machine.c revision 223936
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 223936 2011-07-11 16:48:52Z jhb $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <err.h>
39#include <kvm.h>
40#include <math.h>
41#include <nlist.h>
42#include <paths.h>
43#include <pwd.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <strings.h>
48#include <unistd.h>
49#include <vis.h>
50
51#include "top.h"
52#include "machine.h"
53#include "screen.h"
54#include "utils.h"
55#include "layout.h"
56
57#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58#define	SMPUNAMELEN	13
59#define	UPUNAMELEN	15
60
61extern struct process_select ps;
62extern char* printable(char *);
63static int smpmode;
64enum displaymodes displaymode;
65#ifdef TOP_USERNAME_LEN
66static int namelength = TOP_USERNAME_LEN;
67#else
68static int namelength = 8;
69#endif
70static int cmdlengthdelta;
71
72/* Prototypes for top internals */
73void quit(int);
74
75/* get_process_info passes back a handle.  This is what it looks like: */
76
77struct handle {
78	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79	int remaining;			/* number of pointers remaining */
80};
81
82/* declarations for load_avg */
83#include "loadavg.h"
84
85/* define what weighted cpu is.  */
86#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
87			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
88
89/* what we consider to be process size: */
90#define PROCSIZE(pp) ((pp)->ki_size / 1024)
91
92#define RU(pp)	(&(pp)->ki_rusage)
93#define RUTOT(pp) \
94	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
95
96
97/* definitions for indices in the nlist array */
98
99/*
100 *  These definitions control the format of the per-process area
101 */
102
103static char io_header[] =
104    "  PID%s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
105
106#define io_Proc_format \
107    "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
108
109static char smp_header_thr[] =
110    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
111static char smp_header[] =
112    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE   C   TIME %6s COMMAND";
113
114#define smp_Proc_format \
115    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s"
116
117static char up_header_thr[] =
118    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
119static char up_header[] =
120    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
121
122#define up_Proc_format \
123    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
124
125
126/* process state names for the "STATE" column of the display */
127/* the extra nulls in the string "run" are for adding a slash and
128   the processor number when needed */
129
130char *state_abbrev[] = {
131	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
132};
133
134
135static kvm_t *kd;
136
137/* values that we stash away in _init and use in later routines */
138
139static double logcpu;
140
141/* these are retrieved from the kernel in _init */
142
143static load_avg  ccpu;
144
145/* these are used in the get_ functions */
146
147static int lastpid;
148
149/* these are for calculating cpu state percentages */
150
151static long cp_time[CPUSTATES];
152static long cp_old[CPUSTATES];
153static long cp_diff[CPUSTATES];
154
155/* these are for detailing the process states */
156
157int process_states[8];
158char *procstatenames[] = {
159	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
160	" zombie, ", " waiting, ", " lock, ",
161	NULL
162};
163
164/* these are for detailing the cpu states */
165
166int cpu_states[CPUSTATES];
167char *cpustatenames[] = {
168	"user", "nice", "system", "interrupt", "idle", NULL
169};
170
171/* these are for detailing the memory statistics */
172
173int memory_stats[7];
174char *memorynames[] = {
175	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
176	"K Free", NULL
177};
178
179int swap_stats[7];
180char *swapnames[] = {
181	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
182	NULL
183};
184
185
186/* these are for keeping track of the proc array */
187
188static int nproc;
189static int onproc = -1;
190static int pref_len;
191static struct kinfo_proc *pbase;
192static struct kinfo_proc **pref;
193static struct kinfo_proc *previous_procs;
194static struct kinfo_proc **previous_pref;
195static int previous_proc_count = 0;
196static int previous_proc_count_max = 0;
197
198/* total number of io operations */
199static long total_inblock;
200static long total_oublock;
201static long total_majflt;
202
203/* these are for getting the memory statistics */
204
205static int pageshift;		/* log base 2 of the pagesize */
206
207/* define pagetok in terms of pageshift */
208
209#define pagetok(size) ((size) << pageshift)
210
211/* useful externals */
212long percentages();
213
214#ifdef ORDER
215/*
216 * Sorting orders.  The first element is the default.
