machine.c revision 266287
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: stable/9/usr.bin/top/machine.c 266287 2014-05-17 03:23:45Z bdrewery $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <err.h>
39#include <kvm.h>
40#include <math.h>
41#include <nlist.h>
42#include <paths.h>
43#include <pwd.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <strings.h>
48#include <unistd.h>
49#include <vis.h>
50
51#include "top.h"
52#include "machine.h"
53#include "screen.h"
54#include "utils.h"
55#include "layout.h"
56
57#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58#define	SMPUNAMELEN	13
59#define	UPUNAMELEN	15
60
61extern struct process_select ps;
62extern char* printable(char *);
63static int smpmode;
64enum displaymodes displaymode;
65#ifdef TOP_USERNAME_LEN
66static int namelength = TOP_USERNAME_LEN;
67#else
68static int namelength = 8;
69#endif
70static int cmdlengthdelta;
71
72/* Prototypes for top internals */
73void quit(int);
74
75/* get_process_info passes back a handle.  This is what it looks like: */
76
77struct handle {
78	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79	int remaining;			/* number of pointers remaining */
80};
81
82/* declarations for load_avg */
83#include "loadavg.h"
84
85/* define what weighted cpu is.  */
86#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
87			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
88
89/* what we consider to be process size: */
90#define PROCSIZE(pp) ((pp)->ki_size / 1024)
91
92#define RU(pp)	(&(pp)->ki_rusage)
93#define RUTOT(pp) \
94	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
95
96
97/* definitions for indices in the nlist array */
98
99/*
100 *  These definitions control the format of the per-process area
101 */
102
103static char io_header[] =
104    "  PID%s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
105
106#define io_Proc_format \
107    "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
108
109static char smp_header_thr[] =
110    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
111static char smp_header[] =
112    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
113
114#define smp_Proc_format \
115    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s"
116
117static char up_header_thr[] =
118    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
119static char up_header[] =
120    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
121
122#define up_Proc_format \
123    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
124
125
126/* process state names for the "STATE" column of the display */
127/* the extra nulls in the string "run" are for adding a slash and
128   the processor number when needed */
129
130char *state_abbrev[] = {
131	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
132};
133
134
135static kvm_t *kd;
136
137/* values that we stash away in _init and use in later routines */
138
139static double logcpu;
140
141/* these are retrieved from the kernel in _init */
142
143static load_avg  ccpu;
144
145/* these are used in the get_ functions */
146
147static int lastpid;
148
149/* these are for calculating cpu state percentages */
150
151static long cp_time[CPUSTATES];
152static long cp_old[CPUSTATES];
153static long cp_diff[CPUSTATES];
154
155/* these are for detailing the process states */
156
157int process_states[8];
158char *procstatenames[] = {
159	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
160	" zombie, ", " waiting, ", " lock, ",
161	NULL
162};
163
164/* these are for detailing the cpu states */
165
166int cpu_states[CPUSTATES];
167char *cpustatenames[] = {
168	"user", "nice", "system", "interrupt", "idle", NULL
169};
170
171/* these are for detailing the memory statistics */
172
173int memory_stats[7];
174char *memorynames[] = {
175	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
176	"K Free", NULL
177};
178
179int arc_stats[7];
180char *arcnames[] = {
181	"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
182	NULL
183};
184
185int swap_stats[7];
186char *swapnames[] = {
187	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
188	NULL
189};
190
191
192/* these are for keeping track of the proc array */
193
194static int nproc;
195static int onproc = -1;
196static int pref_len;
197static struct kinfo_proc *pbase;
198static struct kinfo_proc **pref;
199static struct kinfo_proc *previous_procs;
200static struct kinfo_proc **previous_pref;
201static int previous_proc_count = 0;
202static int previous_proc_count_max = 0;
203static int arc_enabled;
204
205/* total number of io operations */
206static long total_inblock;
207static long total_oublock;
208static long total_majflt;
209
210/* these are for getting the memory statistics */
211
212static int pageshift;		/* log base 2 of the pagesize */
213
214/* define pagetok in terms of pageshift */
215
216#define pagetok(size) ((size) << pageshift)
217
218/* useful externals */
219long percentages();
220
221#ifdef ORDER
222/*
223 * Sorting orders.  The first element is the default.
