproc)
475	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
476		* (onproc = nproc));
477    if (pref == NULL || pbase == NULL) {
478	(void) fprintf(stderr, "top: Out of memory.\n");
479	quit(23);
480    }
481    /* get a pointer to the states summary array */
482    si->procstates = process_states;
483
484    /* set up flags which define what we are going to select */
485    show_idle = sel->idle;
486    show_self = sel->self;
487    show_system = sel->system;
488    show_uid = sel->uid != -1;
489    show_command = sel->command != NULL;
490
491    /* count up process states and get pointers to interesting procs */
492    total_procs = 0;
493    active_procs = 0;
494    memset((char *)process_states, 0, sizeof(process_states));
495    prefp = pref;
496    for (pp = pbase, i = 0; i < nproc; pp++, i++)
497    {
498	/*
499	 *  Place pointers to each valid proc structure in pref[].
500	 *  Process slots that are actually in use have a non-zero
501	 *  status field.  Processes with P_SYSTEM set are system
502	 *  processes---these get ignored unless show_sysprocs is set.
503	 */
504	if (PP(pp, p_stat) != 0 &&
505	    (show_self != PP(pp, p_pid)) &&
506	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
507	{
508	    total_procs++;
509	    process_states[(unsigned char) PP(pp, p_stat)]++;
510	    if ((PP(pp, p_stat) != SZOMB) &&
511		(show_idle || (PP(pp, p_pctcpu) != 0) ||
512		 (PP(pp, p_stat) == SRUN)) &&
513		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
514	    {
515		*prefp++ = pp;
516		active_procs++;
517	    }
518	}
519    }
520
521    /* if requested, sort the "interesting" processes */
522    if (compare != NULL)
523    {
524	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
525    }
526
527    /* remember active and total counts */
528    si->p_total = total_procs;
529    si->p_active = pref_len = active_procs;
530
531    /* pass back a handle */
532    handle.next_proc = pref;
533    handle.remaining = active_procs;
534    return((caddr_t)&handle);
535}
536
537char fmt[128];		/* static area where result is built */
538
539char *format_next_process(handle, get_userid)
540
541caddr_t handle;
542char *(*get_userid)();
543
544{
545    register struct kinfo_proc *pp;
546    register long cputime;
547    register double pct;
548    struct handle *hp;
549    char status[16];
550
551    /* find and remember the next proc structure */
552    hp = (struct handle *)handle;
553    pp = *(hp->next_proc++);
554    hp->remaining--;
555
556
557    /* get the process's user struct and set cputime */
558    if ((PP(pp, p_flag) & P_INMEM) == 0) {
559	/*
560	 * Print swapped processes as <pname>
561	 */
562	char *comm = PP(pp, p_comm);
563#define COMSIZ sizeof(PP(pp, p_comm))
564	char buf[COMSIZ];
565	(void) strncpy(buf, comm, COMSIZ);
566	comm[0] = '<';
567	(void) strncpy(&comm[1], buf, COMSIZ - 2);
568	comm[COMSIZ - 2] = '\0';
569	(void) strncat(comm, ">", COMSIZ - 1);
570	comm[COMSIZ - 1] = '\0';
571    }
572
573#if 0
574    /* This does not produce the correct results */
575    cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
576#endif
577    /* This does not count interrupts */
578    cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
579
580    /* calculate the base for cpu percentages */
581    pct = pctdouble(PP(pp, p_pctcpu));
582
583    /* generate "STATE" field */
584    switch (PP(pp, p_stat)) {
585	case SRUN:
586	    if (smpmode && PP(pp, p_oncpu) >= 0)
587		sprintf(status, "CPU%d", PP(pp, p_oncpu));
588	    else
589		strcpy(status, "RUN");
590	    break;
591	case SSLEEP:
592	    if (PP(pp, p_wmesg) != NULL) {
593		sprintf(status, "%.6s", EP(pp, e_wmesg));
594		break;
595	    }
596	    /* fall through */
597	default:
598	    sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
599	    break;
600    }
601
602    /* format this entry */
603    sprintf(fmt,
604	    smpmode ? smp_Proc_format : up_Proc_format,
605	    PP(pp, p_pid),
606	    namelength, namelength,
607	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
608	    PP(pp, p_priority) - PZERO,
609
610	    /*
611	     * normal time      -> nice value -20 - +20
612	     * real time 0 - 31 -> nice value -52 - -21
613	     * idle time 0 - 31 -> nice value +21 - +52
614	     */
615	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
616	    	PP(pp, p_nice) - NZERO :
617	    	(PP(pp, p_rtprio.type) ==  RTP_PRIO_REALTIME ?
