machine.c revision 42447
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x system
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *
22 * $Id: machine.c,v 1.17 1998/11/26 12:59:21 bde Exp $
23 */
24
25
26#include <sys/time.h>
27#include <sys/types.h>
28#include <sys/signal.h>
29#include <sys/param.h>
30
31#include "os.h"
32#include <stdio.h>
33#include <nlist.h>
34#include <math.h>
35#include <kvm.h>
36#include <pwd.h>
37#include <sys/errno.h>
38#include <sys/sysctl.h>
39#include <sys/dkstat.h>
40#include <sys/file.h>
41#include <sys/time.h>
42#include <sys/proc.h>
43#include <sys/user.h>
44#include <sys/vmmeter.h>
45#include <sys/resource.h>
46#include <sys/rtprio.h>
47
48/* Swap */
49#include <stdlib.h>
50#include <sys/rlist.h>
51#include <sys/conf.h>
52
53#include <osreldate.h> /* for changes in kernel structures */
54
55#include "top.h"
56#include "machine.h"
57
58static int check_nlist __P((struct nlist *));
59static int getkval __P((unsigned long, int *, int, char *));
60extern char* printable __P((char *));
61int swapmode __P((int *retavail, int *retfree));
62static int smpmode;
63static int namelength;
64static int cmdlength;
65
66
67/* get_process_info passes back a handle.  This is what it looks like: */
68
69struct handle
70{
71    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
72    int remaining;		/* number of pointers remaining */
73};
74
75/* declarations for load_avg */
76#include "loadavg.h"
77
78#define PP(pp, field) ((pp)->kp_proc . field)
79#define EP(pp, field) ((pp)->kp_eproc . field)
80#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
81
82/* define what weighted cpu is.  */
83#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
84			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
85
86/* what we consider to be process size: */
87#define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
88
89/* definitions for indices in the nlist array */
90
91static struct nlist nlst[] = {
92#define X_CCPU		0
93    { "_ccpu" },
94#define X_CP_TIME	1
95    { "_cp_time" },
96#define X_AVENRUN	2
97    { "_averunnable" },
98
99/* Swap */
100#define VM_SWAPLIST	3
101	{ "_swaplist" },/* list of free swap areas */
102#define VM_SWDEVT	4
103	{ "_swdevt" },	/* list of swap devices and sizes */
104#define VM_NSWAP	5
105	{ "_nswap" },	/* size of largest swap device */
106#define VM_NSWDEV	6
107	{ "_nswdev" },	/* number of swap devices */
108#define VM_DMMAX	7
109	{ "_dmmax" },	/* maximum size of a swap block */
110#define X_BUFSPACE	8
111	{ "_bufspace" },	/* K in buffer cache */
112#define X_CNT           9
113    { "_cnt" },		        /* struct vmmeter cnt */
114
115/* Last pid */
116#define X_LASTPID	10
117    { "_nextpid" },
118    { 0 }
119};
120
121/*
122 *  These definitions control the format of the per-process area
123 */
124
125static char smp_header[] =
126  "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
127
128#define smp_Proc_format \
129	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
130
131static char up_header[] =
132  "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
133
134#define up_Proc_format \
135	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
136
137
138
139/* process state names for the "STATE" column of the display */
140/* the extra nulls in the string "run" are for adding a slash and
141   the processor number when needed */
142
143char *state_abbrev[] =
144{
145    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
146};
147
148
149static kvm_t *kd;
150
151/* values that we stash away in _init and use in later routines */
152
153static double logcpu;
154
155/* these are retrieved from the kernel in _init */
156
157static load_avg  ccpu;
158
159/* these are offsets obtained via nlist and used in the get_ functions */
160
161static unsigned long cp_time_offset;
162static unsigned long avenrun_offset;
163static unsigned long lastpid_offset;
164static long lastpid;
165static unsigned long cnt_offset;
166static unsigned long bufspace_offset;
167static long cnt;
168
169/* these are for calculating cpu state percentages */
170
171static long cp_time[CPUSTATES];
172static long cp_old[CPUSTATES];
173static long cp_diff[CPUSTATES];
174
175/* these are for detailing the process states */
176
177int process_states[6];
178char *procstatenames[] = {
179    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
180    " zombie, ",
181    NULL
182};
183
184/* these are for detailing the cpu states */