217 */
218char *ordernames[] = {
219	"cpu", "size", "res", "time", "pri", "threads",
220	"total", "read", "write", "fault", "vcsw", "ivcsw",
221	"jid", NULL
222};
223#endif
224
225/* Per-cpu time states */
226static int maxcpu;
227static int maxid;
228static int ncpus;
229static u_long cpumask;
230static long *times;
231static long *pcpu_cp_time;
232static long *pcpu_cp_old;
233static long *pcpu_cp_diff;
234static int *pcpu_cpu_states;
235
236static int compare_jid(const void *a, const void *b);
237static int compare_pid(const void *a, const void *b);
238static const char *format_nice(const struct kinfo_proc *pp);
239static void getsysctl(const char *name, void *ptr, size_t len);
240static int swapmode(int *retavail, int *retfree);
241
242void
243toggle_pcpustats(struct statics *statics)
244{
245
246	if (ncpus == 1)
247		return;
248
249	/* Adjust display based on ncpus */
250	if (pcpu_stats) {
251		y_mem += ncpus - 1;	/* 3 */
252		y_swap += ncpus - 1;	/* 4 */
253		y_idlecursor += ncpus - 1; /* 5 */
254		y_message += ncpus - 1;	/* 5 */
255		y_header += ncpus - 1;	/* 6 */
256		y_procs += ncpus - 1;	/* 7 */
257		Header_lines += ncpus - 1; /* 7 */
258		statics->ncpus = ncpus;
259	} else {
260		y_mem = 3;
261		y_swap = 4;
262		y_idlecursor = 5;
263		y_message = 5;
264		y_header = 6;
265		y_procs = 7;
266		Header_lines = 7;
267		statics->ncpus = 1;
268	}
269}
270
271int
272machine_init(struct statics *statics, char do_unames)
273{
274	int i, j, empty, pagesize;
275	size_t size;
276	struct passwd *pw;
277
278	size = sizeof(smpmode);
279	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
280	    NULL, 0) != 0 &&
281	    sysctlbyname("kern.smp.active", &smpmode, &size,
282	    NULL, 0) != 0) ||
283	    size != sizeof(smpmode))
284		smpmode = 0;
285
286	if (do_unames) {
287	    while ((pw = getpwent()) != NULL) {
288		if (strlen(pw->pw_name) > namelength)
289			namelength = strlen(pw->pw_name);
290	    }
291	}
292	if (smpmode && namelength > SMPUNAMELEN)
293		namelength = SMPUNAMELEN;
294	else if (namelength > UPUNAMELEN)
295		namelength = UPUNAMELEN;
296
297	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
298	if (kd == NULL)
299		return (-1);
300
301	GETSYSCTL("kern.ccpu", ccpu);
302
303	/* this is used in calculating WCPU -- calculate it ahead of time */
304	logcpu = log(loaddouble(ccpu));
305
306	pbase = NULL;
307	pref = NULL;
308	nproc = 0;
309	onproc = -1;
310
311	/* get the page size and calculate pageshift from it */
312	pagesize = getpagesize();
313	pageshift = 0;
314	while (pagesize > 1) {
315		pageshift++;
316		pagesize >>= 1;
317	}
318
319	/* we only need the amount of log(2)1024 for our conversion */
320	pageshift -= LOG1024;
321
322	/* fill in the statics information */
323	statics->procstate_names = procstatenames;
324	statics->cpustate_names = cpustatenames;
325	statics->memory_names = memorynames;
326	statics->swap_names = swapnames;
327#ifdef ORDER
328	statics->order_names = ordernames;
329#endif
330
331	/* Allocate state for per-CPU stats. */
332	cpumask = 0;
333	ncpus = 0;
334	GETSYSCTL("kern.smp.maxcpus", maxcpu);
335	size = sizeof(long) * maxcpu * CPUSTATES;
336	times = malloc(size);
337	if (times == NULL)
338		err(1, "malloc %zd bytes", size);
339	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
340		err(1, "sysctlbyname kern.cp_times");
341	pcpu_cp_time = calloc(1, size);
342	maxid = (size / CPUSTATES / sizeof(long)) - 1;
343	for (i = 0; i <= maxid; i++) {
344		empty = 1;
345		for (j = 0; empty && j < CPUSTATES; j++) {
346			if (times[i * CPUSTATES + j] != 0)
347				empty = 0;
348		}
349		if (!empty) {
350			cpumask |= (1ul << i);
351			ncpus++;
352		}
353	}
354	size = sizeof(long) * ncpus * CPUSTATES;
355	pcpu_cp_old = calloc(1, size);
356	pcpu_cp_diff = calloc(1, size);
357	pcpu_cpu_states = calloc(1, size);
358	statics->ncpus = 1;
359
360	if (pcpu_stats)
361		toggle_pcpustats(statics);
362
363	/* all done! */
364	return (0);
365}
366
367char *
368format_header(char *uname_field)
369{
370	static char Header[128];
371	const char *prehead;
372
373	switch (displaymode) {
374	case DISP_CPU:
375		/*
376		 * The logic of picking the right header format seems reverse
377		 * here because we only want to display a THR column when
378		 * "thread mode" is off (and threads are not listed as
379		 * separate lines).
380		 */
381		prehead = smpmode ?