618		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
619		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
620	    format_k2(PROCSIZE(pp)),
621	    format_k2(pagetok(VP(pp, vm_rssize))),
622	    status,
623	    smpmode ? PP(pp, p_lastcpu) : 0,
624	    format_time(cputime),
625	    100.0 * weighted_cpu(pct, pp),
626	    100.0 * pct,
627	    cmdlength,
628	    printable(PP(pp, p_comm)));
629
630    /* return the result */
631    return(fmt);
632}
633
634
635/*
636 * check_nlist(nlst) - checks the nlist to see if any symbols were not
637 *		found.  For every symbol that was not found, a one-line
638 *		message is printed to stderr.  The routine returns the
639 *		number of symbols NOT found.
640 */
641
642static int check_nlist(nlst)
643
644register struct nlist *nlst;
645
646{
647    register int i;
648
649    /* check to see if we got ALL the symbols we requested */
650    /* this will write one line to stderr for every symbol not found */
651
652    i = 0;
653    while (nlst->n_name != NULL)
654    {
655	if (nlst->n_type == 0)
656	{
657	    /* this one wasn't found */
658	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
659			   nlst->n_name);
660	    i = 1;
661	}
662	nlst++;
663    }
664
665    return(i);
666}
667
668
669/*
670 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
671 *	"offset" is the byte offset into the kernel for the desired value,
672 *  	"ptr" points to a buffer into which the value is retrieved,
673 *  	"size" is the size of the buffer (and the object to retrieve),
674 *  	"refstr" is a reference string used when printing error meessages,
675 *	    if "refstr" starts with a '!', then a failure on read will not
676 *  	    be fatal (this may seem like a silly way to do things, but I
677 *  	    really didn't want the overhead of another argument).
678 *
679 */
680
681static int getkval(offset, ptr, size, refstr)
682
683unsigned long offset;
684int *ptr;
685int size;
686char *refstr;
687
688{
689    if (kvm_read(kd, offset, (char *) ptr, size) != size)
690    {
691	if (*refstr == '!')
692	{
693	    return(0);
694	}
695	else
696	{
697	    fprintf(stderr, "top: kvm_read for %s: %s\n",
698		refstr, strerror(errno));
699	    quit(23);
700	}
701    }
702    return(1);
703}
704
705/* comparison routines for qsort */
706
707/*
708 *  proc_compare - comparison function for "qsort"
709 *	Compares the resource consumption of two processes using five
710 *  	distinct keys.  The keys (in descending order of importance) are:
711 *  	percent cpu, cpu ticks, state, resident set size, total virtual
712 *  	memory usage.  The process states are ordered as follows (from least
713 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
714 *  	array declaration below maps a process state index into a number
715 *  	that reflects this ordering.
716 */
717
718static unsigned char sorted_state[] =
719{
720    0,	/* not used		*/
721    3,	/* sleep		*/
722    1,	/* ABANDONED (WAIT)	*/
723    6,	/* run			*/
724    5,	/* start		*/
725    2,	/* zombie		*/
726    4	/* stop			*/
727};
728
729
730#define ORDERKEY_PCTCPU \
731  if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \
732     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
733
734#define ORDERKEY_CPTICKS \
735  if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
736
737#define ORDERKEY_STATE \
738  if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
739                sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
740
741#define ORDERKEY_PRIO \
742  if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
743
744#define ORDERKEY_RSSIZE \
745  if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
746
747#define ORDERKEY_MEM \
748  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
749
750/* compare_cpu - the comparison function for sorting by cpu percentage */
751
752int
753#ifdef ORDER
754compare_cpu(pp1, pp2)
755#else
756proc_compare(pp1, pp2)
757#endif
758
759struct proc **pp1;
760struct proc **pp2;
761
762{
763    register struct kinfo_proc *p1;
764    register struct kinfo_proc *p2;
765    register int result;
766    register pctcpu lresult;
767
768    /* remove one level of indirection */
769    p1 = *(struct kinfo_proc **) pp1;
770    p2 = *(struct kinfo_proc **) pp2;
771
772    ORDERKEY_PCTCPU
773    ORDERKEY_CPTICKS
774    ORDERKEY_STATE
775    ORDERKEY_PRIO
776    ORDERKEY_RSSIZE
777    ORDERKEY_MEM
778    ;
779
780    return(result);
781}
782
783#ifdef ORDER
784/* compare routines */
785int compare_size(), compare_res(), compare_time(), compare_prio();
786
787int (*proc_compares[])() = {
788    compare_cpu,
789    compare_size,
790    compare_res,
791    compare_time,
792    compare_prio,