185
186int cpu_states[CPUSTATES];
187char *cpustatenames[] = {
188    "user", "nice", "system", "interrupt", "idle", NULL
189};
190
191/* these are for detailing the memory statistics */
192
193int memory_stats[7];
194char *memorynames[] = {
195    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
196    NULL
197};
198
199int swap_stats[7];
200char *swapnames[] = {
201/*   0           1            2           3            4       5 */
202    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
203    NULL
204};
205
206
207/* these are for keeping track of the proc array */
208
209static int nproc;
210static int onproc = -1;
211static int pref_len;
212static struct kinfo_proc *pbase;
213static struct kinfo_proc **pref;
214
215/* these are for getting the memory statistics */
216
217static int pageshift;		/* log base 2 of the pagesize */
218
219/* define pagetok in terms of pageshift */
220
221#define pagetok(size) ((size) << pageshift)
222
223/* useful externals */
224long percentages();
225
226#ifdef ORDER
227/* sorting orders. first is default */
228char *ordernames[] = {
229    "cpu", "size", "res", "time", "pri", NULL
230};
231#endif
232
233int
234machine_init(statics)
235
236struct statics *statics;
237
238{
239    register int i = 0;
240    register int pagesize;
241    int modelen;
242    struct passwd *pw;
243
244    modelen = sizeof(smpmode);
245    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
246         sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
247	modelen != sizeof(smpmode))
248	    smpmode = 0;
249
250    while ((pw = getpwent()) != NULL) {
251	if (strlen(pw->pw_name) > namelength)
252	    namelength = strlen(pw->pw_name);
253    }
254    if (namelength < 8)
255	namelength = 8;
256    if (namelength > 16)
257	namelength = 16;
258
259    if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
260	return -1;
261
262
263    /* get the list of symbols we want to access in the kernel */
264    (void) kvm_nlist(kd, nlst);
265    if (nlst[0].n_type == 0)
266    {
267	fprintf(stderr, "top: nlist failed\n");
268	return(-1);
269    }
270
271    /* make sure they were all found */
272    if (i > 0 && check_nlist(nlst) > 0)
273    {
274	return(-1);
275    }
276
277    (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
278	    nlst[X_CCPU].n_name);
279
280    /* stash away certain offsets for later use */
281    cp_time_offset = nlst[X_CP_TIME].n_value;
282    avenrun_offset = nlst[X_AVENRUN].n_value;
283    lastpid_offset =  nlst[X_LASTPID].n_value;
284    cnt_offset = nlst[X_CNT].n_value;
285    bufspace_offset = nlst[X_BUFSPACE].n_value;
286
287    /* this is used in calculating WCPU -- calculate it ahead of time */
288    logcpu = log(loaddouble(ccpu));
289
290    pbase = NULL;
291    pref = NULL;
292    nproc = 0;
293    onproc = -1;
294    /* get the page size with "getpagesize" and calculate pageshift from it */
295    pagesize = getpagesize();
296    pageshift = 0;
297    while (pagesize > 1)
298    {
299	pageshift++;
300	pagesize >>= 1;
301    }
302
303    /* we only need the amount of log(2)1024 for our conversion */
304    pageshift -= LOG1024;
305
306    /* fill in the statics information */
307    statics->procstate_names = procstatenames;
308    statics->cpustate_names = cpustatenames;
309    statics->memory_names = memorynames;
310    statics->swap_names = swapnames;
311#ifdef ORDER
312    statics->order_names = ordernames;
313#endif
314
315    /* all done! */
316    return(0);
317}
318
319char *format_header(uname_field)
320
321register char *uname_field;
322
323{
324    register char *ptr;
325    static char Header[128];
326
327    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
328	     namelength, namelength, uname_field);
329
330    cmdlength = 80 - strlen(Header) + 6;
331
332    return Header;
333}
334
335static int swappgsin = -1;
336static int swappgsout = -1;
337extern struct timeval timeout;
338
339void
340get_system_info(si)
341
342struct system_info *si;
343
344{
345    long total;
346    load_avg avenrun[3];
347    int mib[2];
348    struct timeval boottime;
349    size_t bt_size;
350
351    /* get the cp_time array */
352    (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
353		   nlst[X_CP_TIME].n_name);
354    (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
355		   nlst[X_AVENRUN].n_name);
356
357    (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
358		   "!");
359