224 */
225char *ordernames[] = {
226	"cpu", "size", "res", "time", "pri", "threads",
227	"total", "read", "write", "fault", "vcsw", "ivcsw",
228	"jid", NULL
229};
230#endif
231
232/* Per-cpu time states */
233static int maxcpu;
234static int maxid;
235static int ncpus;
236static u_long cpumask;
237static long *times;
238static long *pcpu_cp_time;
239static long *pcpu_cp_old;
240static long *pcpu_cp_diff;
241static int *pcpu_cpu_states;
242
243static int compare_jid(const void *a, const void *b);
244static int compare_pid(const void *a, const void *b);
245static int compare_tid(const void *a, const void *b);
246static const char *format_nice(const struct kinfo_proc *pp);
247static void getsysctl(const char *name, void *ptr, size_t len);
248static int swapmode(int *retavail, int *retfree);
249static void update_layout(void);
250
251void
252toggle_pcpustats(void)
253{
254
255	if (ncpus == 1)
256		return;
257	update_layout();
258}
259
260/* Adjust display based on ncpus and the ARC state. */
261static void
262update_layout(void)
263{
264
265	y_mem = 3;
266	y_arc = 4;
267	y_swap = 4 + arc_enabled;
268	y_idlecursor = 5 + arc_enabled;
269	y_message = 5 + arc_enabled;
270	y_header = 6 + arc_enabled;
271	y_procs = 7 + arc_enabled;
272	Header_lines = 7 + arc_enabled;
273
274	if (pcpu_stats) {
275		y_mem += ncpus - 1;
276		y_arc += ncpus - 1;
277		y_swap += ncpus - 1;
278		y_idlecursor += ncpus - 1;
279		y_message += ncpus - 1;
280		y_header += ncpus - 1;
281		y_procs += ncpus - 1;
282		Header_lines += ncpus - 1;
283	}
284}
285
286int
287machine_init(struct statics *statics, char do_unames)
288{
289	int i, j, empty, pagesize;
290	uint64_t arc_size;
291	size_t size;
292	struct passwd *pw;
293
294	size = sizeof(smpmode);
295	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
296	    NULL, 0) != 0 &&
297	    sysctlbyname("kern.smp.active", &smpmode, &size,
298	    NULL, 0) != 0) ||
299	    size != sizeof(smpmode))
300		smpmode = 0;
301
302	size = sizeof(arc_size);
303	if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
304	    NULL, 0) == 0 && arc_size != 0)
305		arc_enabled = 1;
306
307	if (do_unames) {
308	    while ((pw = getpwent()) != NULL) {
309		if (strlen(pw->pw_name) > namelength)
310			namelength = strlen(pw->pw_name);
311	    }
312	}
313	if (smpmode && namelength > SMPUNAMELEN)
314		namelength = SMPUNAMELEN;
315	else if (namelength > UPUNAMELEN)
316		namelength = UPUNAMELEN;
317
318	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
319	if (kd == NULL)
320		return (-1);
321
322	GETSYSCTL("kern.ccpu", ccpu);
323
324	/* this is used in calculating WCPU -- calculate it ahead of time */
325	logcpu = log(loaddouble(ccpu));
326
327	pbase = NULL;
328	pref = NULL;
329	nproc = 0;
330	onproc = -1;
331
332	/* get the page size and calculate pageshift from it */
333	pagesize = getpagesize();
334	pageshift = 0;
335	while (pagesize > 1) {
336		pageshift++;
337		pagesize >>= 1;
338	}
339
340	/* we only need the amount of log(2)1024 for our conversion */
341	pageshift -= LOG1024;
342
343	/* fill in the statics information */
344	statics->procstate_names = procstatenames;
345	statics->cpustate_names = cpustatenames;
346	statics->memory_names = memorynames;
347	if (arc_enabled)
348		statics->arc_names = arcnames;
349	else
350		statics->arc_names = NULL;
351	statics->swap_names = swapnames;
352#ifdef ORDER
353	statics->order_names = ordernames;
354#endif
355
356	/* Allocate state for per-CPU stats. */
357	cpumask = 0;
358	ncpus = 0;
359	GETSYSCTL("kern.smp.maxcpus", maxcpu);
360	size = sizeof(long) * maxcpu * CPUSTATES;
361	times = malloc(size);
362	if (times == NULL)
363		err(1, "malloc %zd bytes", size);
364	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
365		err(1, "sysctlbyname kern.cp_times");
366	pcpu_cp_time = calloc(1, size);
367	maxid = (size / CPUSTATES / sizeof(long)) - 1;
368	for (i = 0; i <= maxid; i++) {
369		empty = 1;
370		for (j = 0; empty && j < CPUSTATES; j++) {
371			if (times[i * CPUSTATES + j] != 0)
372				empty = 0;
373		}
374		if (!empty) {
375			cpumask |= (1ul << i);
376			ncpus++;
377		}
378	}
379	size = sizeof(long) * ncpus * CPUSTATES;
380	pcpu_cp_old = calloc(1, size);
381	pcpu_cp_diff = calloc(1, size);
382	pcpu_cpu_states = calloc(1, size);
383	statics->ncpus = ncpus;
384
385	update_layout();
386
387	/* all done! */
388	return (0);
389}
390
391char *
392format_header(char *uname_field)
393{
394	static char Header[128];
395	const char *prehead;
396
397	switch (displaymode) {
398	case DISP_CPU:
399		/*
400		 * The logic of picking the right header format seems reverse
401		 * here because we only want to display a THR column when
402		 * "thread mode" is off (and threads are not listed as
403		 * separate lines).
404		 */
405		prehead = smpmode ?
