machine.c revision 225736
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: stable/9/usr.bin/top/machine.c 224205 2011-07-18 21:15:47Z jhb $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <err.h>
39#include <kvm.h>
40#include <math.h>
41#include <nlist.h>
42#include <paths.h>
43#include <pwd.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <strings.h>
48#include <unistd.h>
49#include <vis.h>
50
51#include "top.h"
52#include "machine.h"
53#include "screen.h"
54#include "utils.h"
55#include "layout.h"
56
57#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58#define	SMPUNAMELEN	13
59#define	UPUNAMELEN	15
60
61extern struct process_select ps;
62extern char* printable(char *);
63static int smpmode;
64enum displaymodes displaymode;
65#ifdef TOP_USERNAME_LEN
66static int namelength = TOP_USERNAME_LEN;
67#else
68static int namelength = 8;
69#endif
70static int cmdlengthdelta;
71
72/* Prototypes for top internals */
73void quit(int);
74
75/* get_process_info passes back a handle.  This is what it looks like: */
76
77struct handle {
78	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79	int remaining;			/* number of pointers remaining */
80};
81
82/* declarations for load_avg */
83#include "loadavg.h"
84
85/* define what weighted cpu is.  */
86#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
87			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
88
89/* what we consider to be process size: */
90#define PROCSIZE(pp) ((pp)->ki_size / 1024)
91
92#define RU(pp)	(&(pp)->ki_rusage)
93#define RUTOT(pp) \
94	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
95
96
97/* definitions for indices in the nlist array */
98
99/*
100 *  These definitions control the format of the per-process area
101 */
102
103static char io_header[] =
104    "  PID%s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
105
106#define io_Proc_format \
107    "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
108
109static char smp_header_thr[] =
110    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
111static char smp_header[] =
112    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
113
114#define smp_Proc_format \
115    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s"
116
117static char up_header_thr[] =
118    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
119static char up_header[] =
120    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
121
122#define up_Proc_format \
123    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
124
125
126/* process state names for the "STATE" column of the display */
127/* the extra nulls in the string "run" are for adding a slash and
128   the processor number when needed */
129
130char *state_abbrev[] = {
131	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
132};
133
134
135static kvm_t *kd;
136
137/* values that we stash away in _init and use in later routines */
138
139static double logcpu;
140
141/* these are retrieved from the kernel in _init */
142
143static load_avg  ccpu;
144
145/* these are used in the get_ functions */
146
147static int lastpid;
148
149/* these are for calculating cpu state percentages */
150
151static long cp_time[CPUSTATES];
152static long cp_old[CPUSTATES];
153static long cp_diff[CPUSTATES];
154
155/* these are for detailing the process states */
156
157int process_states[8];
158char *procstatenames[] = {
159	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
160	" zombie, ", " waiting, ", " lock, ",
161	NULL
162};
163
164/* these are for detailing the cpu states */
165
166int cpu_states[CPUSTATES];
167char *cpustatenames[] = {
168	"user", "nice", "system", "interrupt", "idle", NULL
169};
170
171/* these are for detailing the memory statistics */
172
173int memory_stats[7];
174char *memorynames[] = {
175	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
176	"K Free", NULL
177};
178
179int swap_stats[7];
180char *swapnames[] = {
181	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
182	NULL
183};
184
185
186/* these are for keeping track of the proc array */
187
188static int nproc;
189static int onproc = -1;
190static int pref_len;
191static struct kinfo_proc *pbase;
192static struct kinfo_proc **pref;
193static struct kinfo_proc *previous_procs;
194static struct kinfo_proc **previous_pref;
195static int previous_proc_count = 0;
196static int previous_proc_count_max = 0;
197
198/* total number of io operations */
199static long total_inblock;
200static long total_oublock;
201static long total_majflt;
202
203/* these are for getting the memory statistics */
204
205static int pageshift;		/* log base 2 of the pagesize */
206
207/* define pagetok in terms of pageshift */
208
209#define pagetok(size) ((size) << pageshift)
210
211/* useful externals */
212long percentages();
213
214#ifdef ORDER
215/*
216 * Sorting orders.  The first element is the default.