360    /* convert load averages to doubles */
361    {
362	register int i;
363	register double *infoloadp;
364	load_avg *avenrunp;
365
366#ifdef notyet
367	struct loadavg sysload;
368	int size;
369	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
370#endif
371
372	infoloadp = si->load_avg;
373	avenrunp = avenrun;
374	for (i = 0; i < 3; i++)
375	{
376#ifdef notyet
377	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
378#endif
379	    *infoloadp++ = loaddouble(*avenrunp++);
380	}
381    }
382
383    /* convert cp_time counts to percentages */
384    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
385
386    /* sum memory & swap statistics */
387    {
388	struct vmmeter sum;
389	static unsigned int swap_delay = 0;
390	static int swapavail = 0;
391	static int swapfree = 0;
392	static int bufspace = 0;
393
394        (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
395		   "_cnt");
396        (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
397		   "_bufspace");
398
399	/* convert memory stats to Kbytes */
400	memory_stats[0] = pagetok(sum.v_active_count);
401	memory_stats[1] = pagetok(sum.v_inactive_count);
402	memory_stats[2] = pagetok(sum.v_wire_count);
403	memory_stats[3] = pagetok(sum.v_cache_count);
404	memory_stats[4] = bufspace / 1024;
405	memory_stats[5] = pagetok(sum.v_free_count);
406	memory_stats[6] = -1;
407
408	/* first interval */
409        if (swappgsin < 0) {
410	    swap_stats[4] = 0;
411	    swap_stats[5] = 0;
412	}
413
414	/* compute differences between old and new swap statistic */
415	else {
416	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
417	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
418	}
419
420        swappgsin = sum.v_swappgsin;
421	swappgsout = sum.v_swappgsout;
422
423	/* call CPU heavy swapmode() only for changes */
424        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
425	    swap_stats[3] = swapmode(&swapavail, &swapfree);
426	    swap_stats[0] = swapavail;
427	    swap_stats[1] = swapavail - swapfree;
428	    swap_stats[2] = swapfree;
429	}
430        swap_delay = 1;
431	swap_stats[6] = -1;
432    }
433
434    /* set arrays and strings */
435    si->cpustates = cpu_states;
436    si->memory = memory_stats;
437    si->swap = swap_stats;
438
439
440    if(lastpid > 0) {
441	si->last_pid = lastpid;
442    } else {
443	si->last_pid = -1;
444    }
445
446    /*
447     * Print how long system has been up.
448     * (Found by looking getting "boottime" from the kernel)
449     */
450    mib[0] = CTL_KERN;
451    mib[1] = KERN_BOOTTIME;
452    bt_size = sizeof(boottime);
453    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
454	boottime.tv_sec != 0) {
455	si->boottime = boottime;
456    } else {
457	si->boottime.tv_sec = -1;
458    }
459}
460
461static struct handle handle;
462
463caddr_t get_process_info(si, sel, compare)
464
465struct system_info *si;
466struct process_select *sel;
467int (*compare)();
468
469{
470    register int i;
471    register int total_procs;
472    register int active_procs;
473    register struct kinfo_proc **prefp;
474    register struct kinfo_proc *pp;
475
476    /* these are copied out of sel for speed */
477    int show_idle;
478    int show_self;
479    int show_system;
480    int show_uid;
481    int show_command;
482
483
484    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
485    if (nproc > onproc)
486	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
487		* (onproc = nproc));
488    if (pref == NULL || pbase == NULL) {
489	(void) fprintf(stderr, "top: Out of memory.\n");
490	quit(23);
491    }
492    /* get a pointer to the states summary array */
493    si->procstates = process_states;
494
495    /* set up flags which define what we are going to select */
496    show_idle = sel->idle;
497    show_self = sel->self;
498    show_system = sel->system;
499    show_uid = sel->uid != -1;
500    show_command = sel->command != NULL;
501
502    /* count up process states and get pointers to interesting procs */
503    total_procs = 0;
504    active_procs = 0;
505    memset((char *)process_states, 0, sizeof(process_states));
506    prefp = pref;
507    for (pp = pbase, i = 0; i < nproc; pp++, i++)
508    {
509	/*
510	 *  Place pointers to each valid proc structure in pref[].
511	 *  Process slots that are actually in use have a non-zero
512	 *  status field.  Processes with P_SYSTEM set are system
513	 *  processes---these get ignored unless show_sysprocs is set.