382		    (ps.thread ? smp_header : smp_header_thr) :
383		    (ps.thread ? up_header : up_header_thr);
384		snprintf(Header, sizeof(Header), prehead,
385		    ps.jail ? " JID" : "",
386		    namelength, namelength, uname_field,
387		    ps.wcpu ? "WCPU" : "CPU");
388		break;
389	case DISP_IO:
390		prehead = io_header;
391		snprintf(Header, sizeof(Header), prehead,
392		    ps.jail ? " JID" : "",
393		    namelength, namelength, uname_field);
394		break;
395	}
396	cmdlengthdelta = strlen(Header) - 7;
397	return (Header);
398}
399
400static int swappgsin = -1;
401static int swappgsout = -1;
402extern struct timeval timeout;
403
404
405void
406get_system_info(struct system_info *si)
407{
408	long total;
409	struct loadavg sysload;
410	int mib[2];
411	struct timeval boottime;
412	size_t bt_size;
413	int i, j;
414	size_t size;
415
416	/* get the CPU stats */
417	size = (maxid + 1) * CPUSTATES * sizeof(long);
418	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
419		err(1, "sysctlbyname kern.cp_times");
420	GETSYSCTL("kern.cp_time", cp_time);
421	GETSYSCTL("vm.loadavg", sysload);
422	GETSYSCTL("kern.lastpid", lastpid);
423
424	/* convert load averages to doubles */
425	for (i = 0; i < 3; i++)
426		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
427
428	/* convert cp_time counts to percentages */
429	for (i = j = 0; i <= maxid; i++) {
430		if ((cpumask & (1ul << i)) == 0)
431			continue;
432		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
433		    &pcpu_cp_time[j * CPUSTATES],
434		    &pcpu_cp_old[j * CPUSTATES],
435		    &pcpu_cp_diff[j * CPUSTATES]);
436		j++;
437	}
438	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
439
440	/* sum memory & swap statistics */
441	{
442		static unsigned int swap_delay = 0;
443		static int swapavail = 0;
444		static int swapfree = 0;
445		static long bufspace = 0;
446		static int nspgsin, nspgsout;
447
448		GETSYSCTL("vfs.bufspace", bufspace);
449		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
450		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
451		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
452		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
453		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
454		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
455		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
456		/* convert memory stats to Kbytes */
457		memory_stats[0] = pagetok(memory_stats[0]);
458		memory_stats[1] = pagetok(memory_stats[1]);
459		memory_stats[2] = pagetok(memory_stats[2]);
460		memory_stats[3] = pagetok(memory_stats[3]);
461		memory_stats[4] = bufspace / 1024;
462		memory_stats[5] = pagetok(memory_stats[5]);
463		memory_stats[6] = -1;
464
465		/* first interval */
466		if (swappgsin < 0) {
467			swap_stats[4] = 0;
468			swap_stats[5] = 0;
469		}
470
471		/* compute differences between old and new swap statistic */
472		else {
473			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
474			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
475		}
476
477		swappgsin = nspgsin;
478		swappgsout = nspgsout;
479
480		/* call CPU heavy swapmode() only for changes */
481		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
482			swap_stats[3] = swapmode(&swapavail, &swapfree);
483			swap_stats[0] = swapavail;
484			swap_stats[1] = swapavail - swapfree;
485			swap_stats[2] = swapfree;
486		}
487		swap_delay = 1;
488		swap_stats[6] = -1;
489	}
490
491	/* set arrays and strings */
492	if (pcpu_stats) {
493		si->cpustates = pcpu_cpu_states;
494		si->ncpus = ncpus;
495	} else {
496		si->cpustates = cpu_states;
497		si->ncpus = 1;
498	}
499	si->memory = memory_stats;
500	si->swap = swap_stats;
501
502
503	if (lastpid > 0) {
504		si->last_pid = lastpid;
505	} else {
506		si->last_pid = -1;
507	}
508
509	/*
510	 * Print how long system has been up.
511	 * (Found by looking getting "boottime" from the kernel)
512	 */
513	mib[0] = CTL_KERN;
514	mib[1] = KERN_BOOTTIME;
515	bt_size = sizeof(boottime);
516	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
517	    boottime.tv_sec != 0) {
518		si->boottime = boottime;
519	} else {
520		si->boottime.tv_sec = -1;
521	}
522}
523
524#define NOPROC	((void *)-1)
525
526/*
527 * We need to compare data from the old process entry with the new
528 * process entry.
529 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
530 * structure to cache the mapping.  We also use a negative cache pointer
531 * of NOPROC to avoid duplicate lookups.
532 * XXX: this could be done when the actual processes are fetched, we do
533 * it here out of laziness.
534 */
535const struct kinfo_proc *
536get_old_proc(struct kinfo_proc *pp)
537{
538	struct kinfo_proc **oldpp, *oldp;
539
540	/*
541	 * If this is the first fetch of the kinfo_procs then we don't have
542	 * any previous entries.
543	 */
544	if (previous_proc_count == 0)
545		return (NULL);
546	/* negative cache? */
547	if (pp->ki_udata == NOPROC)
548		return (NULL);
549	/* cached? */
550	if (pp->ki_udata != NULL)
551		return (pp->ki_udata);
552	/*
553	 * Not cached,
554	 * 1) look up based on pid.
555	 * 2) compare process start.
556	 * If we fail here, then setup a negative cache entry, otherwise
557	 * cache it.
558	 */
559	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
560	    sizeof(*previous_pref), compare_pid);
561	if (oldpp == NULL) {
562		pp->ki_udata = NOPROC;
563		return (NULL);
564	}
565	oldp = *oldpp;
566	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
567		pp->ki_udata = NOPROC;
568		return (NULL);
569	}
570	pp->ki_udata = oldp;
571	return (oldp);
572}
573
574/*
575 * Return the total amount of IO done in blocks in/out and faults.