217 */
218char *ordernames[] = {
219	"cpu", "size", "res", "time", "pri", "threads",
220	"total", "read", "write", "fault", "vcsw", "ivcsw",
221	"jid", NULL
222};
223#endif
224
225/* Per-cpu time states */
226static int maxcpu;
227static int maxid;
228static int ncpus;
229static u_long cpumask;
230static long *times;
231static long *pcpu_cp_time;
232static long *pcpu_cp_old;
233static long *pcpu_cp_diff;
234static int *pcpu_cpu_states;
235
236static int compare_jid(const void *a, const void *b);
237static int compare_pid(const void *a, const void *b);
238static int compare_tid(const void *a, const void *b);
239static const char *format_nice(const struct kinfo_proc *pp);
240static void getsysctl(const char *name, void *ptr, size_t len);
241static int swapmode(int *retavail, int *retfree);
242
243void
244toggle_pcpustats(void)
245{
246
247	if (ncpus == 1)
248		return;
249
250	/* Adjust display based on ncpus */
251	if (pcpu_stats) {
252		y_mem += ncpus - 1;	/* 3 */
253		y_swap += ncpus - 1;	/* 4 */
254		y_idlecursor += ncpus - 1; /* 5 */
255		y_message += ncpus - 1;	/* 5 */
256		y_header += ncpus - 1;	/* 6 */
257		y_procs += ncpus - 1;	/* 7 */
258		Header_lines += ncpus - 1; /* 7 */
259	} else {
260		y_mem = 3;
261		y_swap = 4;
262		y_idlecursor = 5;
263		y_message = 5;
264		y_header = 6;
265		y_procs = 7;
266		Header_lines = 7;
267	}
268}
269
270int
271machine_init(struct statics *statics, char do_unames)
272{
273	int i, j, empty, pagesize;
274	size_t size;
275	struct passwd *pw;
276
277	size = sizeof(smpmode);
278	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
279	    NULL, 0) != 0 &&
280	    sysctlbyname("kern.smp.active", &smpmode, &size,
281	    NULL, 0) != 0) ||
282	    size != sizeof(smpmode))
283		smpmode = 0;
284
285	if (do_unames) {
286	    while ((pw = getpwent()) != NULL) {
287		if (strlen(pw->pw_name) > namelength)
288			namelength = strlen(pw->pw_name);
289	    }
290	}
291	if (smpmode && namelength > SMPUNAMELEN)
292		namelength = SMPUNAMELEN;
293	else if (namelength > UPUNAMELEN)
294		namelength = UPUNAMELEN;
295
296	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
297	if (kd == NULL)
298		return (-1);
299
300	GETSYSCTL("kern.ccpu", ccpu);
301
302	/* this is used in calculating WCPU -- calculate it ahead of time */
303	logcpu = log(loaddouble(ccpu));
304
305	pbase = NULL;
306	pref = NULL;
307	nproc = 0;
308	onproc = -1;
309
310	/* get the page size and calculate pageshift from it */
311	pagesize = getpagesize();
312	pageshift = 0;
313	while (pagesize > 1) {
314		pageshift++;
315		pagesize >>= 1;
316	}
317
318	/* we only need the amount of log(2)1024 for our conversion */
319	pageshift -= LOG1024;
320
321	/* fill in the statics information */
322	statics->procstate_names = procstatenames;
323	statics->cpustate_names = cpustatenames;
324	statics->memory_names = memorynames;
325	statics->swap_names = swapnames;
326#ifdef ORDER
327	statics->order_names = ordernames;
328#endif
329
330	/* Allocate state for per-CPU stats. */
331	cpumask = 0;
332	ncpus = 0;
333	GETSYSCTL("kern.smp.maxcpus", maxcpu);
334	size = sizeof(long) * maxcpu * CPUSTATES;
335	times = malloc(size);
336	if (times == NULL)
337		err(1, "malloc %zd bytes", size);
338	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
339		err(1, "sysctlbyname kern.cp_times");
340	pcpu_cp_time = calloc(1, size);
341	maxid = (size / CPUSTATES / sizeof(long)) - 1;
342	for (i = 0; i <= maxid; i++) {
343		empty = 1;
344		for (j = 0; empty && j < CPUSTATES; j++) {
345			if (times[i * CPUSTATES + j] != 0)
346				empty = 0;
347		}
348		if (!empty) {
349			cpumask |= (1ul << i);
350			ncpus++;
351		}
352	}
353	size = sizeof(long) * ncpus * CPUSTATES;
354	pcpu_cp_old = calloc(1, size);
355	pcpu_cp_diff = calloc(1, size);
356	pcpu_cpu_states = calloc(1, size);
357	statics->ncpus = ncpus;
358
359	if (pcpu_stats)
360		toggle_pcpustats();
361
362	/* all done! */
363	return (0);
364}
365
366char *
367format_header(char *uname_field)
368{
369	static char Header[128];
370	const char *prehead;
371
372	switch (displaymode) {
373	case DISP_CPU:
374		/*
375		 * The logic of picking the right header format seems reverse
376		 * here because we only want to display a THR column when
377		 * "thread mode" is off (and threads are not listed as
378		 * separate lines).
379		 */
380		prehead = smpmode ?