406		    (ps.thread ? smp_header : smp_header_thr) :
407		    (ps.thread ? up_header : up_header_thr);
408		snprintf(Header, sizeof(Header), prehead,
409		    ps.jail ? " JID" : "",
410		    namelength, namelength, uname_field,
411		    ps.wcpu ? "WCPU" : "CPU");
412		break;
413	case DISP_IO:
414		prehead = io_header;
415		snprintf(Header, sizeof(Header), prehead,
416		    ps.jail ? " JID" : "",
417		    namelength, namelength, uname_field);
418		break;
419	}
420	cmdlengthdelta = strlen(Header) - 7;
421	return (Header);
422}
423
424static int swappgsin = -1;
425static int swappgsout = -1;
426extern struct timeval timeout;
427
428
429void
430get_system_info(struct system_info *si)
431{
432	long total;
433	struct loadavg sysload;
434	int mib[2];
435	struct timeval boottime;
436	uint64_t arc_stat, arc_stat2;
437	int i, j;
438	size_t size;
439
440	/* get the CPU stats */
441	size = (maxid + 1) * CPUSTATES * sizeof(long);
442	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
443		err(1, "sysctlbyname kern.cp_times");
444	GETSYSCTL("kern.cp_time", cp_time);
445	GETSYSCTL("vm.loadavg", sysload);
446	GETSYSCTL("kern.lastpid", lastpid);
447
448	/* convert load averages to doubles */
449	for (i = 0; i < 3; i++)
450		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
451
452	/* convert cp_time counts to percentages */
453	for (i = j = 0; i <= maxid; i++) {
454		if ((cpumask & (1ul << i)) == 0)
455			continue;
456		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
457		    &pcpu_cp_time[j * CPUSTATES],
458		    &pcpu_cp_old[j * CPUSTATES],
459		    &pcpu_cp_diff[j * CPUSTATES]);
460		j++;
461	}
462	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
463
464	/* sum memory & swap statistics */
465	{
466		static unsigned int swap_delay = 0;
467		static int swapavail = 0;
468		static int swapfree = 0;
469		static long bufspace = 0;
470		static int nspgsin, nspgsout;
471
472		GETSYSCTL("vfs.bufspace", bufspace);
473		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
474		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
475		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
476		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
477		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
478		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
479		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
480		/* convert memory stats to Kbytes */
481		memory_stats[0] = pagetok(memory_stats[0]);
482		memory_stats[1] = pagetok(memory_stats[1]);
483		memory_stats[2] = pagetok(memory_stats[2]);
484		memory_stats[3] = pagetok(memory_stats[3]);
485		memory_stats[4] = bufspace / 1024;
486		memory_stats[5] = pagetok(memory_stats[5]);
487		memory_stats[6] = -1;
488
489		/* first interval */
490		if (swappgsin < 0) {
491			swap_stats[4] = 0;
492			swap_stats[5] = 0;
493		}
494
495		/* compute differences between old and new swap statistic */
496		else {
497			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
498			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
499		}
500
501		swappgsin = nspgsin;
502		swappgsout = nspgsout;
503
504		/* call CPU heavy swapmode() only for changes */
505		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
506			swap_stats[3] = swapmode(&swapavail, &swapfree);
507			swap_stats[0] = swapavail;
508			swap_stats[1] = swapavail - swapfree;
509			swap_stats[2] = swapfree;
510		}
511		swap_delay = 1;
512		swap_stats[6] = -1;
513	}
514
515	if (arc_enabled) {
516		GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
517		arc_stats[0] = arc_stat >> 10;
518		GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
519		arc_stats[1] = arc_stat >> 10;
520		GETSYSCTL("vfs.zfs.mru_size", arc_stat);
521		arc_stats[2] = arc_stat >> 10;
522		GETSYSCTL("vfs.zfs.anon_size", arc_stat);
523		arc_stats[3] = arc_stat >> 10;
524		GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
525		GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
526		arc_stats[4] = arc_stat + arc_stat2 >> 10;
527		GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
528		arc_stats[5] = arc_stat >> 10;
529		si->arc = arc_stats;
530	}
531
532	/* set arrays and strings */
533	if (pcpu_stats) {
534		si->cpustates = pcpu_cpu_states;
535		si->ncpus = ncpus;
536	} else {
537		si->cpustates = cpu_states;
538		si->ncpus = 1;
539	}
540	si->memory = memory_stats;
541	si->swap = swap_stats;
542
543
544	if (lastpid > 0) {
545		si->last_pid = lastpid;
546	} else {
547		si->last_pid = -1;
548	}
549
550	/*
551	 * Print how long system has been up.
552	 * (Found by looking getting "boottime" from the kernel)
553	 */
554	mib[0] = CTL_KERN;
555	mib[1] = KERN_BOOTTIME;
556	size = sizeof(boottime);
557	if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
558	    boottime.tv_sec != 0) {
559		si->boottime = boottime;
560	} else {
561		si->boottime.tv_sec = -1;
562	}
563}
564
565#define NOPROC	((void *)-1)
566
567/*
568 * We need to compare data from the old process entry with the new
569 * process entry.
570 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
571 * structure to cache the mapping.  We also use a negative cache pointer
572 * of NOPROC to avoid duplicate lookups.
573 * XXX: this could be done when the actual processes are fetched, we do
574 * it here out of laziness.
575 */
576const struct kinfo_proc *
577get_old_proc(struct kinfo_proc *pp)
578{
579	struct kinfo_proc **oldpp, *oldp;
580
581	/*
582	 * If this is the first fetch of the kinfo_procs then we don't have
583	 * any previous entries.
584	 */
585	if (previous_proc_count == 0)
586		return (NULL);
587	/* negative cache? */
588	if (pp->ki_udata == NOPROC)
589		return (NULL);
590	/* cached? */
591	if (pp->ki_udata != NULL)
592		return (pp->ki_udata);
593	/*
594	 * Not cached,
595	 * 1) look up based on pid.
596	 * 2) compare process start.