514	 */
515	if (PP(pp, p_stat) != 0 &&
516	    (show_self != PP(pp, p_pid)) &&
517	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
518	{
519	    total_procs++;
520	    process_states[(unsigned char) PP(pp, p_stat)]++;
521	    if ((PP(pp, p_stat) != SZOMB) &&
522		(show_idle || (PP(pp, p_pctcpu) != 0) ||
523		 (PP(pp, p_stat) == SRUN)) &&
524		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
525	    {
526		*prefp++ = pp;
527		active_procs++;
528	    }
529	}
530    }
531
532    /* if requested, sort the "interesting" processes */
533    if (compare != NULL)
534    {
535	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
536    }
537
538    /* remember active and total counts */
539    si->p_total = total_procs;
540    si->p_active = pref_len = active_procs;
541
542    /* pass back a handle */
543    handle.next_proc = pref;
544    handle.remaining = active_procs;
545    return((caddr_t)&handle);
546}
547
548char fmt[128];		/* static area where result is built */
549
550char *format_next_process(handle, get_userid)
551
552caddr_t handle;
553char *(*get_userid)();
554
555{
556    register struct kinfo_proc *pp;
557    register long cputime;
558    register double pct;
559    struct handle *hp;
560    char status[16];
561
562    /* find and remember the next proc structure */
563    hp = (struct handle *)handle;
564    pp = *(hp->next_proc++);
565    hp->remaining--;
566
567
568    /* get the process's user struct and set cputime */
569    if ((PP(pp, p_flag) & P_INMEM) == 0) {
570	/*
571	 * Print swapped processes as <pname>
572	 */
573	char *comm = PP(pp, p_comm);
574#define COMSIZ sizeof(PP(pp, p_comm))
575	char buf[COMSIZ];
576	(void) strncpy(buf, comm, COMSIZ);
577	comm[0] = '<';
578	(void) strncpy(&comm[1], buf, COMSIZ - 2);
579	comm[COMSIZ - 2] = '\0';
580	(void) strncat(comm, ">", COMSIZ - 1);
581	comm[COMSIZ - 1] = '\0';
582    }
583
584#if 0
585    /* This does not produce the correct results */
586    cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
587#endif
588    /* This does not count interrupts */
589    cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
590
591    /* calculate the base for cpu percentages */
592    pct = pctdouble(PP(pp, p_pctcpu));
593
594    /* generate "STATE" field */
595    switch (PP(pp, p_stat)) {
596	case SRUN:
597	    if (smpmode && PP(pp, p_oncpu) >= 0)
598		sprintf(status, "CPU%d", PP(pp, p_oncpu));
599	    else
600		strcpy(status, "RUN");
601	    break;
602	case SSLEEP:
603	    if (PP(pp, p_wmesg) != NULL) {
604		sprintf(status, "%.6s", EP(pp, e_wmesg));
605		break;
606	    }
607	    /* fall through */
608	default:
609	    sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
610	    break;
611    }
612
613    /* format this entry */
614    sprintf(fmt,
615	    smpmode ? smp_Proc_format : up_Proc_format,
616	    PP(pp, p_pid),
617	    namelength, namelength,
618	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
619	    PP(pp, p_priority) - PZERO,
620
621	    /*
622	     * normal time      -> nice value -20 - +20
623	     * real time 0 - 31 -> nice value -52 - -21
624	     * idle time 0 - 31 -> nice value +21 - +52
625	     */
626	    (PP(pp, p_rtprio.type) ==  RTP_PRIO_NORMAL ?
627	    	PP(pp, p_nice) - NZERO :
628	    	(PP(pp, p_rtprio.type) ==  RTP_PRIO_REALTIME ?
629		    (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
630		    (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
631	    format_k2(PROCSIZE(pp)),
632	    format_k2(pagetok(VP(pp, vm_rssize))),
633	    status,
634	    smpmode ? PP(pp, p_lastcpu) : 0,
635	    format_time(cputime),
636	    100.0 * weighted_cpu(pct, pp),
637	    100.0 * pct,
638	    cmdlength,
639	    printable(PP(pp, p_comm)));
640
641    /* return the result */
642    return(fmt);
643}
644
645
646/*
647 * check_nlist(nlst) - checks the nlist to see if any symbols were not
648 *		found.  For every symbol that was not found, a one-line
649 *		message is printed to stderr.  The routine returns the
650 *		number of symbols NOT found.