381		    (ps.thread ? smp_header : smp_header_thr) :
382		    (ps.thread ? up_header : up_header_thr);
383		snprintf(Header, sizeof(Header), prehead,
384		    ps.jail ? " JID" : "",
385		    namelength, namelength, uname_field,
386		    ps.wcpu ? "WCPU" : "CPU");
387		break;
388	case DISP_IO:
389		prehead = io_header;
390		snprintf(Header, sizeof(Header), prehead,
391		    ps.jail ? " JID" : "",
392		    namelength, namelength, uname_field);
393		break;
394	}
395	cmdlengthdelta = strlen(Header) - 7;
396	return (Header);
397}
398
399static int swappgsin = -1;
400static int swappgsout = -1;
401extern struct timeval timeout;
402
403
404void
405get_system_info(struct system_info *si)
406{
407	long total;
408	struct loadavg sysload;
409	int mib[2];
410	struct timeval boottime;
411	size_t bt_size;
412	int i, j;
413	size_t size;
414
415	/* get the CPU stats */
416	size = (maxid + 1) * CPUSTATES * sizeof(long);
417	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
418		err(1, "sysctlbyname kern.cp_times");
419	GETSYSCTL("kern.cp_time", cp_time);
420	GETSYSCTL("vm.loadavg", sysload);
421	GETSYSCTL("kern.lastpid", lastpid);
422
423	/* convert load averages to doubles */
424	for (i = 0; i < 3; i++)
425		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
426
427	/* convert cp_time counts to percentages */
428	for (i = j = 0; i <= maxid; i++) {
429		if ((cpumask & (1ul << i)) == 0)
430			continue;
431		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
432		    &pcpu_cp_time[j * CPUSTATES],
433		    &pcpu_cp_old[j * CPUSTATES],
434		    &pcpu_cp_diff[j * CPUSTATES]);
435		j++;
436	}
437	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
438
439	/* sum memory & swap statistics */
440	{
441		static unsigned int swap_delay = 0;
442		static int swapavail = 0;
443		static int swapfree = 0;
444		static long bufspace = 0;
445		static int nspgsin, nspgsout;
446
447		GETSYSCTL("vfs.bufspace", bufspace);
448		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
449		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
450		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
451		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
452		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
453		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
454		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
455		/* convert memory stats to Kbytes */
456		memory_stats[0] = pagetok(memory_stats[0]);
457		memory_stats[1] = pagetok(memory_stats[1]);
458		memory_stats[2] = pagetok(memory_stats[2]);
459		memory_stats[3] = pagetok(memory_stats[3]);
460		memory_stats[4] = bufspace / 1024;
461		memory_stats[5] = pagetok(memory_stats[5]);
462		memory_stats[6] = -1;
463
464		/* first interval */
465		if (swappgsin < 0) {
466			swap_stats[4] = 0;
467			swap_stats[5] = 0;
468		}
469
470		/* compute differences between old and new swap statistic */
471		else {
472			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
473			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
474		}
475
476		swappgsin = nspgsin;
477		swappgsout = nspgsout;
478
479		/* call CPU heavy swapmode() only for changes */
480		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
481			swap_stats[3] = swapmode(&swapavail, &swapfree);
482			swap_stats[0] = swapavail;
483			swap_stats[1] = swapavail - swapfree;
484			swap_stats[2] = swapfree;
485		}
486		swap_delay = 1;
487		swap_stats[6] = -1;
488	}
489
490	/* set arrays and strings */
491	if (pcpu_stats) {
492		si->cpustates = pcpu_cpu_states;
493		si->ncpus = ncpus;
494	} else {
495		si->cpustates = cpu_states;
496		si->ncpus = 1;
497	}
498	si->memory = memory_stats;
499	si->swap = swap_stats;
500
501
502	if (lastpid > 0) {
503		si->last_pid = lastpid;
504	} else {
505		si->last_pid = -1;
506	}
507
508	/*
509	 * Print how long system has been up.
510	 * (Found by looking getting "boottime" from the kernel)
511	 */
512	mib[0] = CTL_KERN;
513	mib[1] = KERN_BOOTTIME;
514	bt_size = sizeof(boottime);
515	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
516	    boottime.tv_sec != 0) {
517		si->boottime = boottime;
518	} else {
519		si->boottime.tv_sec = -1;
520	}
521}
522
523#define NOPROC	((void *)-1)
524
525/*
526 * We need to compare data from the old process entry with the new
527 * process entry.
528 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
529 * structure to cache the mapping.  We also use a negative cache pointer
530 * of NOPROC to avoid duplicate lookups.
531 * XXX: this could be done when the actual processes are fetched, we do
532 * it here out of laziness.
533 */
534const struct kinfo_proc *
535get_old_proc(struct kinfo_proc *pp)
536{
537	struct kinfo_proc **oldpp, *oldp;
538
539	/*
540	 * If this is the first fetch of the kinfo_procs then we don't have
541	 * any previous entries.
542	 */
543	if (previous_proc_count == 0)
544		return (NULL);
545	/* negative cache? */
546	if (pp->ki_udata == NOPROC)
547		return (NULL);
548	/* cached? */
549	if (pp->ki_udata != NULL)
550		return (pp->ki_udata);
551	/*
552	 * Not cached,
553	 * 1) look up based on pid.
554	 * 2) compare process start.
555	 * If we fail here, then setup a negative cache entry, otherwise
556	 * cache it.
557	 */
558	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
559	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
560	if (oldpp == NULL) {
561		pp->ki_udata = NOPROC;
562		return (NULL);
563	}
564	oldp = *oldpp;
565	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
566		pp->ki_udata = NOPROC;
567		return (NULL);
568	}
569	pp->ki_udata = oldp;
570	return (oldp);
571}
572
573/*
574 * Return the total amount of IO done in blocks in/out and faults.
575 * store the values individually in the pointers passed in.
