machine.c revision 175779
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 175779 2008-01-29 00:06:44Z delphij $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <kvm.h>
39#include <math.h>
40#include <nlist.h>
41#include <paths.h>
42#include <pwd.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <string.h>
46#include <strings.h>
47#include <unistd.h>
48#include <vis.h>
49
50#include "top.h"
51#include "machine.h"
52#include "screen.h"
53#include "utils.h"
54#include "layout.h"
55
56#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
57#define	SMPUNAMELEN	13
58#define	UPUNAMELEN	15
59
60extern struct process_select ps;
61extern char* printable(char *);
62static int smpmode;
63enum displaymodes displaymode;
64#ifdef TOP_USERNAME_LEN
65static int namelength = TOP_USERNAME_LEN;
66#else
67static int namelength = 8;
68#endif
69static int cmdlengthdelta;
70
71/* Prototypes for top internals */
72void quit(int);
73
74/* get_process_info passes back a handle.  This is what it looks like: */
75
76struct handle {
77	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
78	int remaining;			/* number of pointers remaining */
79};
80
81/* declarations for load_avg */
82#include "loadavg.h"
83
84/* define what weighted cpu is.  */
85#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
86			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
87
88/* what we consider to be process size: */
89#define PROCSIZE(pp) ((pp)->ki_size / 1024)
90
91#define RU(pp)	(&(pp)->ki_rusage)
92#define RUTOT(pp) \
93	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
94
95
96/* definitions for indices in the nlist array */
97
98/*
99 *  These definitions control the format of the per-process area
100 */
101
102static char io_header[] =
103    "  PID%s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
104
105#define io_Proc_format \
106    "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
107
108static char smp_header_thr[] =
109    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
110static char smp_header[] =
111    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
112
113#define smp_Proc_format \
114    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
115
116static char up_header_thr[] =
117    "  PID%s %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
118static char up_header[] =
119    "  PID%s %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
120
121#define up_Proc_format \
122    "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
123
124
125/* process state names for the "STATE" column of the display */
126/* the extra nulls in the string "run" are for adding a slash and
127   the processor number when needed */
128
129char *state_abbrev[] = {
130	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
131};
132
133
134static kvm_t *kd;
135
136/* values that we stash away in _init and use in later routines */
137
138static double logcpu;
139
140/* these are retrieved from the kernel in _init */
141
142static load_avg  ccpu;
143
144/* these are used in the get_ functions */
145
146static int lastpid;
147
148/* these are for calculating cpu state percentages */
149
150static long cp_time[CPUSTATES];
151static long cp_old[CPUSTATES];
152static long cp_diff[CPUSTATES];
153
154/* these are for detailing the process states */
155
156int process_states[8];
157char *procstatenames[] = {
158	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
159	" zombie, ", " waiting, ", " lock, ",
160	NULL
161};
162
163/* these are for detailing the cpu states */
164
165int cpu_states[CPUSTATES];
166char *cpustatenames[] = {
167	"user", "nice", "system", "interrupt", "idle", NULL
168};
169
170/* these are for detailing the memory statistics */
171
172int memory_stats[7];
173char *memorynames[] = {
174	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
175	"K Free", NULL
176};
177
178int swap_stats[7];
179char *swapnames[] = {
180	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
181	NULL
182};
183
184
185/* these are for keeping track of the proc array */
186
187static int nproc;
188static int onproc = -1;
189static int pref_len;
190static struct kinfo_proc *pbase;
191static struct kinfo_proc **pref;
192static struct kinfo_proc *previous_procs;
193static struct kinfo_proc **previous_pref;
194static int previous_proc_count = 0;
195static int previous_proc_count_max = 0;
196
197/* total number of io operations */
198static long total_inblock;
199static long total_oublock;
200static long total_majflt;
201
202/* these are for getting the memory statistics */
203
204static int pageshift;		/* log base 2 of the pagesize */
205
206/* define pagetok in terms of pageshift */
207
208#define pagetok(size) ((size) << pageshift)
209
210/* useful externals */
211long percentages();
212
213#ifdef ORDER
214/*
215 * Sorting orders.  The first element is the default.