576 * store the values individually in the pointers passed in.
577 */
578long
579get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
580    long *vcsw, long *ivcsw)
581{
582	const struct kinfo_proc *oldp;
583	static struct kinfo_proc dummy;
584	long ret;
585
586	oldp = get_old_proc(pp);
587	if (oldp == NULL) {
588		bzero(&dummy, sizeof(dummy));
589		oldp = &dummy;
590	}
591	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
592	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
593	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
594	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
595	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
596	ret =
597	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
598	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
599	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
600	return (ret);
601}
602
603/*
604 * Return the total number of block in/out and faults by a process.
605 */
606long
607get_io_total(struct kinfo_proc *pp)
608{
609	long dummy;
610
611	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
612}
613
614static struct handle handle;
615
616caddr_t
617get_process_info(struct system_info *si, struct process_select *sel,
618    int (*compare)(const void *, const void *))
619{
620	int i;
621	int total_procs;
622	long p_io;
623	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
624	int active_procs;
625	struct kinfo_proc **prefp;
626	struct kinfo_proc *pp;
627	struct kinfo_proc *prev_pp = NULL;
628
629	/* these are copied out of sel for speed */
630	int show_idle;
631	int show_self;
632	int show_system;
633	int show_uid;
634	int show_command;
635	int show_kidle;
636
637	/*
638	 * Save the previous process info.
639	 */
640	if (previous_proc_count_max < nproc) {
641		free(previous_procs);
642		previous_procs = malloc(nproc * sizeof(*previous_procs));
643		free(previous_pref);
644		previous_pref = malloc(nproc * sizeof(*previous_pref));
645		if (previous_procs == NULL || previous_pref == NULL) {
646			(void) fprintf(stderr, "top: Out of memory.\n");
647			quit(23);
648		}
649		previous_proc_count_max = nproc;
650	}
651	if (nproc) {
652		for (i = 0; i < nproc; i++)
653			previous_pref[i] = &previous_procs[i];
654		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
655		qsort(previous_pref, nproc, sizeof(*previous_pref),
656		    compare_pid);
657	}
658	previous_proc_count = nproc;
659
660	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
661	if (nproc > onproc)
662		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
663	if (pref == NULL || pbase == NULL) {
664		(void) fprintf(stderr, "top: Out of memory.\n");
665		quit(23);
666	}
667	/* get a pointer to the states summary array */
668	si->procstates = process_states;
669
670	/* set up flags which define what we are going to select */
671	show_idle = sel->idle;
672	show_self = sel->self == -1;
673	show_system = sel->system;
674	show_uid = sel->uid != -1;
675	show_command = sel->command != NULL;
676	show_kidle = sel->kidle;
677
678	/* count up process states and get pointers to interesting procs */
679	total_procs = 0;
680	active_procs = 0;
681	total_inblock = 0;
682	total_oublock = 0;
683	total_majflt = 0;
684	memset((char *)process_states, 0, sizeof(process_states));
685	prefp = pref;
686	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
687
688		if (pp->ki_stat == 0)
689			/* not in use */
690			continue;
691
692		if (!show_self && pp->ki_pid == sel->self)
693			/* skip self */
694			continue;
695
696		if (!show_system && (pp->ki_flag & P_SYSTEM))
697			/* skip system process */
698			continue;
699
700		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
701		    &p_vcsw, &p_ivcsw);
702		total_inblock += p_inblock;
703		total_oublock += p_oublock;
704		total_majflt += p_majflt;
705		total_procs++;
706		process_states[pp->ki_stat]++;
707
708		if (pp->ki_stat == SZOMB)
709			/* skip zombies */
710			continue;
711
712		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
713			/* skip kernel idle process */
714			continue;
715
716		if (displaymode == DISP_CPU && !show_idle &&
717		    (pp->ki_pctcpu == 0 ||
718		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
719			/* skip idle or non-running processes */
720			continue;
721
722		if (displaymode == DISP_IO && !show_idle && p_io == 0)
723			/* skip processes that aren't doing I/O */
724			continue;
725
726		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
727			/* skip proc. that don't belong to the selected UID */
728			continue;
729
730		/*
731		 * When not showing threads, take the first thread
732		 * for output and add the fields that we can from
733		 * the rest of the process's threads rather than
734		 * using the system's mostly-broken KERN_PROC_PROC.