597	 * If we fail here, then setup a negative cache entry, otherwise
598	 * cache it.
599	 */
600	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
601	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
602	if (oldpp == NULL) {
603		pp->ki_udata = NOPROC;
604		return (NULL);
605	}
606	oldp = *oldpp;
607	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
608		pp->ki_udata = NOPROC;
609		return (NULL);
610	}
611	pp->ki_udata = oldp;
612	return (oldp);
613}
614
615/*
616 * Return the total amount of IO done in blocks in/out and faults.
617 * store the values individually in the pointers passed in.
618 */
619long
620get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
621    long *vcsw, long *ivcsw)
622{
623	const struct kinfo_proc *oldp;
624	static struct kinfo_proc dummy;
625	long ret;
626
627	oldp = get_old_proc(pp);
628	if (oldp == NULL) {
629		bzero(&dummy, sizeof(dummy));
630		oldp = &dummy;
631	}
632	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
633	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
634	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
635	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
636	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
637	ret =
638	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
639	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
640	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
641	return (ret);
642}
643
644/*
645 * Return the total number of block in/out and faults by a process.
646 */
647long
648get_io_total(struct kinfo_proc *pp)
649{
650	long dummy;
651
652	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
653}
654
655static struct handle handle;
656
657caddr_t
658get_process_info(struct system_info *si, struct process_select *sel,
659    int (*compare)(const void *, const void *))
660{
661	int i;
662	int total_procs;
663	long p_io;
664	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
665	int active_procs;
666	struct kinfo_proc **prefp;
667	struct kinfo_proc *pp;
668
669	/* these are copied out of sel for speed */
670	int show_idle;
671	int show_jid;
672	int show_self;
673	int show_system;
674	int show_uid;
675	int show_command;
676	int show_kidle;
677
678	/*
679	 * Save the previous process info.
680	 */
681	if (previous_proc_count_max < nproc) {
682		free(previous_procs);
683		previous_procs = malloc(nproc * sizeof(*previous_procs));
684		free(previous_pref);
685		previous_pref = malloc(nproc * sizeof(*previous_pref));
686		if (previous_procs == NULL || previous_pref == NULL) {
687			(void) fprintf(stderr, "top: Out of memory.\n");
688			quit(23);
689		}
690		previous_proc_count_max = nproc;
691	}
692	if (nproc) {
693		for (i = 0; i < nproc; i++)
694			previous_pref[i] = &previous_procs[i];
695		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
696		qsort(previous_pref, nproc, sizeof(*previous_pref),
697		    ps.thread ? compare_tid : compare_pid);
698	}
699	previous_proc_count = nproc;
700
701	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
702	    0, &nproc);
703	if (nproc > onproc)
704		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
705	if (pref == NULL || pbase == NULL) {
706		(void) fprintf(stderr, "top: Out of memory.\n");
707		quit(23);
708	}
709	/* get a pointer to the states summary array */
710	si->procstates = process_states;
711
712	/* set up flags which define what we are going to select */
713	show_idle = sel->idle;
714	show_jid = sel->jid != -1;
715	show_self = sel->self == -1;
716	show_system = sel->system;
717	show_uid = sel->uid != -1;
718	show_command = sel->command != NULL;
719	show_kidle = sel->kidle;
720
721	/* count up process states and get pointers to interesting procs */
722	total_procs = 0;
723	active_procs = 0;
724	total_inblock = 0;
725	total_oublock = 0;
726	total_majflt = 0;
727	memset((char *)process_states, 0, sizeof(process_states));
728	prefp = pref;
729	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
730
731		if (pp->ki_stat == 0)
732			/* not in use */
733			continue;
734
735		if (!show_self && pp->ki_pid == sel->self)
736			/* skip self */
737			continue;
738
739		if (!show_system && (pp->ki_flag & P_SYSTEM))
740			/* skip system process */
741			continue;
742
743		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
744		    &p_vcsw, &p_ivcsw);
745		total_inblock += p_inblock;
746		total_oublock += p_oublock;
747		total_majflt += p_majflt;
748		total_procs++;
749		process_states[pp->ki_stat]++;
750
751		if (pp->ki_stat == SZOMB)
752			/* skip zombies */
753			continue;
754
755		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
756			/* skip kernel idle process */
757			continue;
758
759		if (displaymode == DISP_CPU && !show_idle &&
760		    (pp->ki_pctcpu == 0 ||
761		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
762			/* skip idle or non-running processes */
763			continue;
764
765		if (displaymode == DISP_IO && !show_idle && p_io == 0)
766			/* skip processes that aren't doing I/O */
767			continue;
768
769		if (show_jid && pp->ki_jid != sel->jid)
770			/* skip proc. that don't belong to the selected JID */
771			continue;
772
773		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
774			/* skip proc. that don't belong to the selected UID */
775			continue;
776
777		*prefp++ = pp;
778		active_procs++;
779	}
780
781	/* if requested, sort the "interesting" processes */
782	if (compare != NULL)
783		qsort(pref, active_procs, sizeof(*pref), compare);
784
785	/* remember active and total counts */
786	si->p_total = total_procs;
787	si->p_active = pref_len = active_procs;
788
789	/* pass back a handle */
790	handle.next_proc = pref;
791	handle.remaining = active_procs;
792	return ((caddr_t)&handle);
793}
794
795static char fmt[128];	/* static area where result is built */
796
797char *
798format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
799{
800	struct kinfo_proc *pp;
801	const struct kinfo_proc *oldp;
802	long cputime;
803	double pct;
804	struct handle *hp;
805	char status[16];
806	int cpu, state;
807	struct rusage ru, *rup;
808	long p_tot, s_tot;
809	char *proc_fmt, thr_buf[6], jid_buf[6];
810	char *cmdbuf = NULL;
811	char **args;
812
813	/* find and remember the next proc structure */
814	hp = (struct handle *)handle;
815	pp = *(hp->next_proc++);
816	hp->remaining--;
817
818	/* get the process's command name */
819	if ((pp->ki_flag & P_INMEM) == 0) {
820		/*
821		 * Print swapped processes as <pname>
822		 */
823		size_t len;
824
825		len = strlen(pp->ki_comm);
826		if (len > sizeof(pp->ki_comm) - 3)
827			len = sizeof(pp->ki_comm) - 3;
828		memmove(pp->ki_comm + 1, pp->ki_comm, len);
829		pp->ki_comm[0] = '<';
830		pp->ki_comm[len + 1] = '>';
831		pp->ki_comm[len + 2] = '\0';
832	}
833
834	/*
835	 * Convert the process's runtime from microseconds to seconds.  This
836	 * time includes the interrupt time although that is not wanted here.