216 */
217char *ordernames[] = {
218	"cpu", "size", "res", "time", "pri", "threads",
219	"total", "read", "write", "fault", "vcsw", "ivcsw",
220	"jid", NULL
221};
222#endif
223
224/* Per-cpu time states */
225static int maxcpu;
226static int maxid;
227static int ncpus;
228static u_long cpumask;
229static long *times;
230static long *pcpu_cp_time;
231static long *pcpu_cp_old;
232static long *pcpu_cp_diff;
233static int *pcpu_cpu_states;
234
235static int compare_jid(const void *a, const void *b);
236static int compare_pid(const void *a, const void *b);
237static const char *format_nice(const struct kinfo_proc *pp);
238static void getsysctl(const char *name, void *ptr, size_t len);
239static int swapmode(int *retavail, int *retfree);
240
241int
242machine_init(struct statics *statics, char do_unames)
243{
244	int pagesize;
245	size_t modelen;
246	struct passwd *pw;
247
248	modelen = sizeof(smpmode);
249	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
250	    NULL, 0) != 0 &&
251	    sysctlbyname("kern.smp.active", &smpmode, &modelen,
252	    NULL, 0) != 0) ||
253	    modelen != sizeof(smpmode))
254		smpmode = 0;
255
256	if (do_unames) {
257	    while ((pw = getpwent()) != NULL) {
258		if (strlen(pw->pw_name) > namelength)
259			namelength = strlen(pw->pw_name);
260	    }
261	}
262	if (smpmode && namelength > SMPUNAMELEN)
263		namelength = SMPUNAMELEN;
264	else if (namelength > UPUNAMELEN)
265		namelength = UPUNAMELEN;
266
267	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
268	if (kd == NULL)
269		return (-1);
270
271	GETSYSCTL("kern.ccpu", ccpu);
272
273	/* this is used in calculating WCPU -- calculate it ahead of time */
274	logcpu = log(loaddouble(ccpu));
275
276	pbase = NULL;
277	pref = NULL;
278	nproc = 0;
279	onproc = -1;
280
281	/* get the page size and calculate pageshift from it */
282	pagesize = getpagesize();
283	pageshift = 0;
284	while (pagesize > 1) {
285		pageshift++;
286		pagesize >>= 1;
287	}
288
289	/* we only need the amount of log(2)1024 for our conversion */
290	pageshift -= LOG1024;
291
292	/* fill in the statics information */
293	statics->procstate_names = procstatenames;
294	statics->cpustate_names = cpustatenames;
295	statics->memory_names = memorynames;
296	statics->swap_names = swapnames;
297#ifdef ORDER
298	statics->order_names = ordernames;
299#endif
300
301	/* Adjust display based on ncpus */
302	if (pcpu_stats) {
303		int i, j, empty;
304		size_t size;
305
306		cpumask = 0;
307		ncpus = 0;
308		GETSYSCTL("kern.smp.maxcpus", maxcpu);
309		size = sizeof(long) * maxcpu * CPUSTATES;
310		times = malloc(size);
311		if (times == NULL)
312			err(1, "malloc %zd bytes", size);
313		if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
314			err(1, "sysctlbyname kern.cp_times");
315		maxid = (size / CPUSTATES / sizeof(long)) - 1;
316		for (i = 0; i <= maxid; i++) {
317			empty = 1;
318			for (j = 0; empty && j < CPUSTATES; j++) {
319				if (times[i * CPUSTATES + j] != 0)
320					empty = 0;
321			}
322			if (!empty) {
323				cpumask |= (1ul << i);
324				ncpus++;
325			}
326		}
327
328		if (ncpus > 1) {
329			y_mem += ncpus - 1;	/* 3 */
330			y_swap += ncpus - 1;	/* 4 */
331			y_idlecursor += ncpus - 1; /* 5 */
332			y_message += ncpus - 1;	/* 5 */
333			y_header += ncpus - 1;	/* 6 */
334			y_procs += ncpus - 1;	/* 7 */
335			Header_lines += ncpus - 1; /* 7 */
336		}
337		size = sizeof(long) * ncpus * CPUSTATES;
338		pcpu_cp_time = calloc(1, size);
339		pcpu_cp_old = calloc(1, size);
340		pcpu_cp_diff = calloc(1, size);
341		pcpu_cpu_states = calloc(1, size);
342		statics->ncpus = ncpus;
343	} else {
344		statics->ncpus = 1;
345	}
346
347	/* all done! */
348	return (0);
349}
350
351char *
352format_header(char *uname_field)
353{
354	static char Header[128];
355	const char *prehead;
356
357	switch (displaymode) {
358	case DISP_CPU:
359		/*
360		 * The logic of picking the right header format seems reverse
361		 * here because we only want to display a THR column when
362		 * "thread mode" is off (and threads are not listed as
363		 * separate lines).
364		 */
365		prehead = smpmode ?