651 */
652
653static int check_nlist(nlst)
654
655register struct nlist *nlst;
656
657{
658    register int i;
659
660    /* check to see if we got ALL the symbols we requested */
661    /* this will write one line to stderr for every symbol not found */
662
663    i = 0;
664    while (nlst->n_name != NULL)
665    {
666	if (nlst->n_type == 0)
667	{
668	    /* this one wasn't found */
669	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
670			   nlst->n_name);
671	    i = 1;
672	}
673	nlst++;
674    }
675
676    return(i);
677}
678
679
680/*
681 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
682 *	"offset" is the byte offset into the kernel for the desired value,
683 *  	"ptr" points to a buffer into which the value is retrieved,
684 *  	"size" is the size of the buffer (and the object to retrieve),
685 *  	"refstr" is a reference string used when printing error meessages,
686 *	    if "refstr" starts with a '!', then a failure on read will not
687 *  	    be fatal (this may seem like a silly way to do things, but I
688 *  	    really didn't want the overhead of another argument).
689 *
690 */
691
692static int getkval(offset, ptr, size, refstr)
693
694unsigned long offset;
695int *ptr;
696int size;
697char *refstr;
698
699{
700    if (kvm_read(kd, offset, (char *) ptr, size) != size)
701    {
702	if (*refstr == '!')
703	{
704	    return(0);
705	}
706	else
707	{
708	    fprintf(stderr, "top: kvm_read for %s: %s\n",
709		refstr, strerror(errno));
710	    quit(23);
711	}
712    }
713    return(1);
714}
715
716/* comparison routines for qsort */
717
718/*
719 *  proc_compare - comparison function for "qsort"
720 *	Compares the resource consumption of two processes using five
721 *  	distinct keys.  The keys (in descending order of importance) are:
722 *  	percent cpu, cpu ticks, state, resident set size, total virtual
723 *  	memory usage.  The process states are ordered as follows (from least
724 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
725 *  	array declaration below maps a process state index into a number
726 *  	that reflects this ordering.
727 */
728
729static unsigned char sorted_state[] =
730{
731    0,	/* not used		*/
732    3,	/* sleep		*/
733    1,	/* ABANDONED (WAIT)	*/
734    6,	/* run			*/
735    5,	/* start		*/
736    2,	/* zombie		*/
737    4	/* stop			*/
738};
739
740
741#define ORDERKEY_PCTCPU \
742  if (lresult = (long) PP(p2, p_pctcpu) - (long) PP(p1, p_pctcpu), \
743     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
744
745#define ORDERKEY_CPTICKS \
746  if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
747
748#define ORDERKEY_STATE \
749  if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
750                sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
751
752#define ORDERKEY_PRIO \
753  if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
754
755#define ORDERKEY_RSSIZE \
756  if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
757
758#define ORDERKEY_MEM \
759  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
760
761/* compare_cpu - the comparison function for sorting by cpu percentage */
762
763int
764#ifdef ORDER
765compare_cpu(pp1, pp2)
766#else
767proc_compare(pp1, pp2)
768#endif
769
770struct proc **pp1;
771struct proc **pp2;
772
773{
774    register struct kinfo_proc *p1;
775    register struct kinfo_proc *p2;
776    register int result;
777    register pctcpu lresult;
778
779    /* remove one level of indirection */
780    p1 = *(struct kinfo_proc **) pp1;
781    p2 = *(struct kinfo_proc **) pp2;
782
783    ORDERKEY_PCTCPU
784    ORDERKEY_CPTICKS
785    ORDERKEY_STATE
786    ORDERKEY_PRIO
787    ORDERKEY_RSSIZE
788    ORDERKEY_MEM
789    ;
790
791    return(result);
792}
793
794#ifdef ORDER
795/* compare routines */
796int compare_size(), compare_res(), compare_time(), compare_prio();
797
798int (*proc_compares[])() = {
799    compare_cpu,
800    compare_size,
801    compare_res,
802    compare_time,
803    compare_prio,
804    NULL
805};
806
807/* compare_size - the comparison function for sorting by total memory usage */
808
809int
810compare_size(pp1, pp2)
811
812struct proc **pp1;
813struct proc **pp2;
814
815{
816    register struct kinfo_proc *p1;
817    register struct kinfo_proc *p2;
818    register int result;
819    register pctcpu lresult;
820
821    /* remove one level of indirection */