837	 * ps(1) is similarly sloppy.
838	 */
839	cputime = (pp->ki_runtime + 500000) / 1000000;
840
841	/* calculate the base for cpu percentages */
842	pct = pctdouble(pp->ki_pctcpu);
843
844	/* generate "STATE" field */
845	switch (state = pp->ki_stat) {
846	case SRUN:
847		if (smpmode && pp->ki_oncpu != 0xff)
848			sprintf(status, "CPU%d", pp->ki_oncpu);
849		else
850			strcpy(status, "RUN");
851		break;
852	case SLOCK:
853		if (pp->ki_kiflag & KI_LOCKBLOCK) {
854			sprintf(status, "*%.6s", pp->ki_lockname);
855			break;
856		}
857		/* fall through */
858	case SSLEEP:
859		if (pp->ki_wmesg != NULL) {
860			sprintf(status, "%.6s", pp->ki_wmesg);
861			break;
862		}
863		/* FALLTHROUGH */
864	default:
865
866		if (state >= 0 &&
867		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
868			sprintf(status, "%.6s", state_abbrev[state]);
869		else
870			sprintf(status, "?%5d", state);
871		break;
872	}
873
874	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
875	if (cmdbuf == NULL) {
876		warn("malloc(%d)", cmdlengthdelta + 1);
877		return NULL;
878	}
879
880	if (!(flags & FMT_SHOWARGS)) {
881		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
882		    pp->ki_tdname[0]) {
883			snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm,
884			    pp->ki_tdname);
885		} else {
886			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
887		}
888	} else {
889		if (pp->ki_flag & P_SYSTEM ||
890		    pp->ki_args == NULL ||
891		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
892		    !(*args)) {
893			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
894		    	    pp->ki_tdname[0]) {
895				snprintf(cmdbuf, cmdlengthdelta,
896				    "[%s{%s}]", pp->ki_comm, pp->ki_tdname);
897			} else {
898				snprintf(cmdbuf, cmdlengthdelta,
899				    "[%s]", pp->ki_comm);
900			}
901		} else {
902			char *src, *dst, *argbuf;
903			char *cmd;
904			size_t argbuflen;
905			size_t len;
906
907			argbuflen = cmdlengthdelta * 4;
908			argbuf = (char *)malloc(argbuflen + 1);
909			if (argbuf == NULL) {
910				warn("malloc(%d)", argbuflen + 1);
911				free(cmdbuf);
912				return NULL;
913			}
914
915			dst = argbuf;
916
917			/* Extract cmd name from argv */
918			cmd = strrchr(*args, '/');
919			if (cmd == NULL)
920				cmd = *args;
921			else
922				cmd++;
923
924			for (; (src = *args++) != NULL; ) {
925				if (*src == '\0')
926					continue;
927				len = (argbuflen - (dst - argbuf) - 1) / 4;
928				strvisx(dst, src,
929				    strlen(src) < len ? strlen(src) : len,
930				    VIS_NL | VIS_CSTYLE);
931				while (*dst != '\0')
932					dst++;
933				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
934					*dst++ = ' '; /* add delimiting space */
935			}
936			if (dst != argbuf && dst[-1] == ' ')
937				dst--;
938			*dst = '\0';
939
940			if (strcmp(cmd, pp->ki_comm) != 0 ) {
941				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
942				    pp->ki_tdname[0])
943					snprintf(cmdbuf, cmdlengthdelta,
944					    "%s (%s){%s}", argbuf, pp->ki_comm,
945					    pp->ki_tdname);
946				else
947					snprintf(cmdbuf, cmdlengthdelta,
948					    "%s (%s)", argbuf, pp->ki_comm);
949			} else {
950				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
951				    pp->ki_tdname[0])
952					snprintf(cmdbuf, cmdlengthdelta,
953					    "%s{%s}", argbuf, pp->ki_tdname);
954				else
955					strlcpy(cmdbuf, argbuf, cmdlengthdelta);
956			}
957			free(argbuf);
958		}
959	}
960
961	if (ps.jail == 0)
962		jid_buf[0] = '\0';
963	else
964		snprintf(jid_buf, sizeof(jid_buf), " %*d",
965		    sizeof(jid_buf) - 3, pp->ki_jid);
966
967	if (displaymode == DISP_IO) {
968		oldp = get_old_proc(pp);
969		if (oldp != NULL) {
970			ru.ru_inblock = RU(pp)->ru_inblock -
971			    RU(oldp)->ru_inblock;
972			ru.ru_oublock = RU(pp)->ru_oublock -
973			    RU(oldp)->ru_oublock;
974			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
975			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
976			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
977			rup = &ru;
978		} else {
979			rup = RU(pp);
980		}
981		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
982		s_tot = total_inblock + total_oublock + total_majflt;
983
984		snprintf(fmt, sizeof(fmt), io_Proc_format,
985		    pp->ki_pid,
986		    jid_buf,
987		    namelength, namelength, (*get_userid)(pp->ki_ruid),
988		    rup->ru_nvcsw,
989		    rup->ru_nivcsw,
990		    rup->ru_inblock,
991		    rup->ru_oublock,
992		    rup->ru_majflt,
993		    p_tot,
994		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
995		    screen_width > cmdlengthdelta ?