366		    (ps.thread ? smp_header : smp_header_thr) :
367		    (ps.thread ? up_header : up_header_thr);
368		snprintf(Header, sizeof(Header), prehead,
369		    ps.jail ? " JID" : "",
370		    namelength, namelength, uname_field,
371		    ps.wcpu ? "WCPU" : "CPU");
372		break;
373	case DISP_IO:
374		prehead = io_header;
375		snprintf(Header, sizeof(Header), prehead,
376		    ps.jail ? " JID" : "",
377		    namelength, namelength, uname_field);
378		break;
379	}
380	cmdlengthdelta = strlen(Header) - 7;
381	return (Header);
382}
383
384static int swappgsin = -1;
385static int swappgsout = -1;
386extern struct timeval timeout;
387
388
389void
390get_system_info(struct system_info *si)
391{
392	long total;
393	struct loadavg sysload;
394	int mib[2];
395	struct timeval boottime;
396	size_t bt_size;
397	int i, j;
398	size_t size;
399
400	/* get the cp_time array */
401	if (pcpu_stats) {
402		size = (maxid + 1) * CPUSTATES * sizeof(long);
403		if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
404			err(1, "sysctlbyname kern.cp_times");
405	} else {
406		GETSYSCTL("kern.cp_time", cp_time);
407	}
408	GETSYSCTL("vm.loadavg", sysload);
409	GETSYSCTL("kern.lastpid", lastpid);
410
411	/* convert load averages to doubles */
412	for (i = 0; i < 3; i++)
413		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
414
415	if (pcpu_stats) {
416		for (i = j = 0; i <= maxid; i++, j++) {
417			if (cpumask && (1ul << i) == 0)
418				continue;
419			/* convert cp_time counts to percentages */
420			percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
421			    &pcpu_cp_time[j * CPUSTATES],
422			    &pcpu_cp_old[j * CPUSTATES],
423			    &pcpu_cp_diff[j * CPUSTATES]);
424		}
425	} else {
426		/* convert cp_time counts to percentages */
427		percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
428	}
429
430	/* sum memory & swap statistics */
431	{
432		static unsigned int swap_delay = 0;
433		static int swapavail = 0;
434		static int swapfree = 0;
435		static int bufspace = 0;
436		static int nspgsin, nspgsout;
437
438		GETSYSCTL("vfs.bufspace", bufspace);
439		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
440		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
441		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
442		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
443		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
444		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
445		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
446		/* convert memory stats to Kbytes */
447		memory_stats[0] = pagetok(memory_stats[0]);
448		memory_stats[1] = pagetok(memory_stats[1]);
449		memory_stats[2] = pagetok(memory_stats[2]);
450		memory_stats[3] = pagetok(memory_stats[3]);
451		memory_stats[4] = bufspace / 1024;
452		memory_stats[5] = pagetok(memory_stats[5]);
453		memory_stats[6] = -1;
454
455		/* first interval */
456		if (swappgsin < 0) {
457			swap_stats[4] = 0;
458			swap_stats[5] = 0;
459		}
460
461		/* compute differences between old and new swap statistic */
462		else {
463			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
464			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
465		}
466
467		swappgsin = nspgsin;
468		swappgsout = nspgsout;
469
470		/* call CPU heavy swapmode() only for changes */
471		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
472			swap_stats[3] = swapmode(&swapavail, &swapfree);
473			swap_stats[0] = swapavail;
474			swap_stats[1] = swapavail - swapfree;
475			swap_stats[2] = swapfree;
476		}
477		swap_delay = 1;
478		swap_stats[6] = -1;
479	}
480
481	/* set arrays and strings */
482	if (pcpu_stats) {
483		si->cpustates = pcpu_cpu_states;
484		si->cpumask = cpumask;
485		si->ncpus = ncpus;
486	} else {
487		si->cpustates = cpu_states;
488		si->cpumask = 1;
489		si->ncpus = 1;
490	}
491	si->memory = memory_stats;
492	si->swap = swap_stats;
493
494
495	if (lastpid > 0) {
496		si->last_pid = lastpid;
497	} else {
498		si->last_pid = -1;
499	}
500
501	/*
502	 * Print how long system has been up.
503	 * (Found by looking getting "boottime" from the kernel)
504	 */
505	mib[0] = CTL_KERN;
506	mib[1] = KERN_BOOTTIME;
507	bt_size = sizeof(boottime);
508	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
509	    boottime.tv_sec != 0) {
510		si->boottime = boottime;
511	} else {
512		si->boottime.tv_sec = -1;
513	}
514}
515
516#define NOPROC	((void *)-1)
517
518/*
519 * We need to compare data from the old process entry with the new
520 * process entry.