576 */
577long
578get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
579    long *vcsw, long *ivcsw)
580{
581	const struct kinfo_proc *oldp;
582	static struct kinfo_proc dummy;
583	long ret;
584
585	oldp = get_old_proc(pp);
586	if (oldp == NULL) {
587		bzero(&dummy, sizeof(dummy));
588		oldp = &dummy;
589	}
590	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
591	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
592	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
593	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
594	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
595	ret =
596	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
597	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
598	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
599	return (ret);
600}
601
602/*
603 * Return the total number of block in/out and faults by a process.
604 */
605long
606get_io_total(struct kinfo_proc *pp)
607{
608	long dummy;
609
610	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
611}
612
613static struct handle handle;
614
615caddr_t
616get_process_info(struct system_info *si, struct process_select *sel,
617    int (*compare)(const void *, const void *))
618{
619	int i;
620	int total_procs;
621	long p_io;
622	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
623	int active_procs;
624	struct kinfo_proc **prefp;
625	struct kinfo_proc *pp;
626
627	/* these are copied out of sel for speed */
628	int show_idle;
629	int show_self;
630	int show_system;
631	int show_uid;
632	int show_command;
633	int show_kidle;
634
635	/*
636	 * Save the previous process info.
637	 */
638	if (previous_proc_count_max < nproc) {
639		free(previous_procs);
640		previous_procs = malloc(nproc * sizeof(*previous_procs));
641		free(previous_pref);
642		previous_pref = malloc(nproc * sizeof(*previous_pref));
643		if (previous_procs == NULL || previous_pref == NULL) {
644			(void) fprintf(stderr, "top: Out of memory.\n");
645			quit(23);
646		}
647		previous_proc_count_max = nproc;
648	}
649	if (nproc) {
650		for (i = 0; i < nproc; i++)
651			previous_pref[i] = &previous_procs[i];
652		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
653		qsort(previous_pref, nproc, sizeof(*previous_pref),
654		    ps.thread ? compare_tid : compare_pid);
655	}
656	previous_proc_count = nproc;
657
658	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
659	    0, &nproc);
660	if (nproc > onproc)
661		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
662	if (pref == NULL || pbase == NULL) {
663		(void) fprintf(stderr, "top: Out of memory.\n");
664		quit(23);
665	}
666	/* get a pointer to the states summary array */
667	si->procstates = process_states;
668
669	/* set up flags which define what we are going to select */
670	show_idle = sel->idle;
671	show_self = sel->self == -1;
672	show_system = sel->system;
673	show_uid = sel->uid != -1;
674	show_command = sel->command != NULL;
675	show_kidle = sel->kidle;
676
677	/* count up process states and get pointers to interesting procs */
678	total_procs = 0;
679	active_procs = 0;
680	total_inblock = 0;
681	total_oublock = 0;
682	total_majflt = 0;
683	memset((char *)process_states, 0, sizeof(process_states));
684	prefp = pref;
685	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
686
687		if (pp->ki_stat == 0)
688			/* not in use */
689			continue;
690
691		if (!show_self && pp->ki_pid == sel->self)
692			/* skip self */
693			continue;
694
695		if (!show_system && (pp->ki_flag & P_SYSTEM))
696			/* skip system process */
697			continue;
698
699		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
700		    &p_vcsw, &p_ivcsw);
701		total_inblock += p_inblock;
702		total_oublock += p_oublock;
703		total_majflt += p_majflt;
704		total_procs++;
705		process_states[pp->ki_stat]++;
706
707		if (pp->ki_stat == SZOMB)
708			/* skip zombies */
709			continue;
710
711		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
712			/* skip kernel idle process */
713			continue;
714
715		if (displaymode == DISP_CPU && !show_idle &&
716		    (pp->ki_pctcpu == 0 ||
717		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
718			/* skip idle or non-running processes */
719			continue;
720
721		if (displaymode == DISP_IO && !show_idle && p_io == 0)
722			/* skip processes that aren't doing I/O */
723			continue;
724
725		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
726			/* skip proc. that don't belong to the selected UID */
727			continue;
728
729		*prefp++ = pp;
730		active_procs++;
731	}
732
733	/* if requested, sort the "interesting" processes */
734	if (compare != NULL)
735		qsort(pref, active_procs, sizeof(*pref), compare);
736
737	/* remember active and total counts */
738	si->p_total = total_procs;
739	si->p_active = pref_len = active_procs;
740
741	/* pass back a handle */
742	handle.next_proc = pref;
743	handle.remaining = active_procs;
744	return ((caddr_t)&handle);
745}
746
747static char fmt[128];	/* static area where result is built */
748
749char *
750format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
751{
752	struct kinfo_proc *pp;
753	const struct kinfo_proc *oldp;
754	long cputime;
755	double pct;
756	struct handle *hp;
757	char status[16];
758	int state;
759	struct rusage ru, *rup;
760	long p_tot, s_tot;
761	char *proc_fmt, thr_buf[6], jid_buf[6];
762	char *cmdbuf = NULL;
763	char **args;
764
765	/* find and remember the next proc structure */
766	hp = (struct handle *)handle;
767	pp = *(hp->next_proc++);
768	hp->remaining--;
769
770	/* get the process's command name */
771	if ((pp->ki_flag & P_INMEM) == 0) {
772		/*
773		 * Print swapped processes as <pname>
774		 */
775		size_t len;
776
777		len = strlen(pp->ki_comm);
778		if (len > sizeof(pp->ki_comm) - 3)
779			len = sizeof(pp->ki_comm) - 3;
780		memmove(pp->ki_comm + 1, pp->ki_comm, len);
781		pp->ki_comm[0] = '<';
782		pp->ki_comm[len + 1] = '>';
783		pp->ki_comm[len + 2] = '\0';
784	}
785
786	/*
787	 * Convert the process's runtime from microseconds to seconds.  This
788	 * time includes the interrupt time although that is not wanted here.