996		    screen_width - cmdlengthdelta : 0,
997		    printable(cmdbuf));
998
999		free(cmdbuf);
1000
1001		return (fmt);
1002	}
1003
1004	/* format this entry */
1005	if (smpmode) {
1006		if (state == SRUN && pp->ki_oncpu != 0xff)
1007			cpu = pp->ki_oncpu;
1008		else
1009			cpu = pp->ki_lastcpu;
1010	} else
1011		cpu = 0;
1012	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
1013	if (ps.thread != 0)
1014		thr_buf[0] = '\0';
1015	else
1016		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
1017		    sizeof(thr_buf) - 2, pp->ki_numthreads);
1018
1019	snprintf(fmt, sizeof(fmt), proc_fmt,
1020	    pp->ki_pid,
1021	    jid_buf,
1022	    namelength, namelength, (*get_userid)(pp->ki_ruid),
1023	    thr_buf,
1024	    pp->ki_pri.pri_level - PZERO,
1025	    format_nice(pp),
1026	    format_k2(PROCSIZE(pp)),
1027	    format_k2(pagetok(pp->ki_rssize)),
1028	    status,
1029	    cpu,
1030	    format_time(cputime),
1031	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
1032	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
1033	    printable(cmdbuf));
1034
1035	free(cmdbuf);
1036
1037	/* return the result */
1038	return (fmt);
1039}
1040
1041static void
1042getsysctl(const char *name, void *ptr, size_t len)
1043{
1044	size_t nlen = len;
1045
1046	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1047		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1048		    strerror(errno));
1049		quit(23);
1050	}
1051	if (nlen != len) {
1052		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1053		    name, (unsigned long)len, (unsigned long)nlen);
1054		quit(23);
1055	}
1056}
1057
1058static const char *
1059format_nice(const struct kinfo_proc *pp)
1060{
1061	const char *fifo, *kthread;
1062	int rtpri;
1063	static char nicebuf[4 + 1];
1064
1065	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1066	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
1067	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1068	case PRI_ITHD:
1069		return ("-");
1070	case PRI_REALTIME:
1071		/*
1072		 * XXX: the kernel doesn't tell us the original rtprio and
1073		 * doesn't really know what it was, so to recover it we
1074		 * must be more chummy with the implementation than the
1075		 * implementation is with itself.  pri_user gives a
1076		 * constant "base" priority, but is only initialized
1077		 * properly for user threads.  pri_native gives what the
1078		 * kernel calls the "base" priority, but it isn't constant
1079		 * since it is changed by priority propagation.  pri_native
1080		 * also isn't properly initialized for all threads, but it
1081		 * is properly initialized for kernel realtime and idletime
1082		 * threads.  Thus we use pri_user for the base priority of
1083		 * user threads (it is always correct) and pri_native for
1084		 * the base priority of kernel realtime and idletime threads
1085		 * (there is nothing better, and it is usually correct).
1086		 *
1087		 * The field width and thus the buffer are too small for
1088		 * values like "kr31F", but such values shouldn't occur,
1089		 * and if they do then the tailing "F" is not displayed.
1090		 */
1091		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1092		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1093		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1094		    kthread, rtpri, fifo);
1095		break;
1096	case PRI_TIMESHARE:
1097		if (pp->ki_flag & P_KTHREAD)
1098			return ("-");
1099		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1100		break;
1101	case PRI_IDLE:
1102		/* XXX: as above. */
1103		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1104		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1105		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1106		    kthread, rtpri, fifo);
1107		break;
1108	default:
1109		return ("?");
1110	}
1111	return (nicebuf);
1112}
1113
1114/* comparison routines for qsort */
1115
1116static int
1117compare_pid(const void *p1, const void *p2)
1118{
1119	const struct kinfo_proc * const *pp1 = p1;
1120	const struct kinfo_proc * const *pp2 = p2;
1121
1122	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1123		abort();
1124
1125	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1126}
1127
1128static int
1129compare_tid(const void *p1, const void *p2)
1130{
1131	const struct kinfo_proc * const *pp1 = p1;
1132	const struct kinfo_proc * const *pp2 = p2;
1133
1134	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1135		abort();
1136
1137	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1138}
1139
1140/*
1141 *  proc_compare - comparison function for "qsort"
1142 *	Compares the resource consumption of two processes using five
1143 *	distinct keys.  The keys (in descending order of importance) are:
1144 *	percent cpu, cpu ticks, state, resident set size, total virtual
1145 *	memory usage.  The process states are ordered as follows (from least
1146 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1147 *	array declaration below maps a process state index into a number
1148 *	that reflects this ordering.