521 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
522 * structure to cache the mapping.  We also use a negative cache pointer
523 * of NOPROC to avoid duplicate lookups.
524 * XXX: this could be done when the actual processes are fetched, we do
525 * it here out of laziness.
526 */
527const struct kinfo_proc *
528get_old_proc(struct kinfo_proc *pp)
529{
530	struct kinfo_proc **oldpp, *oldp;
531
532	/*
533	 * If this is the first fetch of the kinfo_procs then we don't have
534	 * any previous entries.
535	 */
536	if (previous_proc_count == 0)
537		return (NULL);
538	/* negative cache? */
539	if (pp->ki_udata == NOPROC)
540		return (NULL);
541	/* cached? */
542	if (pp->ki_udata != NULL)
543		return (pp->ki_udata);
544	/*
545	 * Not cached,
546	 * 1) look up based on pid.
547	 * 2) compare process start.
548	 * If we fail here, then setup a negative cache entry, otherwise
549	 * cache it.
550	 */
551	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
552	    sizeof(*previous_pref), compare_pid);
553	if (oldpp == NULL) {
554		pp->ki_udata = NOPROC;
555		return (NULL);
556	}
557	oldp = *oldpp;
558	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
559		pp->ki_udata = NOPROC;
560		return (NULL);
561	}
562	pp->ki_udata = oldp;
563	return (oldp);
564}
565
566/*
567 * Return the total amount of IO done in blocks in/out and faults.
568 * store the values individually in the pointers passed in.
569 */
570long
571get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
572    long *vcsw, long *ivcsw)
573{
574	const struct kinfo_proc *oldp;
575	static struct kinfo_proc dummy;
576	long ret;
577
578	oldp = get_old_proc(pp);
579	if (oldp == NULL) {
580		bzero(&dummy, sizeof(dummy));
581		oldp = &dummy;
582	}
583	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
584	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
585	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
586	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
587	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
588	ret =
589	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
590	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
591	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
592	return (ret);
593}
594
595/*
596 * Return the total number of block in/out and faults by a process.
597 */
598long
599get_io_total(struct kinfo_proc *pp)
600{
601	long dummy;
602
603	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
604}
605
606static struct handle handle;
607
608caddr_t
609get_process_info(struct system_info *si, struct process_select *sel,
610    int (*compare)(const void *, const void *))
611{
612	int i;
613	int total_procs;
614	long p_io;
615	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
616	int active_procs;
617	struct kinfo_proc **prefp;
618	struct kinfo_proc *pp;
619	struct kinfo_proc *prev_pp = NULL;
620
621	/* these are copied out of sel for speed */
622	int show_idle;
623	int show_self;
624	int show_system;
625	int show_uid;
626	int show_command;
627
628	/*
629	 * Save the previous process info.
630	 */
631	if (previous_proc_count_max < nproc) {
632		free(previous_procs);
633		previous_procs = malloc(nproc * sizeof(*previous_procs));
634		free(previous_pref);
635		previous_pref = malloc(nproc * sizeof(*previous_pref));
636		if (previous_procs == NULL || previous_pref == NULL) {
637			(void) fprintf(stderr, "top: Out of memory.\n");
638			quit(23);
639		}
640		previous_proc_count_max = nproc;
641	}
642	if (nproc) {
643		for (i = 0; i < nproc; i++)
644			previous_pref[i] = &previous_procs[i];
645		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
646		qsort(previous_pref, nproc, sizeof(*previous_pref),
647		    compare_pid);
648	}
649	previous_proc_count = nproc;
650
651	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
652	if (nproc > onproc)
653		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
654	if (pref == NULL || pbase == NULL) {
655		(void) fprintf(stderr, "top: Out of memory.\n");
656		quit(23);
657	}
658	/* get a pointer to the states summary array */
659	si->procstates = process_states;
660
661	/* set up flags which define what we are going to select */
662	show_idle = sel->idle;
663	show_self = sel->self == -1;
664	show_system = sel->system;
665	show_uid = sel->uid != -1;
666	show_command = sel->command != NULL;
667
668	/* count up process states and get pointers to interesting procs */
669	total_procs = 0;
670	active_procs = 0;
671	total_inblock = 0;
672	total_oublock = 0;
673	total_majflt = 0;
674	memset((char *)process_states, 0, sizeof(process_states));
675	prefp = pref;
676	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
677
678		if (pp->ki_stat == 0)
679			/* not in use */
680			continue;
681
682		if (!show_self && pp->ki_pid == sel->self)
683			/* skip self */
684			continue;
685
686		if (!show_system && (pp->ki_flag & P_SYSTEM))
687			/* skip system process */
688			continue;
689
690		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
691		    &p_vcsw, &p_ivcsw);
692		total_inblock += p_inblock;
693		total_oublock += p_oublock;
694		total_majflt += p_majflt;
695		total_procs++;
696		process_states[pp->ki_stat]++;
697
698		if (pp->ki_stat == SZOMB)
699			/* skip zombies */
700			continue;
701
702		if (displaymode == DISP_CPU && !show_idle &&
703		    (pp->ki_pctcpu == 0 ||
704		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
705			/* skip idle or non-running processes */
706			continue;
707
708		if (displaymode == DISP_IO && !show_idle && p_io == 0)
709			/* skip processes that aren't doing I/O */
710			continue;
711
712		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
713			/* skip proc. that don't belong to the selected UID */
714			continue;
715
716		/*
717		 * When not showing threads, take the first thread
718		 * for output and add the fields that we can from
719		 * the rest of the process's threads rather than
720		 * using the system's mostly-broken KERN_PROC_PROC.