789	 * ps(1) is similarly sloppy.
790	 */
791	cputime = (pp->ki_runtime + 500000) / 1000000;
792
793	/* calculate the base for cpu percentages */
794	pct = pctdouble(pp->ki_pctcpu);
795
796	/* generate "STATE" field */
797	switch (state = pp->ki_stat) {
798	case SRUN:
799		if (smpmode && pp->ki_oncpu != 0xff)
800			sprintf(status, "CPU%d", pp->ki_oncpu);
801		else
802			strcpy(status, "RUN");
803		break;
804	case SLOCK:
805		if (pp->ki_kiflag & KI_LOCKBLOCK) {
806			sprintf(status, "*%.6s", pp->ki_lockname);
807			break;
808		}
809		/* fall through */
810	case SSLEEP:
811		if (pp->ki_wmesg != NULL) {
812			sprintf(status, "%.6s", pp->ki_wmesg);
813			break;
814		}
815		/* FALLTHROUGH */
816	default:
817
818		if (state >= 0 &&
819		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
820			sprintf(status, "%.6s", state_abbrev[state]);
821		else
822			sprintf(status, "?%5d", state);
823		break;
824	}
825
826	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
827	if (cmdbuf == NULL) {
828		warn("malloc(%d)", cmdlengthdelta + 1);
829		return NULL;
830	}
831
832	if (!(flags & FMT_SHOWARGS)) {
833		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
834		    pp->ki_tdname[0]) {
835			snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm,
836			    pp->ki_tdname);
837		} else {
838			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
839		}
840	} else {
841		if (pp->ki_flag & P_SYSTEM ||
842		    pp->ki_args == NULL ||
843		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
844		    !(*args)) {
845			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
846		    	    pp->ki_tdname[0]) {
847				snprintf(cmdbuf, cmdlengthdelta,
848				    "[%s{%s}]", pp->ki_comm, pp->ki_tdname);
849			} else {
850				snprintf(cmdbuf, cmdlengthdelta,
851				    "[%s]", pp->ki_comm);
852			}
853		} else {
854			char *src, *dst, *argbuf;
855			char *cmd;
856			size_t argbuflen;
857			size_t len;
858
859			argbuflen = cmdlengthdelta * 4;
860			argbuf = (char *)malloc(argbuflen + 1);
861			if (argbuf == NULL) {
862				warn("malloc(%d)", argbuflen + 1);
863				free(cmdbuf);
864				return NULL;
865			}
866
867			dst = argbuf;
868
869			/* Extract cmd name from argv */
870			cmd = strrchr(*args, '/');
871			if (cmd == NULL)
872				cmd = *args;
873			else
874				cmd++;
875
876			for (; (src = *args++) != NULL; ) {
877				if (*src == '\0')
878					continue;
879				len = (argbuflen - (dst - argbuf) - 1) / 4;
880				strvisx(dst, src,
881				    strlen(src) < len ? strlen(src) : len,
882				    VIS_NL | VIS_CSTYLE);
883				while (*dst != '\0')
884					dst++;
885				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
886					*dst++ = ' '; /* add delimiting space */
887			}
888			if (dst != argbuf && dst[-1] == ' ')
889				dst--;
890			*dst = '\0';
891
892			if (strcmp(cmd, pp->ki_comm) != 0 ) {
893				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
894				    pp->ki_tdname[0])
895					snprintf(cmdbuf, cmdlengthdelta,
896					    "%s (%s){%s}", argbuf, pp->ki_comm,
897					    pp->ki_tdname);
898				else
899					snprintf(cmdbuf, cmdlengthdelta,
900					    "%s (%s)", argbuf, pp->ki_comm);
901			} else {
902				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
903				    pp->ki_tdname[0])
904					snprintf(cmdbuf, cmdlengthdelta,
905					    "%s{%s}", argbuf, pp->ki_tdname);
906				else
907					strlcpy(cmdbuf, argbuf, cmdlengthdelta);
908			}
909			free(argbuf);
910		}
911	}
912
913	if (ps.jail == 0)
914		jid_buf[0] = '\0';
915	else
916		snprintf(jid_buf, sizeof(jid_buf), " %*d",
917		    sizeof(jid_buf) - 3, pp->ki_jid);
918
919	if (displaymode == DISP_IO) {
920		oldp = get_old_proc(pp);
921		if (oldp != NULL) {
922			ru.ru_inblock = RU(pp)->ru_inblock -
923			    RU(oldp)->ru_inblock;
924			ru.ru_oublock = RU(pp)->ru_oublock -
925			    RU(oldp)->ru_oublock;
926			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
927			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
928			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
929			rup = &ru;
930		} else {
931			rup = RU(pp);
932		}
933		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
934		s_tot = total_inblock + total_oublock + total_majflt;
935
936		sprintf(fmt, io_Proc_format,
937		    pp->ki_pid,
938		    jid_buf,
939		    namelength, namelength, (*get_userid)(pp->ki_ruid),
940		    rup->ru_nvcsw,
941		    rup->ru_nivcsw,
942		    rup->ru_inblock,
943		    rup->ru_oublock,
944		    rup->ru_majflt,
945		    p_tot,
946		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
947		    screen_width > cmdlengthdelta ?