822    p1 = *(struct kinfo_proc **) pp1;
823    p2 = *(struct kinfo_proc **) pp2;
824
825    ORDERKEY_MEM
826    ORDERKEY_RSSIZE
827    ORDERKEY_PCTCPU
828    ORDERKEY_CPTICKS
829    ORDERKEY_STATE
830    ORDERKEY_PRIO
831    ;
832
833    return(result);
834}
835
836/* compare_res - the comparison function for sorting by resident set size */
837
838int
839compare_res(pp1, pp2)
840
841struct proc **pp1;
842struct proc **pp2;
843
844{
845    register struct kinfo_proc *p1;
846    register struct kinfo_proc *p2;
847    register int result;
848    register pctcpu lresult;
849
850    /* remove one level of indirection */
851    p1 = *(struct kinfo_proc **) pp1;
852    p2 = *(struct kinfo_proc **) pp2;
853
854    ORDERKEY_RSSIZE
855    ORDERKEY_MEM
856    ORDERKEY_PCTCPU
857    ORDERKEY_CPTICKS
858    ORDERKEY_STATE
859    ORDERKEY_PRIO
860    ;
861
862    return(result);
863}
864
865/* compare_time - the comparison function for sorting by total cpu time */
866
867int
868compare_time(pp1, pp2)
869
870struct proc **pp1;
871struct proc **pp2;
872
873{
874    register struct kinfo_proc *p1;
875    register struct kinfo_proc *p2;
876    register int result;
877    register pctcpu lresult;
878
879    /* remove one level of indirection */
880    p1 = *(struct kinfo_proc **) pp1;
881    p2 = *(struct kinfo_proc **) pp2;
882
883    ORDERKEY_CPTICKS
884    ORDERKEY_PCTCPU
885    ORDERKEY_STATE
886    ORDERKEY_PRIO
887    ORDERKEY_RSSIZE
888    ORDERKEY_MEM
889    ;
890
891      return(result);
892  }
893
894/* compare_prio - the comparison function for sorting by cpu percentage */
895
896int
897compare_prio(pp1, pp2)
898
899struct proc **pp1;
900struct proc **pp2;
901
902{
903    register struct kinfo_proc *p1;
904    register struct kinfo_proc *p2;
905    register int result;
906    register pctcpu lresult;
907
908    /* remove one level of indirection */
909    p1 = *(struct kinfo_proc **) pp1;
910    p2 = *(struct kinfo_proc **) pp2;
911
912    ORDERKEY_PRIO
913    ORDERKEY_CPTICKS
914    ORDERKEY_PCTCPU
915    ORDERKEY_STATE
916    ORDERKEY_RSSIZE
917    ORDERKEY_MEM
918    ;
919
920    return(result);
921}
922#endif
923
924/*
925 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
926 *		the process does not exist.
927 *		It is EXTREMLY IMPORTANT that this function work correctly.
928 *		If top runs setuid root (as in SVR4), then this function
929 *		is the only thing that stands in the way of a serious
930 *		security problem.  It validates requests for the "kill"
931 *		and "renice" commands.
932 */
933
934int proc_owner(pid)
935
936int pid;
937
938{
939    register int cnt;
940    register struct kinfo_proc **prefp;
941    register struct kinfo_proc *pp;
942
943    prefp = pref;
944    cnt = pref_len;
945    while (--cnt >= 0)
946    {
947	pp = *prefp++;
948	if (PP(pp, p_pid) == (pid_t)pid)
949	{
950	    return((int)EP(pp, e_pcred.p_ruid));
951	}
952    }
953    return(-1);
954}
955
956
957/*
958 * swapmode is based on a program called swapinfo written
959 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
960 */
961
962#define	SVAR(var) __STRING(var)	/* to force expansion */
963#define	KGET(idx, var)							\
964	KGET1(idx, &var, sizeof(var), SVAR(var))
965#define	KGET1(idx, p, s, msg)						\
966	KGET2(nlst[idx].n_value, p, s, msg)
967#define	KGET2(addr, p, s, msg)						\
968	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
969		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
970		return (0);                                             \
971       }
972#define	KGETRET(addr, p, s, msg)					\
973	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
974		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
975		return (0);						\
976	}
977
978
979int
980swapmode(retavail, retfree)
981	int *retavail;
982	int *retfree;
983{
984	char *header;
985	int hlen, nswap, nswdev, dmmax;
986	int i, div, avail, nfree, npfree, used;
987	struct swdevt *sw;
988	long blocksize, *perdev;
989	u_long ptr;
990	struct rlist head;
991#if __FreeBSD_version >= 220000
992	struct rlisthdr swaplist;
993#else
994	struct rlist *swaplist;
995#endif
996	struct rlist *swapptr;
997
998	/*
999	 * Counter for error messages. If we reach the limit,
1000	 * stop reading information from swap devices and
1001	 * return zero. This prevent endless 'bad address'
1002	 * messages.