721		 */
722		if (sel->thread || prev_pp == NULL ||
723		    prev_pp->ki_pid != pp->ki_pid) {
724			*prefp++ = pp;
725			active_procs++;
726			prev_pp = pp;
727		} else {
728			prev_pp->ki_pctcpu += pp->ki_pctcpu;
729		}
730	}
731
732	/* if requested, sort the "interesting" processes */
733	if (compare != NULL)
734		qsort(pref, active_procs, sizeof(*pref), compare);
735
736	/* remember active and total counts */
737	si->p_total = total_procs;
738	si->p_active = pref_len = active_procs;
739
740	/* pass back a handle */
741	handle.next_proc = pref;
742	handle.remaining = active_procs;
743	return ((caddr_t)&handle);
744}
745
746static char fmt[128];	/* static area where result is built */
747
748char *
749format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
750{
751	struct kinfo_proc *pp;
752	const struct kinfo_proc *oldp;
753	long cputime;
754	double pct;
755	struct handle *hp;
756	char status[16];
757	int state;
758	struct rusage ru, *rup;
759	long p_tot, s_tot;
760	char *proc_fmt, thr_buf[6], jid_buf[6];
761	char *cmdbuf = NULL;
762	char **args;
763
764	/* find and remember the next proc structure */
765	hp = (struct handle *)handle;
766	pp = *(hp->next_proc++);
767	hp->remaining--;
768
769	/* get the process's command name */
770	if ((pp->ki_flag & P_INMEM) == 0) {
771		/*
772		 * Print swapped processes as <pname>
773		 */
774		size_t len;
775
776		len = strlen(pp->ki_comm);
777		if (len > sizeof(pp->ki_comm) - 3)
778			len = sizeof(pp->ki_comm) - 3;
779		memmove(pp->ki_comm + 1, pp->ki_comm, len);
780		pp->ki_comm[0] = '<';
781		pp->ki_comm[len + 1] = '>';
782		pp->ki_comm[len + 2] = '\0';
783	}
784
785	/*
786	 * Convert the process's runtime from microseconds to seconds.  This
787	 * time includes the interrupt time although that is not wanted here.
788	 * ps(1) is similarly sloppy.