948		    screen_width - cmdlengthdelta : 0,
949		    printable(cmdbuf));
950
951		free(cmdbuf);
952
953		return (fmt);
954	}
955
956	/* format this entry */
957	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
958	if (ps.thread != 0)
959		thr_buf[0] = '\0';
960	else
961		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
962		    sizeof(thr_buf) - 2, pp->ki_numthreads);
963
964	sprintf(fmt, proc_fmt,
965	    pp->ki_pid,
966	    jid_buf,
967	    namelength, namelength, (*get_userid)(pp->ki_ruid),
968	    thr_buf,
969	    pp->ki_pri.pri_level - PZERO,
970	    format_nice(pp),
971	    format_k2(PROCSIZE(pp)),
972	    format_k2(pagetok(pp->ki_rssize)),
973	    status,
974	    smpmode ? pp->ki_lastcpu : 0,
975	    format_time(cputime),
976	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
977	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
978	    printable(cmdbuf));
979
980	free(cmdbuf);
981
982	/* return the result */
983	return (fmt);
984}
985
986static void
987getsysctl(const char *name, void *ptr, size_t len)
988{
989	size_t nlen = len;
990
991	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
992		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
993		    strerror(errno));
994		quit(23);
995	}
996	if (nlen != len) {
997		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
998		    name, (unsigned long)len, (unsigned long)nlen);
999		quit(23);
1000	}
1001}
1002
1003static const char *
1004format_nice(const struct kinfo_proc *pp)
1005{
1006	const char *fifo, *kthread;
1007	int rtpri;
1008	static char nicebuf[4 + 1];
1009
1010	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1011	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
1012	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1013	case PRI_ITHD:
1014		return ("-");
1015	case PRI_REALTIME:
1016		/*
1017		 * XXX: the kernel doesn't tell us the original rtprio and
1018		 * doesn't really know what it was, so to recover it we
1019		 * must be more chummy with the implementation than the
1020		 * implementation is with itself.  pri_user gives a
1021		 * constant "base" priority, but is only initialized
1022		 * properly for user threads.  pri_native gives what the
1023		 * kernel calls the "base" priority, but it isn't constant
1024		 * since it is changed by priority propagation.  pri_native
1025		 * also isn't properly initialized for all threads, but it
1026		 * is properly initialized for kernel realtime and idletime
1027		 * threads.  Thus we use pri_user for the base priority of
1028		 * user threads (it is always correct) and pri_native for
1029		 * the base priority of kernel realtime and idletime threads
1030		 * (there is nothing better, and it is usually correct).
1031		 *
1032		 * The field width and thus the buffer are too small for
1033		 * values like "kr31F", but such values shouldn't occur,
1034		 * and if they do then the tailing "F" is not displayed.
1035		 */
1036		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1037		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1038		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1039		    kthread, rtpri, fifo);
1040		break;
1041	case PRI_TIMESHARE:
1042		if (pp->ki_flag & P_KTHREAD)
1043			return ("-");
1044		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1045		break;
1046	case PRI_IDLE:
1047		/* XXX: as above. */
1048		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1049		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1050		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1051		    kthread, rtpri, fifo);
1052		break;
1053	default:
1054		return ("?");
1055	}
1056	return (nicebuf);
1057}
1058
1059/* comparison routines for qsort */
1060
1061static int
1062compare_pid(const void *p1, const void *p2)
1063{
1064	const struct kinfo_proc * const *pp1 = p1;
1065	const struct kinfo_proc * const *pp2 = p2;
1066
1067	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1068		abort();
1069
1070	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1071}
1072
1073static int
1074compare_tid(const void *p1, const void *p2)
1075{
1076	const struct kinfo_proc * const *pp1 = p1;
1077	const struct kinfo_proc * const *pp2 = p2;
1078
1079	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1080		abort();
1081
1082	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1083}
1084
1085/*
1086 *  proc_compare - comparison function for "qsort"
1087 *	Compares the resource consumption of two processes using five
1088 *	distinct keys.  The keys (in descending order of importance) are:
1089 *	percent cpu, cpu ticks, state, resident set size, total virtual
1090 *	memory usage.  The process states are ordered as follows (from least
1091 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1092 *	array declaration below maps a process state index into a number
1093 *	that reflects this ordering.