1149 */
1150
1151static int sorted_state[] = {
1152	0,	/* not used		*/
1153	3,	/* sleep		*/
1154	1,	/* ABANDONED (WAIT)	*/
1155	6,	/* run			*/
1156	5,	/* start		*/
1157	2,	/* zombie		*/
1158	4	/* stop			*/
1159};
1160
1161
1162#define ORDERKEY_PCTCPU(a, b) do { \
1163	long diff; \
1164	if (ps.wcpu) \
1165		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1166		    (b))) - \
1167		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1168		    (a))); \
1169	else \
1170		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1171	if (diff != 0) \
1172		return (diff > 0 ? 1 : -1); \
1173} while (0)
1174
1175#define ORDERKEY_CPTICKS(a, b) do { \
1176	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1177	if (diff != 0) \
1178		return (diff > 0 ? 1 : -1); \
1179} while (0)
1180
1181#define ORDERKEY_STATE(a, b) do { \
1182	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1183	if (diff != 0) \
1184		return (diff > 0 ? 1 : -1); \
1185} while (0)
1186
1187#define ORDERKEY_PRIO(a, b) do { \
1188	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1189	if (diff != 0) \
1190		return (diff > 0 ? 1 : -1); \
1191} while (0)
1192
1193#define	ORDERKEY_THREADS(a, b) do { \
1194	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1195	if (diff != 0) \
1196		return (diff > 0 ? 1 : -1); \
1197} while (0)
1198
1199#define ORDERKEY_RSSIZE(a, b) do { \
1200	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1201	if (diff != 0) \
1202		return (diff > 0 ? 1 : -1); \
1203} while (0)
1204
1205#define ORDERKEY_MEM(a, b) do { \
1206	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1207	if (diff != 0) \
1208		return (diff > 0 ? 1 : -1); \
1209} while (0)
1210
1211#define ORDERKEY_JID(a, b) do { \
1212	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1213	if (diff != 0) \
1214		return (diff > 0 ? 1 : -1); \
1215} while (0)
1216
1217/* compare_cpu - the comparison function for sorting by cpu percentage */
1218
1219int
1220#ifdef ORDER
1221compare_cpu(void *arg1, void *arg2)
1222#else
1223proc_compare(void *arg1, void *arg2)
1224#endif
1225{
1226	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1227	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1228
1229	ORDERKEY_PCTCPU(p1, p2);
1230	ORDERKEY_CPTICKS(p1, p2);
1231	ORDERKEY_STATE(p1, p2);
1232	ORDERKEY_PRIO(p1, p2);
1233	ORDERKEY_RSSIZE(p1, p2);
1234	ORDERKEY_MEM(p1, p2);
1235
1236	return (0);
1237}
1238
1239#ifdef ORDER
1240/* "cpu" compare routines */
1241int compare_size(), compare_res(), compare_time(), compare_prio(),
1242    compare_threads();
1243
1244/*
1245 * "io" compare routines.  Context switches aren't i/o, but are displayed
1246 * on the "io" display.
1247 */
1248int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1249    compare_vcsw(), compare_ivcsw();
1250
1251int (*compares[])() = {
1252	compare_cpu,
1253	compare_size,
1254	compare_res,
1255	compare_time,
1256	compare_prio,
1257	compare_threads,
1258	compare_iototal,
1259	compare_ioread,
1260	compare_iowrite,
1261	compare_iofault,
1262	compare_vcsw,
1263	compare_ivcsw,
1264	compare_jid,
1265	NULL
1266};
1267
1268/* compare_size - the comparison function for sorting by total memory usage */
1269
1270int
1271compare_size(void *arg1, void *arg2)
1272{
1273	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1274	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1275
1276	ORDERKEY_MEM(p1, p2);
1277	ORDERKEY_RSSIZE(p1, p2);
1278	ORDERKEY_PCTCPU(p1, p2);
1279	ORDERKEY_CPTICKS(p1, p2);
1280	ORDERKEY_STATE(p1, p2);
1281	ORDERKEY_PRIO(p1, p2);
1282
1283	return (0);
1284}
1285
1286/* compare_res - the comparison function for sorting by resident set size */
1287
1288int
1289compare_res(void *arg1, void *arg2)
1290{
1291	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1292	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1293
1294	ORDERKEY_RSSIZE(p1, p2);
1295	ORDERKEY_MEM(p1, p2);
1296	ORDERKEY_PCTCPU(p1, p2);
1297	ORDERKEY_CPTICKS(p1, p2);
1298	ORDERKEY_STATE(p1, p2);
1299	ORDERKEY_PRIO(p1, p2);
1300
1301	return (0);
1302}
1303
1304/* compare_time - the comparison function for sorting by total cpu time */
1305
1306int
1307compare_time(void *arg1, void *arg2)
1308{
1309	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1310	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1311
1312	ORDERKEY_CPTICKS(p1, p2);
1313	ORDERKEY_PCTCPU(p1, p2);
1314	ORDERKEY_STATE(p1, p2);
1315	ORDERKEY_PRIO(p1, p2);
1316	ORDERKEY_RSSIZE(p1, p2);
1317	ORDERKEY_MEM(p1, p2);
1318
1319	return (0);
1320}
1321
1322/* compare_prio - the comparison function for sorting by priority */
1323
1324int
1325compare_prio(void *arg1, void *arg2)
1326{
1327	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1328	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1329