789	 */
790	cputime = (pp->ki_runtime + 500000) / 1000000;
791
792	/* calculate the base for cpu percentages */
793	pct = pctdouble(pp->ki_pctcpu);
794
795	/* generate "STATE" field */
796	switch (state = pp->ki_stat) {
797	case SRUN:
798		if (smpmode && pp->ki_oncpu != 0xff)
799			sprintf(status, "CPU%d", pp->ki_oncpu);
800		else
801			strcpy(status, "RUN");
802		break;
803	case SLOCK:
804		if (pp->ki_kiflag & KI_LOCKBLOCK) {
805			sprintf(status, "*%.6s", pp->ki_lockname);
806			break;
807		}
808		/* fall through */
809	case SSLEEP:
810		if (pp->ki_wmesg != NULL) {
811			sprintf(status, "%.6s", pp->ki_wmesg);
812			break;
813		}
814		/* FALLTHROUGH */
815	default:
816
817		if (state >= 0 &&
818		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
819			sprintf(status, "%.6s", state_abbrev[state]);
820		else
821			sprintf(status, "?%5d", state);
822		break;
823	}
824
825	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
826	if (cmdbuf == NULL) {
827		warn("malloc(%d)", cmdlengthdelta + 1);
828		return NULL;
829	}
830
831	if (!(flags & FMT_SHOWARGS)) {
832		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
833		    pp->ki_ocomm[0]) {
834			snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm);
835		} else {
836			snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
837		}
838	} else {
839		if (pp->ki_flag & P_SYSTEM ||
840		    pp->ki_args == NULL ||
841		    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
842		    !(*args)) {
843			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
844		    	pp->ki_ocomm[0]) {
845				snprintf(cmdbuf, cmdlengthdelta,
846				    "{%s}", pp->ki_ocomm);
847			} else {
848				snprintf(cmdbuf, cmdlengthdelta,
849				    "[%s]", pp->ki_comm);
850			}
851		} else {
852			char *src, *dst, *argbuf;
853			char *cmd;
854			size_t argbuflen;
855			size_t len;
856
857			argbuflen = cmdlengthdelta * 4;
858			argbuf = (char *)malloc(argbuflen + 1);
859			if (argbuf == NULL) {
860				warn("malloc(%d)", argbuflen + 1);
861				free(cmdbuf);
862				return NULL;
863			}
864
865			dst = argbuf;
866
867			/* Extract cmd name from argv */
868			cmd = strrchr(*args, '/');
869			if (cmd == NULL)
870				cmd = *args;
871			else
872				cmd++;
873
874			for (; (src = *args++) != NULL; ) {
875				if (*src == '\0')
876					continue;
877				len = (argbuflen - (dst - argbuf) - 1) / 4;
878				strvisx(dst, src,
879				    strlen(src) < len ? strlen(src) : len,
880				    VIS_NL | VIS_CSTYLE);
881				while (*dst != '\0')
882					dst++;
883				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
884					*dst++ = ' '; /* add delimiting space */
885			}
886			if (dst != argbuf && dst[-1] == ' ')
887				dst--;
888			*dst = '\0';
889
890			if (strcmp(cmd, pp->ki_comm) != 0 )
891				snprintf(cmdbuf, cmdlengthdelta,
892				    "%s (%s)",argbuf,  pp->ki_comm);
893			else
894				strlcpy(cmdbuf, argbuf, cmdlengthdelta);
895
896			free(argbuf);
897		}
898	}
899
900	if (ps.jail == 0)
901		jid_buf[0] = '\0';
902	else
903		snprintf(jid_buf, sizeof(jid_buf), " %*d",
904		    sizeof(jid_buf) - 3, pp->ki_jid);
905
906	if (displaymode == DISP_IO) {
907		oldp = get_old_proc(pp);
908		if (oldp != NULL) {
909			ru.ru_inblock = RU(pp)->ru_inblock -
910			    RU(oldp)->ru_inblock;
911			ru.ru_oublock = RU(pp)->ru_oublock -
912			    RU(oldp)->ru_oublock;
913			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
914			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
915			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
916			rup = &ru;
917		} else {
918			rup = RU(pp);
919		}
920		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
921		s_tot = total_inblock + total_oublock + total_majflt;
922
923		sprintf(fmt, io_Proc_format,
924		    pp->ki_pid,
925		    jid_buf,
926		    namelength, namelength, (*get_userid)(pp->ki_ruid),
927		    rup->ru_nvcsw,
928		    rup->ru_nivcsw,
929		    rup->ru_inblock,
930		    rup->ru_oublock,
931		    rup->ru_majflt,
932		    p_tot,
933		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
934		    screen_width > cmdlengthdelta ?