1094 */
1095
1096static int sorted_state[] = {
1097	0,	/* not used		*/
1098	3,	/* sleep		*/
1099	1,	/* ABANDONED (WAIT)	*/
1100	6,	/* run			*/
1101	5,	/* start		*/
1102	2,	/* zombie		*/
1103	4	/* stop			*/
1104};
1105
1106
1107#define ORDERKEY_PCTCPU(a, b) do { \
1108	long diff; \
1109	if (ps.wcpu) \
1110		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1111		    (b))) - \
1112		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1113		    (a))); \
1114	else \
1115		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1116	if (diff != 0) \
1117		return (diff > 0 ? 1 : -1); \
1118} while (0)
1119
1120#define ORDERKEY_CPTICKS(a, b) do { \
1121	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1122	if (diff != 0) \
1123		return (diff > 0 ? 1 : -1); \
1124} while (0)
1125
1126#define ORDERKEY_STATE(a, b) do { \
1127	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1128	if (diff != 0) \
1129		return (diff > 0 ? 1 : -1); \
1130} while (0)
1131
1132#define ORDERKEY_PRIO(a, b) do { \
1133	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1134	if (diff != 0) \
1135		return (diff > 0 ? 1 : -1); \
1136} while (0)
1137
1138#define	ORDERKEY_THREADS(a, b) do { \
1139	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1140	if (diff != 0) \
1141		return (diff > 0 ? 1 : -1); \
1142} while (0)
1143
1144#define ORDERKEY_RSSIZE(a, b) do { \
1145	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1146	if (diff != 0) \
1147		return (diff > 0 ? 1 : -1); \
1148} while (0)
1149
1150#define ORDERKEY_MEM(a, b) do { \
1151	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1152	if (diff != 0) \
1153		return (diff > 0 ? 1 : -1); \
1154} while (0)
1155
1156#define ORDERKEY_JID(a, b) do { \
1157	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1158	if (diff != 0) \
1159		return (diff > 0 ? 1 : -1); \
1160} while (0)
1161
1162/* compare_cpu - the comparison function for sorting by cpu percentage */
1163
1164int
1165#ifdef ORDER
1166compare_cpu(void *arg1, void *arg2)
1167#else
1168proc_compare(void *arg1, void *arg2)
1169#endif
1170{
1171	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1172	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1173
1174	ORDERKEY_PCTCPU(p1, p2);
1175	ORDERKEY_CPTICKS(p1, p2);
1176	ORDERKEY_STATE(p1, p2);
1177	ORDERKEY_PRIO(p1, p2);
1178	ORDERKEY_RSSIZE(p1, p2);
1179	ORDERKEY_MEM(p1, p2);
1180
1181	return (0);
1182}
1183
1184#ifdef ORDER
1185/* "cpu" compare routines */
1186int compare_size(), compare_res(), compare_time(), compare_prio(),
1187    compare_threads();
1188
1189/*
1190 * "io" compare routines.  Context switches aren't i/o, but are displayed
1191 * on the "io" display.
1192 */
1193int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1194    compare_vcsw(), compare_ivcsw();
1195
1196int (*compares[])() = {
1197	compare_cpu,
1198	compare_size,
1199	compare_res,
1200	compare_time,
1201	compare_prio,
1202	compare_threads,
1203	compare_iototal,
1204	compare_ioread,
1205	compare_iowrite,
1206	compare_iofault,
1207	compare_vcsw,
1208	compare_ivcsw,
1209	compare_jid,
1210	NULL
1211};
1212
1213/* compare_size - the comparison function for sorting by total memory usage */
1214
1215int
1216compare_size(void *arg1, void *arg2)
1217{
1218	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1219	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1220
1221	ORDERKEY_MEM(p1, p2);
1222	ORDERKEY_RSSIZE(p1, p2);
1223	ORDERKEY_PCTCPU(p1, p2);
1224	ORDERKEY_CPTICKS(p1, p2);
1225	ORDERKEY_STATE(p1, p2);
1226	ORDERKEY_PRIO(p1, p2);
1227
1228	return (0);
1229}
1230
1231/* compare_res - the comparison function for sorting by resident set size */
1232
1233int
1234compare_res(void *arg1, void *arg2)
1235{
1236	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1237	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1238
1239	ORDERKEY_RSSIZE(p1, p2);
1240	ORDERKEY_MEM(p1, p2);
1241	ORDERKEY_PCTCPU(p1, p2);
1242	ORDERKEY_CPTICKS(p1, p2);
1243	ORDERKEY_STATE(p1, p2);
1244	ORDERKEY_PRIO(p1, p2);
1245
1246	return (0);
1247}
1248
1249/* compare_time - the comparison function for sorting by total cpu time */
1250
1251int
1252compare_time(void *arg1, void *arg2)
1253{
1254	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1255	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1256
1257	ORDERKEY_CPTICKS(p1, p2);
1258	ORDERKEY_PCTCPU(p1, p2);
1259	ORDERKEY_STATE(p1, p2);
1260	ORDERKEY_PRIO(p1, p2);
1261	ORDERKEY_RSSIZE(p1, p2);
1262	ORDERKEY_MEM(p1, p2);
1263
1264	return (0);
1265}
1266
1267/* compare_prio - the comparison function for sorting by priority */
1268
1269int
1270compare_prio(void *arg1, void *arg2)
1271{
1272	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1273	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1274