735		 */
736		if (sel->thread || prev_pp == NULL ||
737		    prev_pp->ki_pid != pp->ki_pid) {
738			*prefp++ = pp;
739			active_procs++;
740			prev_pp = pp;
741		} else {
742			prev_pp->ki_pctcpu += pp->ki_pctcpu;
743			prev_pp->ki_runtime += pp->ki_runtime;
744		}
745	}
746
747	/* if requested, sort the "interesting" processes */
748	if (compare != NULL)
749		qsort(pref, active_procs, sizeof(*pref), compare);
750
751	/* remember active and total counts */
752	si->p_total = total_procs;
753	si->p_active = pref_len = active_procs;
754
755	/* pass back a handle */
756	handle.next_proc = pref;
757	handle.remaining = active_procs;
758	return ((caddr_t)&handle);
759}
760
761static char fmt[128];	/* static area where result is built */
762
763char *
764format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
765{
766	struct kinfo_proc *pp;
767	const struct kinfo_proc *oldp;
768	long cputime;
769	double pct;
770	struct handle *hp;
771	char status[16];
772	int state;
773	struct rusage ru, *rup;
774	long p_tot, s_tot;
775	char *proc_fmt, thr_buf[6], jid_buf[6];
776	char *cmdbuf = NULL;
777	char **args;
778
779	/* find and remember the next proc structure */
780	hp = (struct handle *)handle;
781	pp = *(hp->next_proc++);
782	hp->remaining--;
783
784	/* get the process's command name */
785	if ((pp->ki_flag & P_INMEM) == 0) {
786		/*
787		 * Print swapped processes as <pname>
788		 */
789		size_t len;
790
791		len = strlen(pp->ki_comm);
792		if (len > sizeof(pp->ki_comm) - 3)
793			len = sizeof(pp->ki_comm) - 3;
794		memmove(pp->ki_comm + 1, pp->ki_comm, len);
795		pp->ki_comm[0] = '<';
796		pp->ki_comm[len + 1] = '>';
797		pp->ki_comm[len + 2] = '\0';
798	}
799
800	/*
801	 * Convert the process's runtime from microseconds to seconds.  This
802	 * time includes the interrupt time although that is not wanted here.
803	 * ps(1) is similarly sloppy.
804	 */
805	cputime = (pp->ki_runtime + 500000) / 1000000;
806
807	/* calculate the base for cpu percentages */
808	pct = pctdouble(pp->ki_pctcpu);
809
810	/* generate "STATE" field */
811	switch (state = pp->ki_stat) {
812	case SRUN:
813		if (smpmode && pp->ki_oncpu != 0xff)
814			sprintf(status, "CPU%d", pp->ki_oncpu);
815		else
816			strcpy(status, "RUN");
817		break;
818	case SLOCK:
819		if (pp->ki_kiflag & KI_LOCKBLOCK) {
820			sprintf(status, "*%.6s", pp->ki_lockname);
821			break;
822		}
823		/* fall through */
824	case SSLEEP:
825		if (pp->ki_wmesg != NULL) {
826			sprintf(status, "%.6s", pp->ki_wmesg);
827			break;
828		}
829		/* FALLTHROUGH */
830	default:
831
832		if (state >= 0 &&
833		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
834			sprintf(status, "%.6s", state_abbrev[state]);
835		else
836			sprintf(status, "?%5d", state);
837		break;
838	}
839
840	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
841	if (cmdbuf == NULL) {
842		warn("malloc(%d)", cmdlengthdelta + 1);
843		return NULL;
844	}
845
846	if (!(flags & FMT_SHOWARGS)) {
847		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
848		    pp->ki_ocomm[0]) {
849			snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm);
850		} else {
851			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
852		}
853	} else {
854		if (pp->ki_flag & P_SYSTEM ||
855		    pp->ki_args == NULL ||
856		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
857		    !(*args)) {
858			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
859		    	pp->ki_ocomm[0]) {
860				snprintf(cmdbuf, cmdlengthdelta,
861				    "{%s}", pp->ki_ocomm);
862			} else {
863				snprintf(cmdbuf, cmdlengthdelta,
864				    "[%s]", pp->ki_comm);
865			}
866		} else {
867			char *src, *dst, *argbuf;
868			char *cmd;
869			size_t argbuflen;
870			size_t len;
871
872			argbuflen = cmdlengthdelta * 4;
873			argbuf = (char *)malloc(argbuflen + 1);
874			if (argbuf == NULL) {
875				warn("malloc(%d)", argbuflen + 1);
876				free(cmdbuf);
877				return NULL;
878			}
879
880			dst = argbuf;
881
882			/* Extract cmd name from argv */
883			cmd = strrchr(*args, '/');
884			if (cmd == NULL)
885				cmd = *args;
886			else
887				cmd++;
888
889			for (; (src = *args++) != NULL; ) {
890				if (*src == '\0')
891					continue;
892				len = (argbuflen - (dst - argbuf) - 1) / 4;
893				strvisx(dst, src,
894				    strlen(src) < len ? strlen(src) : len,
895				    VIS_NL | VIS_CSTYLE);
896				while (*dst != '\0')
897					dst++;
898				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
899					*dst++ = ' '; /* add delimiting space */
900			}
901			if (dst != argbuf && dst[-1] == ' ')
902				dst--;
903			*dst = '\0';
904
905			if (strcmp(cmd, pp->ki_comm) != 0 )
906				snprintf(cmdbuf, cmdlengthdelta,
907				    "%s (%s)",argbuf,  pp->ki_comm);
908			else
909				strlcpy(cmdbuf, argbuf, cmdlengthdelta);
910
911			free(argbuf);
912		}
913	}
914
915	if (ps.jail == 0)
916		jid_buf[0] = '\0';
917	else
918		snprintf(jid_buf, sizeof(jid_buf), " %*d",
919		    sizeof(jid_buf) - 3, pp->ki_jid);
920
921	if (displaymode == DISP_IO) {
922		oldp = get_old_proc(pp);
923		if (oldp != NULL) {
924			ru.ru_inblock = RU(pp)->ru_inblock -
925			    RU(oldp)->ru_inblock;
926			ru.ru_oublock = RU(pp)->ru_oublock -
927			    RU(oldp)->ru_oublock;
928			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
929			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
930			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
931			rup = &ru;
932		} else {
933			rup = RU(pp);
934		}
935		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
936		s_tot = total_inblock + total_oublock + total_majflt;
937
938		sprintf(fmt, io_Proc_format,
939		    pp->ki_pid,
940		    jid_buf,
941		    namelength, namelength, (*get_userid)(pp->ki_ruid),
942		    rup->ru_nvcsw,
943		    rup->ru_nivcsw,
944		    rup->ru_inblock,
945		    rup->ru_oublock,
946		    rup->ru_majflt,
947		    p_tot,
948		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
949		    screen_width > cmdlengthdelta ?