935		    screen_width - cmdlengthdelta : 0,
936		    printable(cmdbuf));
937
938		free(cmdbuf);
939
940		return (fmt);
941	}
942
943	/* format this entry */
944	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
945	if (ps.thread != 0)
946		thr_buf[0] = '\0';
947	else
948		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
949		    sizeof(thr_buf) - 2, pp->ki_numthreads);
950
951	sprintf(fmt, proc_fmt,
952	    pp->ki_pid,
953	    jid_buf,
954	    namelength, namelength, (*get_userid)(pp->ki_ruid),
955	    thr_buf,
956	    pp->ki_pri.pri_level - PZERO,
957	    format_nice(pp),
958	    format_k2(PROCSIZE(pp)),
959	    format_k2(pagetok(pp->ki_rssize)),
960	    status,
961	    smpmode ? pp->ki_lastcpu : 0,
962	    format_time(cputime),
963	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
964	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
965	    printable(cmdbuf));
966
967	free(cmdbuf);
968
969	/* return the result */
970	return (fmt);
971}
972
973static void
974getsysctl(const char *name, void *ptr, size_t len)
975{
976	size_t nlen = len;
977
978	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
979		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
980		    strerror(errno));
981		quit(23);
982	}
983	if (nlen != len) {
984		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
985		    name, (unsigned long)len, (unsigned long)nlen);
986		quit(23);
987	}
988}
989
990static const char *
991format_nice(const struct kinfo_proc *pp)
992{
993	const char *fifo, *kthread;
994	int rtpri;
995	static char nicebuf[4 + 1];
996
997	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
998	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
999	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1000	case PRI_ITHD:
1001		return ("-");
1002	case PRI_REALTIME:
1003		/*
1004		 * XXX: the kernel doesn't tell us the original rtprio and
1005		 * doesn't really know what it was, so to recover it we
1006		 * must be more chummy with the implementation than the
1007		 * implementation is with itself.  pri_user gives a
1008		 * constant "base" priority, but is only initialized
1009		 * properly for user threads.  pri_native gives what the
1010		 * kernel calls the "base" priority, but it isn't constant
1011		 * since it is changed by priority propagation.  pri_native
1012		 * also isn't properly initialized for all threads, but it
1013		 * is properly initialized for kernel realtime and idletime
1014		 * threads.  Thus we use pri_user for the base priority of
1015		 * user threads (it is always correct) and pri_native for
1016		 * the base priority of kernel realtime and idletime threads
1017		 * (there is nothing better, and it is usually correct).
1018		 *
1019		 * The field width and thus the buffer are too small for
1020		 * values like "kr31F", but such values shouldn't occur,
1021		 * and if they do then the tailing "F" is not displayed.
1022		 */
1023		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1024		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1025		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1026		    kthread, rtpri, fifo);
1027		break;
1028	case PRI_TIMESHARE:
1029		if (pp->ki_flag & P_KTHREAD)
1030			return ("-");
1031		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1032		break;
1033	case PRI_IDLE:
1034		/* XXX: as above. */
1035		rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
1036		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1037		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1038		    kthread, rtpri, fifo);
1039		break;
1040	default:
1041		return ("?");
1042	}
1043	return (nicebuf);
1044}
1045
1046/* comparison routines for qsort */
1047
1048static int
1049compare_pid(const void *p1, const void *p2)
1050{
1051	const struct kinfo_proc * const *pp1 = p1;
1052	const struct kinfo_proc * const *pp2 = p2;
1053
1054	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1055		abort();
1056
1057	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1058}
1059
1060/*
1061 *  proc_compare - comparison function for "qsort"
1062 *	Compares the resource consumption of two processes using five
1063 *	distinct keys.  The keys (in descending order of importance) are:
1064 *	percent cpu, cpu ticks, state, resident set size, total virtual
1065 *	memory usage.  The process states are ordered as follows (from least
1066 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1067 *	array declaration below maps a process state index into a number
1068 *	that reflects this ordering.