1275	ORDERKEY_PRIO(p1, p2);
1276	ORDERKEY_CPTICKS(p1, p2);
1277	ORDERKEY_PCTCPU(p1, p2);
1278	ORDERKEY_STATE(p1, p2);
1279	ORDERKEY_RSSIZE(p1, p2);
1280	ORDERKEY_MEM(p1, p2);
1281
1282	return (0);
1283}
1284
1285/* compare_threads - the comparison function for sorting by threads */
1286int
1287compare_threads(void *arg1, void *arg2)
1288{
1289	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1290	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1291
1292	ORDERKEY_THREADS(p1, p2);
1293	ORDERKEY_PCTCPU(p1, p2);
1294	ORDERKEY_CPTICKS(p1, p2);
1295	ORDERKEY_STATE(p1, p2);
1296	ORDERKEY_PRIO(p1, p2);
1297	ORDERKEY_RSSIZE(p1, p2);
1298	ORDERKEY_MEM(p1, p2);
1299
1300	return (0);
1301}
1302
1303/* compare_jid - the comparison function for sorting by jid */
1304static int
1305compare_jid(const void *arg1, const void *arg2)
1306{
1307	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1308	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1309
1310	ORDERKEY_JID(p1, p2);
1311	ORDERKEY_PCTCPU(p1, p2);
1312	ORDERKEY_CPTICKS(p1, p2);
1313	ORDERKEY_STATE(p1, p2);
1314	ORDERKEY_PRIO(p1, p2);
1315	ORDERKEY_RSSIZE(p1, p2);
1316	ORDERKEY_MEM(p1, p2);
1317
1318	return (0);
1319}
1320#endif /* ORDER */
1321
1322/* assorted comparison functions for sorting by i/o */
1323
1324int
1325#ifdef ORDER
1326compare_iototal(void *arg1, void *arg2)
1327#else
1328io_compare(void *arg1, void *arg2)
1329#endif
1330{
1331	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1332	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1333
1334	return (get_io_total(p2) - get_io_total(p1));
1335}
1336
1337#ifdef ORDER
1338int
1339compare_ioread(void *arg1, void *arg2)
1340{
1341	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1342	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1343	long dummy, inp1, inp2;
1344
1345	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1346	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1347
1348	return (inp2 - inp1);
1349}
1350
1351int
1352compare_iowrite(void *arg1, void *arg2)
1353{
1354	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1355	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1356	long dummy, oup1, oup2;
1357
1358	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1359	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1360
1361	return (oup2 - oup1);
1362}
1363
1364int
1365compare_iofault(void *arg1, void *arg2)
1366{
1367	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1368	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1369	long dummy, flp1, flp2;
1370
1371	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1372	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1373
1374	return (flp2 - flp1);
1375}
1376
1377int
1378compare_vcsw(void *arg1, void *arg2)
1379{
1380	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1381	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1382	long dummy, flp1, flp2;
1383
1384	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1385	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1386
1387	return (flp2 - flp1);
1388}
1389
1390int
1391compare_ivcsw(void *arg1, void *arg2)
1392{
1393	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1394	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1395	long dummy, flp1, flp2;
1396
1397	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1398	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1399
1400	return (flp2 - flp1);
1401}
1402#endif /* ORDER */
1403
1404/*
1405 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1406 *		the process does not exist.
1407 *		It is EXTREMLY IMPORTANT that this function work correctly.
1408 *		If top runs setuid root (as in SVR4), then this function
1409 *		is the only thing that stands in the way of a serious
1410 *		security problem.  It validates requests for the "kill"
1411 *		and "renice" commands.
1412 */
1413
1414int
1415proc_owner(int pid)
1416{
1417	int cnt;
1418	struct kinfo_proc **prefp;
1419	struct kinfo_proc *pp;
1420
1421	prefp = pref;
1422	cnt = pref_len;
1423	while (--cnt >= 0) {
1424		pp = *prefp++;
1425		if (pp->ki_pid == (pid_t)pid)
1426			return ((int)pp->ki_ruid);
1427	}
1428	return (-1);
1429}
1430
1431static int
1432swapmode(int *retavail, int *retfree)
1433{
1434	int n;
1435	int pagesize = getpagesize();
1436	struct kvm_swap swapary[1];
1437
1438	*retavail = 0;
1439	*retfree = 0;
1440
1441#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1442
1443	n = kvm_getswapinfo(kd, swapary, 1, 0);
1444	if (n < 0 || swapary[0].ksw_total == 0)
1445		return (0);
1446
1447	*retavail = CONVERT(swapary[0].ksw_total);
1448	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1449
1450	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1451	return (n);
1452}
1453