950		    screen_width - cmdlengthdelta : 0,
951		    printable(cmdbuf));
952
953		free(cmdbuf);
954
955		return (fmt);
956	}
957
958	/* format this entry */
959	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
960	if (ps.thread != 0)
961		thr_buf[0] = '\0';
962	else
963		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
964		    sizeof(thr_buf) - 2, pp->ki_numthreads);
965
966	sprintf(fmt, proc_fmt,
967	    pp->ki_pid,
968	    jid_buf,
969	    namelength, namelength, (*get_userid)(pp->ki_ruid),
970	    thr_buf,
971	    pp->ki_pri.pri_level - PZERO,
972	    format_nice(pp),
973	    format_k2(PROCSIZE(pp)),
974	    format_k2(pagetok(pp->ki_rssize)),
975	    status,
976	    smpmode ? pp->ki_lastcpu : 0,
977	    format_time(cputime),
978	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
979	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
980	    printable(cmdbuf));
981
982	free(cmdbuf);
983
984	/* return the result */
985	return (fmt);
986}
987
988static void
989getsysctl(const char *name, void *ptr, size_t len)
990{
991	size_t nlen = len;
992
993	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
994		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
995		    strerror(errno));
996		quit(23);
997	}
998	if (nlen != len) {
999		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1000		    name, (unsigned long)len, (unsigned long)nlen);
1001		quit(23);
1002	}
1003}
1004
1005static const char *
1006format_nice(const struct kinfo_proc *pp)
1007{
1008	const char *fifo, *kthread;
1009	int rtpri;
1010	static char nicebuf[4 + 1];
1011
1012	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1013	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
1014	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1015	case PRI_ITHD:
1016		return ("-");
1017	case PRI_REALTIME:
1018		/*
1019		 * XXX: the kernel doesn't tell us the original rtprio and
1020		 * doesn't really know what it was, so to recover it we
1021		 * must be more chummy with the implementation than the
1022		 * implementation is with itself.  pri_user gives a
1023		 * constant "base" priority, but is only initialized
1024		 * properly for user threads.  pri_native gives what the
1025		 * kernel calls the "base" priority, but it isn't constant
1026		 * since it is changed by priority propagation.  pri_native
1027		 * also isn't properly initialized for all threads, but it
1028		 * is properly initialized for kernel realtime and idletime
1029		 * threads.  Thus we use pri_user for the base priority of
1030		 * user threads (it is always correct) and pri_native for
1031		 * the base priority of kernel realtime and idletime threads
1032		 * (there is nothing better, and it is usually correct).
1033		 *
1034		 * The field width and thus the buffer are too small for
1035		 * values like "kr31F", but such values shouldn't occur,
1036		 * and if they do then the tailing "F" is not displayed.
1037		 */
1038		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1039		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1040		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1041		    kthread, rtpri, fifo);
1042		break;
1043	case PRI_TIMESHARE:
1044		if (pp->ki_flag & P_KTHREAD)
1045			return ("-");
1046		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1047		break;
1048	case PRI_IDLE:
1049		/* XXX: as above. */
1050		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1051		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1052		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1053		    kthread, rtpri, fifo);
1054		break;
1055	default:
1056		return ("?");
1057	}
1058	return (nicebuf);
1059}
1060
1061/* comparison routines for qsort */
1062
1063static int
1064compare_pid(const void *p1, const void *p2)
1065{
1066	const struct kinfo_proc * const *pp1 = p1;
1067	const struct kinfo_proc * const *pp2 = p2;
1068
1069	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1070		abort();
1071
1072	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1073}
1074
1075/*
1076 *  proc_compare - comparison function for "qsort"
1077 *	Compares the resource consumption of two processes using five
1078 *	distinct keys.  The keys (in descending order of importance) are:
1079 *	percent cpu, cpu ticks, state, resident set size, total virtual
1080 *	memory usage.  The process states are ordered as follows (from least
1081 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1082 *	array declaration below maps a process state index into a number
1083 *	that reflects this ordering.