1003	 */
1004	static warning = 10;
1005
1006	if (warning <= 0) {
1007	    /* a single warning */
1008	    if (!warning) {
1009		warning--;
1010		fprintf(stderr,
1011			"Too much errors, stop reading swap devices ...\n");
1012		(void)sleep(3);
1013	    }
1014	    return(0);
1015	}
1016	warning--; /* decrease counter, see end of function */
1017
1018	KGET(VM_NSWAP, nswap);
1019	if (!nswap) {
1020		fprintf(stderr, "No swap space available\n");
1021		return(0);
1022	}
1023
1024	KGET(VM_NSWDEV, nswdev);
1025	KGET(VM_DMMAX, dmmax);
1026	KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist");
1027	if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL ||
1028	    (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL)
1029		err(1, "malloc");
1030	KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt");
1031	KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt");
1032
1033	/* Count up swap space. */
1034	nfree = 0;
1035	memset(perdev, 0, nswdev * sizeof(*perdev));
1036#if  __FreeBSD_version >= 220000
1037	swapptr = swaplist.rlh_list;
1038	while (swapptr) {
1039#else
1040	while (swaplist) {
1041#endif
1042		int	top, bottom, next_block;
1043#if  __FreeBSD_version >= 220000
1044		KGET2(swapptr, &head, sizeof(struct rlist), "swapptr");
1045#else
1046		KGET2(swaplist, &head, sizeof(struct rlist), "swaplist");
1047#endif
1048
1049		top = head.rl_end;
1050		bottom = head.rl_start;
1051
1052		nfree += top - bottom + 1;
1053
1054		/*
1055		 * Swap space is split up among the configured disks.
1056		 *
1057		 * For interleaved swap devices, the first dmmax blocks
1058		 * of swap space some from the first disk, the next dmmax
1059		 * blocks from the next, and so on up to nswap blocks.
1060		 *
1061		 * The list of free space joins adjacent free blocks,
1062		 * ignoring device boundries.  If we want to keep track
1063		 * of this information per device, we'll just have to
1064		 * extract it ourselves.
1065		 */
1066		while (top / dmmax != bottom / dmmax) {
1067			next_block = ((bottom + dmmax) / dmmax);
1068			perdev[(bottom / dmmax) % nswdev] +=
1069				next_block * dmmax - bottom;
1070			bottom = next_block * dmmax;
1071		}
1072		perdev[(bottom / dmmax) % nswdev] +=
1073			top - bottom + 1;
1074
1075#if  __FreeBSD_version >= 220000
1076		swapptr = head.rl_next;
1077#else
1078		swaplist = head.rl_next;
1079#endif
1080	}
1081
1082	header = getbsize(&hlen, &blocksize);
1083	div = blocksize / 512;
1084	avail = npfree = 0;
1085	for (i = 0; i < nswdev; i++) {
1086		int xsize, xfree;
1087
1088		/*
1089		 * Don't report statistics for partitions which have not
1090		 * yet been activated via swapon(8).
1091		 */
1092		if (!(sw[i].sw_flags & SW_FREED))
1093			continue;
1094
1095		/* The first dmmax is never allocated to avoid trashing of
1096		 * disklabels
1097		 */
1098		xsize = sw[i].sw_nblks - dmmax;
1099		xfree = perdev[i];
1100		used = xsize - xfree;
1101		npfree++;
1102		avail += xsize;
1103	}
1104
1105	/*
1106	 * If only one partition has been set up via swapon(8), we don't
1107	 * need to bother with totals.
1108	 */
1109	*retavail = avail / 2;
1110	*retfree = nfree / 2;
1111	used = avail - nfree;
1112	free(sw); free(perdev);
1113
1114	/* increase counter, no errors occurs */
1115	warning++;
1116
1117	return  (int)(((double)used / (double)avail * 100.0) + 0.5);
1118}
1119