793    NULL
794};
795
796/* compare_size - the comparison function for sorting by total memory usage */
797
798int
799compare_size(pp1, pp2)
800
801struct proc **pp1;
802struct proc **pp2;
803
804{
805    register struct kinfo_proc *p1;
806    register struct kinfo_proc *p2;
807    register int result;
808    register pctcpu lresult;
809
810    /* remove one level of indirection */
811    p1 = *(struct kinfo_proc **) pp1;
812    p2 = *(struct kinfo_proc **) pp2;
813
814    ORDERKEY_MEM
815    ORDERKEY_RSSIZE
816    ORDERKEY_PCTCPU
817    ORDERKEY_CPTICKS
818    ORDERKEY_STATE
819    ORDERKEY_PRIO
820    ;
821
822    return(result);
823}
824
825/* compare_res - the comparison function for sorting by resident set size */
826
827int
828compare_res(pp1, pp2)
829
830struct proc **pp1;
831struct proc **pp2;
832
833{
834    register struct kinfo_proc *p1;
835    register struct kinfo_proc *p2;
836    register int result;
837    register pctcpu lresult;
838
839    /* remove one level of indirection */
840    p1 = *(struct kinfo_proc **) pp1;
841    p2 = *(struct kinfo_proc **) pp2;
842
843    ORDERKEY_RSSIZE
844    ORDERKEY_MEM
845    ORDERKEY_PCTCPU
846    ORDERKEY_CPTICKS
847    ORDERKEY_STATE
848    ORDERKEY_PRIO
849    ;
850
851    return(result);
852}
853
854/* compare_time - the comparison function for sorting by total cpu time */
855
856int
857compare_time(pp1, pp2)
858
859struct proc **pp1;
860struct proc **pp2;
861
862{
863    register struct kinfo_proc *p1;
864    register struct kinfo_proc *p2;
865    register int result;
866    register pctcpu lresult;
867
868    /* remove one level of indirection */
869    p1 = *(struct kinfo_proc **) pp1;
870    p2 = *(struct kinfo_proc **) pp2;
871
872    ORDERKEY_CPTICKS
873    ORDERKEY_PCTCPU
874    ORDERKEY_STATE
875    ORDERKEY_PRIO
876    ORDERKEY_RSSIZE
877    ORDERKEY_MEM
878    ;
879
880      return(result);
881  }
882
883/* compare_prio - the comparison function for sorting by cpu percentage */
884
885int
886compare_prio(pp1, pp2)
887
888struct proc **pp1;
889struct proc **pp2;
890
891{
892    register struct kinfo_proc *p1;
893    register struct kinfo_proc *p2;
894    register int result;
895    register pctcpu lresult;
896
897    /* remove one level of indirection */
898    p1 = *(struct kinfo_proc **) pp1;
899    p2 = *(struct kinfo_proc **) pp2;
900
901    ORDERKEY_PRIO
902    ORDERKEY_CPTICKS
903    ORDERKEY_PCTCPU
904    ORDERKEY_STATE
905    ORDERKEY_RSSIZE
906    ORDERKEY_MEM
907    ;
908
909    return(result);
910}
911#endif
912
913/*
914 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
915 *		the process does not exist.
916 *		It is EXTREMLY IMPORTANT that this function work correctly.
917 *		If top runs setuid root (as in SVR4), then this function
918 *		is the only thing that stands in the way of a serious
919 *		security problem.  It validates requests for the "kill"
920 *		and "renice" commands.
921 */
922
923int proc_owner(pid)
924
925int pid;
926
927{
928    register int cnt;
929    register struct kinfo_proc **prefp;
930    register struct kinfo_proc *pp;
931
932    prefp = pref;
933    cnt = pref_len;
934    while (--cnt >= 0)
935    {
936	pp = *prefp++;
937	if (PP(pp, p_pid) == (pid_t)pid)
938	{
939	    return((int)EP(pp, e_pcred.p_ruid));
940	}
941    }
942    return(-1);
943}
944
945
946/*
947 * swapmode is based on a program called swapinfo written
948 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
949 */
950
951#define	SVAR(var) __STRING(var)	/* to force expansion */
952#define	KGET(idx, var)							\
953	KGET1(idx, &var, sizeof(var), SVAR(var))
954#define	KGET1(idx, p, s, msg)						\
955	KGET2(nlst[idx].n_value, p, s, msg)
956#define	KGET2(addr, p, s, msg)						\
957	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
958		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
959		return (0);                                             \
960       }
961#define	KGETRET(addr, p, s, msg)					\
962	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
963		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
964		return (0);						\
965	}
966
967
968int
969swapmode(retavail, retfree)
970	int *retavail;
971	int *retfree;
972{
973	int n;
974	int pagesize = getpagesize();
975	struct kvm_swap swapary[1];
976
977	*retavail = 0;
978	*retfree = 0;
979
980#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
981
982	n = kvm_getswapinfo(kd, swapary, 1, 0);
983	if (n < 0)
984		return(0);
985
986	*retavail = CONVERT(swapary[0].ksw_total);
987	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
988
989	n = (int)((double)swapary[0].ksw_used * 100.0 /
990	    (double)swapary[0].ksw_total);
991	return(n);
992}
993
994