1084 */
1085
1086static int sorted_state[] = {
1087	0,	/* not used		*/
1088	3,	/* sleep		*/
1089	1,	/* ABANDONED (WAIT)	*/
1090	6,	/* run			*/
1091	5,	/* start		*/
1092	2,	/* zombie		*/
1093	4	/* stop			*/
1094};
1095
1096
1097#define ORDERKEY_PCTCPU(a, b) do { \
1098	long diff; \
1099	if (ps.wcpu) \
1100		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1101		    (b))) - \
1102		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1103		    (a))); \
1104	else \
1105		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1106	if (diff != 0) \
1107		return (diff > 0 ? 1 : -1); \
1108} while (0)
1109
1110#define ORDERKEY_CPTICKS(a, b) do { \
1111	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1112	if (diff != 0) \
1113		return (diff > 0 ? 1 : -1); \
1114} while (0)
1115
1116#define ORDERKEY_STATE(a, b) do { \
1117	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1118	if (diff != 0) \
1119		return (diff > 0 ? 1 : -1); \
1120} while (0)
1121
1122#define ORDERKEY_PRIO(a, b) do { \
1123	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1124	if (diff != 0) \
1125		return (diff > 0 ? 1 : -1); \
1126} while (0)
1127
1128#define	ORDERKEY_THREADS(a, b) do { \
1129	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1130	if (diff != 0) \
1131		return (diff > 0 ? 1 : -1); \
1132} while (0)
1133
1134#define ORDERKEY_RSSIZE(a, b) do { \
1135	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1136	if (diff != 0) \
1137		return (diff > 0 ? 1 : -1); \
1138} while (0)
1139
1140#define ORDERKEY_MEM(a, b) do { \
1141	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1142	if (diff != 0) \
1143		return (diff > 0 ? 1 : -1); \
1144} while (0)
1145
1146#define ORDERKEY_JID(a, b) do { \
1147	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1148	if (diff != 0) \
1149		return (diff > 0 ? 1 : -1); \
1150} while (0)
1151
1152/* compare_cpu - the comparison function for sorting by cpu percentage */
1153
1154int
1155#ifdef ORDER
1156compare_cpu(void *arg1, void *arg2)
1157#else
1158proc_compare(void *arg1, void *arg2)
1159#endif
1160{
1161	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1162	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1163
1164	ORDERKEY_PCTCPU(p1, p2);
1165	ORDERKEY_CPTICKS(p1, p2);
1166	ORDERKEY_STATE(p1, p2);
1167	ORDERKEY_PRIO(p1, p2);
1168	ORDERKEY_RSSIZE(p1, p2);
1169	ORDERKEY_MEM(p1, p2);
1170
1171	return (0);
1172}
1173
1174#ifdef ORDER
1175/* "cpu" compare routines */
1176int compare_size(), compare_res(), compare_time(), compare_prio(),
1177    compare_threads();
1178
1179/*
1180 * "io" compare routines.  Context switches aren't i/o, but are displayed
1181 * on the "io" display.
1182 */
1183int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1184    compare_vcsw(), compare_ivcsw();
1185
1186int (*compares[])() = {
1187	compare_cpu,
1188	compare_size,
1189	compare_res,
1190	compare_time,
1191	compare_prio,
1192	compare_threads,
1193	compare_iototal,
1194	compare_ioread,
1195	compare_iowrite,
1196	compare_iofault,
1197	compare_vcsw,
1198	compare_ivcsw,
1199	compare_jid,
1200	NULL
1201};
1202
1203/* compare_size - the comparison function for sorting by total memory usage */
1204
1205int
1206compare_size(void *arg1, void *arg2)
1207{
1208	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1209	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1210
1211	ORDERKEY_MEM(p1, p2);
1212	ORDERKEY_RSSIZE(p1, p2);
1213	ORDERKEY_PCTCPU(p1, p2);
1214	ORDERKEY_CPTICKS(p1, p2);
1215	ORDERKEY_STATE(p1, p2);
1216	ORDERKEY_PRIO(p1, p2);
1217
1218	return (0);
1219}
1220
1221/* compare_res - the comparison function for sorting by resident set size */
1222
1223int
1224compare_res(void *arg1, void *arg2)
1225{
1226	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1227	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1228
1229	ORDERKEY_RSSIZE(p1, p2);
1230	ORDERKEY_MEM(p1, p2);
1231	ORDERKEY_PCTCPU(p1, p2);
1232	ORDERKEY_CPTICKS(p1, p2);
1233	ORDERKEY_STATE(p1, p2);
1234	ORDERKEY_PRIO(p1, p2);
1235
1236	return (0);
1237}
1238
1239/* compare_time - the comparison function for sorting by total cpu time */
1240
1241int
1242compare_time(void *arg1, void *arg2)
1243{
1244	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1245	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1246
1247	ORDERKEY_CPTICKS(p1, p2);
1248	ORDERKEY_PCTCPU(p1, p2);
1249	ORDERKEY_STATE(p1, p2);
1250	ORDERKEY_PRIO(p1, p2);
1251	ORDERKEY_RSSIZE(p1, p2);
1252	ORDERKEY_MEM(p1, p2);
1253
1254	return (0);
1255}
1256
1257/* compare_prio - the comparison function for sorting by priority */
1258
1259int
1260compare_prio(void *arg1, void *arg2)
1261{
1262	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1263	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1264