1330	ORDERKEY_PRIO(p1, p2);
1331	ORDERKEY_CPTICKS(p1, p2);
1332	ORDERKEY_PCTCPU(p1, p2);
1333	ORDERKEY_STATE(p1, p2);
1334	ORDERKEY_RSSIZE(p1, p2);
1335	ORDERKEY_MEM(p1, p2);
1336
1337	return (0);
1338}
1339
1340/* compare_threads - the comparison function for sorting by threads */
1341int
1342compare_threads(void *arg1, void *arg2)
1343{
1344	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1345	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1346
1347	ORDERKEY_THREADS(p1, p2);
1348	ORDERKEY_PCTCPU(p1, p2);
1349	ORDERKEY_CPTICKS(p1, p2);
1350	ORDERKEY_STATE(p1, p2);
1351	ORDERKEY_PRIO(p1, p2);
1352	ORDERKEY_RSSIZE(p1, p2);
1353	ORDERKEY_MEM(p1, p2);
1354
1355	return (0);
1356}
1357
1358/* compare_jid - the comparison function for sorting by jid */
1359static int
1360compare_jid(const void *arg1, const void *arg2)
1361{
1362	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1363	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1364
1365	ORDERKEY_JID(p1, p2);
1366	ORDERKEY_PCTCPU(p1, p2);
1367	ORDERKEY_CPTICKS(p1, p2);
1368	ORDERKEY_STATE(p1, p2);
1369	ORDERKEY_PRIO(p1, p2);
1370	ORDERKEY_RSSIZE(p1, p2);
1371	ORDERKEY_MEM(p1, p2);
1372
1373	return (0);
1374}
1375#endif /* ORDER */
1376
1377/* assorted comparison functions for sorting by i/o */
1378
1379int
1380#ifdef ORDER
1381compare_iototal(void *arg1, void *arg2)
1382#else
1383io_compare(void *arg1, void *arg2)
1384#endif
1385{
1386	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1387	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1388
1389	return (get_io_total(p2) - get_io_total(p1));
1390}
1391
1392#ifdef ORDER
1393int
1394compare_ioread(void *arg1, void *arg2)
1395{
1396	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1397	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1398	long dummy, inp1, inp2;
1399
1400	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1401	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1402
1403	return (inp2 - inp1);
1404}
1405
1406int
1407compare_iowrite(void *arg1, void *arg2)
1408{
1409	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1410	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1411	long dummy, oup1, oup2;
1412
1413	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1414	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1415
1416	return (oup2 - oup1);
1417}
1418
1419int
1420compare_iofault(void *arg1, void *arg2)
1421{
1422	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1423	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1424	long dummy, flp1, flp2;
1425
1426	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1427	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1428
1429	return (flp2 - flp1);
1430}
1431
1432int
1433compare_vcsw(void *arg1, void *arg2)
1434{
1435	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1436	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1437	long dummy, flp1, flp2;
1438
1439	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1440	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1441
1442	return (flp2 - flp1);
1443}
1444
1445int
1446compare_ivcsw(void *arg1, void *arg2)
1447{
1448	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1449	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1450	long dummy, flp1, flp2;
1451
1452	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1453	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1454
1455	return (flp2 - flp1);
1456}
1457#endif /* ORDER */
1458
1459/*
1460 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1461 *		the process does not exist.
1462 *		It is EXTREMLY IMPORTANT that this function work correctly.
1463 *		If top runs setuid root (as in SVR4), then this function
1464 *		is the only thing that stands in the way of a serious
1465 *		security problem.  It validates requests for the "kill"
1466 *		and "renice" commands.
1467 */
1468
1469int
1470proc_owner(int pid)
1471{
1472	int cnt;
1473	struct kinfo_proc **prefp;
1474	struct kinfo_proc *pp;
1475
1476	prefp = pref;
1477	cnt = pref_len;
1478	while (--cnt >= 0) {
1479		pp = *prefp++;
1480		if (pp->ki_pid == (pid_t)pid)
1481			return ((int)pp->ki_ruid);
1482	}
1483	return (-1);
1484}
1485
1486static int
1487swapmode(int *retavail, int *retfree)
1488{
1489	int n;
1490	int pagesize = getpagesize();
1491	struct kvm_swap swapary[1];
1492
1493	*retavail = 0;
1494	*retfree = 0;
1495
1496#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1497
1498	n = kvm_getswapinfo(kd, swapary, 1, 0);
1499	if (n < 0 || swapary[0].ksw_total == 0)
1500		return (0);
1501
1502	*retavail = CONVERT(swapary[0].ksw_total);
1503	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1504
1505	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1506	return (n);
1507}
1508