1265	ORDERKEY_PRIO(p1, p2);
1266	ORDERKEY_CPTICKS(p1, p2);
1267	ORDERKEY_PCTCPU(p1, p2);
1268	ORDERKEY_STATE(p1, p2);
1269	ORDERKEY_RSSIZE(p1, p2);
1270	ORDERKEY_MEM(p1, p2);
1271
1272	return (0);
1273}
1274
1275/* compare_threads - the comparison function for sorting by threads */
1276int
1277compare_threads(void *arg1, void *arg2)
1278{
1279	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1280	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1281
1282	ORDERKEY_THREADS(p1, p2);
1283	ORDERKEY_PCTCPU(p1, p2);
1284	ORDERKEY_CPTICKS(p1, p2);
1285	ORDERKEY_STATE(p1, p2);
1286	ORDERKEY_PRIO(p1, p2);
1287	ORDERKEY_RSSIZE(p1, p2);
1288	ORDERKEY_MEM(p1, p2);
1289
1290	return (0);
1291}
1292
1293/* compare_jid - the comparison function for sorting by jid */
1294static int
1295compare_jid(const void *arg1, const void *arg2)
1296{
1297	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1298	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1299
1300	ORDERKEY_JID(p1, p2);
1301	ORDERKEY_PCTCPU(p1, p2);
1302	ORDERKEY_CPTICKS(p1, p2);
1303	ORDERKEY_STATE(p1, p2);
1304	ORDERKEY_PRIO(p1, p2);
1305	ORDERKEY_RSSIZE(p1, p2);
1306	ORDERKEY_MEM(p1, p2);
1307
1308	return (0);
1309}
1310#endif /* ORDER */
1311
1312/* assorted comparison functions for sorting by i/o */
1313
1314int
1315#ifdef ORDER
1316compare_iototal(void *arg1, void *arg2)
1317#else
1318io_compare(void *arg1, void *arg2)
1319#endif
1320{
1321	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1322	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1323
1324	return (get_io_total(p2) - get_io_total(p1));
1325}
1326
1327#ifdef ORDER
1328int
1329compare_ioread(void *arg1, void *arg2)
1330{
1331	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1332	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1333	long dummy, inp1, inp2;
1334
1335	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1336	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1337
1338	return (inp2 - inp1);
1339}
1340
1341int
1342compare_iowrite(void *arg1, void *arg2)
1343{
1344	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1345	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1346	long dummy, oup1, oup2;
1347
1348	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1349	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1350
1351	return (oup2 - oup1);
1352}
1353
1354int
1355compare_iofault(void *arg1, void *arg2)
1356{
1357	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1358	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1359	long dummy, flp1, flp2;
1360
1361	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1362	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1363
1364	return (flp2 - flp1);
1365}
1366
1367int
1368compare_vcsw(void *arg1, void *arg2)
1369{
1370	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1371	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1372	long dummy, flp1, flp2;
1373
1374	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1375	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1376
1377	return (flp2 - flp1);
1378}
1379
1380int
1381compare_ivcsw(void *arg1, void *arg2)
1382{
1383	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1384	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1385	long dummy, flp1, flp2;
1386
1387	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1388	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1389
1390	return (flp2 - flp1);
1391}
1392#endif /* ORDER */
1393
1394/*
1395 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1396 *		the process does not exist.
1397 *		It is EXTREMLY IMPORTANT that this function work correctly.
1398 *		If top runs setuid root (as in SVR4), then this function
1399 *		is the only thing that stands in the way of a serious
1400 *		security problem.  It validates requests for the "kill"
1401 *		and "renice" commands.
1402 */
1403
1404int
1405proc_owner(int pid)
1406{
1407	int cnt;
1408	struct kinfo_proc **prefp;
1409	struct kinfo_proc *pp;
1410
1411	prefp = pref;
1412	cnt = pref_len;
1413	while (--cnt >= 0) {
1414		pp = *prefp++;
1415		if (pp->ki_pid == (pid_t)pid)
1416			return ((int)pp->ki_ruid);
1417	}
1418	return (-1);
1419}
1420
1421static int
1422swapmode(int *retavail, int *retfree)
1423{
1424	int n;
1425	int pagesize = getpagesize();
1426	struct kvm_swap swapary[1];
1427
1428	*retavail = 0;
1429	*retfree = 0;
1430
1431#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1432
1433	n = kvm_getswapinfo(kd, swapary, 1, 0);
1434	if (n < 0 || swapary[0].ksw_total == 0)
1435		return (0);
1436
1437	*retavail = CONVERT(swapary[0].ksw_total);
1438	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1439
1440	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1441	return (n);
1442}
1443