1069 */
1070
1071static int sorted_state[] = {
1072	0,	/* not used		*/
1073	3,	/* sleep		*/
1074	1,	/* ABANDONED (WAIT)	*/
1075	6,	/* run			*/
1076	5,	/* start		*/
1077	2,	/* zombie		*/
1078	4	/* stop			*/
1079};
1080
1081
1082#define ORDERKEY_PCTCPU(a, b) do { \
1083	long diff; \
1084	if (ps.wcpu) \
1085		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
1086		    (b))) - \
1087		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
1088		    (a))); \
1089	else \
1090		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
1091	if (diff != 0) \
1092		return (diff > 0 ? 1 : -1); \
1093} while (0)
1094
1095#define ORDERKEY_CPTICKS(a, b) do { \
1096	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1097	if (diff != 0) \
1098		return (diff > 0 ? 1 : -1); \
1099} while (0)
1100
1101#define ORDERKEY_STATE(a, b) do { \
1102	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1103	if (diff != 0) \
1104		return (diff > 0 ? 1 : -1); \
1105} while (0)
1106
1107#define ORDERKEY_PRIO(a, b) do { \
1108	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1109	if (diff != 0) \
1110		return (diff > 0 ? 1 : -1); \
1111} while (0)
1112
1113#define	ORDERKEY_THREADS(a, b) do { \
1114	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1115	if (diff != 0) \
1116		return (diff > 0 ? 1 : -1); \
1117} while (0)
1118
1119#define ORDERKEY_RSSIZE(a, b) do { \
1120	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1121	if (diff != 0) \
1122		return (diff > 0 ? 1 : -1); \
1123} while (0)
1124
1125#define ORDERKEY_MEM(a, b) do { \
1126	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1127	if (diff != 0) \
1128		return (diff > 0 ? 1 : -1); \
1129} while (0)
1130
1131#define ORDERKEY_JID(a, b) do { \
1132	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1133	if (diff != 0) \
1134		return (diff > 0 ? 1 : -1); \
1135} while (0)
1136
1137/* compare_cpu - the comparison function for sorting by cpu percentage */
1138
1139int
1140#ifdef ORDER
1141compare_cpu(void *arg1, void *arg2)
1142#else
1143proc_compare(void *arg1, void *arg2)
1144#endif
1145{
1146	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1147	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1148
1149	ORDERKEY_PCTCPU(p1, p2);
1150	ORDERKEY_CPTICKS(p1, p2);
1151	ORDERKEY_STATE(p1, p2);
1152	ORDERKEY_PRIO(p1, p2);
1153	ORDERKEY_RSSIZE(p1, p2);
1154	ORDERKEY_MEM(p1, p2);
1155
1156	return (0);
1157}
1158
1159#ifdef ORDER
1160/* "cpu" compare routines */
1161int compare_size(), compare_res(), compare_time(), compare_prio(),
1162    compare_threads();
1163
1164/*
1165 * "io" compare routines.  Context switches aren't i/o, but are displayed
1166 * on the "io" display.
1167 */
1168int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1169    compare_vcsw(), compare_ivcsw();
1170
1171int (*compares[])() = {
1172	compare_cpu,
1173	compare_size,
1174	compare_res,
1175	compare_time,
1176	compare_prio,
1177	compare_threads,
1178	compare_iototal,
1179	compare_ioread,
1180	compare_iowrite,
1181	compare_iofault,
1182	compare_vcsw,
1183	compare_ivcsw,
1184	compare_jid,
1185	NULL
1186};
1187
1188/* compare_size - the comparison function for sorting by total memory usage */
1189
1190int
1191compare_size(void *arg1, void *arg2)
1192{
1193	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1194	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1195
1196	ORDERKEY_MEM(p1, p2);
1197	ORDERKEY_RSSIZE(p1, p2);
1198	ORDERKEY_PCTCPU(p1, p2);
1199	ORDERKEY_CPTICKS(p1, p2);
1200	ORDERKEY_STATE(p1, p2);
1201	ORDERKEY_PRIO(p1, p2);
1202
1203	return (0);
1204}
1205
1206/* compare_res - the comparison function for sorting by resident set size */
1207
1208int
1209compare_res(void *arg1, void *arg2)
1210{
1211	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1212	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1213
1214	ORDERKEY_RSSIZE(p1, p2);
1215	ORDERKEY_MEM(p1, p2);
1216	ORDERKEY_PCTCPU(p1, p2);
1217	ORDERKEY_CPTICKS(p1, p2);
1218	ORDERKEY_STATE(p1, p2);
1219	ORDERKEY_PRIO(p1, p2);
1220
1221	return (0);
1222}
1223
1224/* compare_time - the comparison function for sorting by total cpu time */
1225
1226int
1227compare_time(void *arg1, void *arg2)
1228{
1229	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1230	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1231
1232	ORDERKEY_CPTICKS(p1, p2);
1233	ORDERKEY_PCTCPU(p1, p2);
1234	ORDERKEY_STATE(p1, p2);
1235	ORDERKEY_PRIO(p1, p2);
1236	ORDERKEY_RSSIZE(p1, p2);
1237	ORDERKEY_MEM(p1, p2);
1238
1239	return (0);
1240}
1241
1242/* compare_prio - the comparison function for sorting by priority */
1243
1244int
1245compare_prio(void *arg1, void *arg2)
1246{
1247	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1248	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1249
1250	ORDERKEY_PRIO(p1, p2);
1251	ORDERKEY_CPTICKS(p1, p2);
1252	ORDERKEY_PCTCPU(p1, p2);
1253	ORDERKEY_STATE(p1, p2);
1254	ORDERKEY_RSSIZE(p1, p2);
1255	ORDERKEY_MEM(p1, p2);
1256
1257	return (0);
1258}
1259
1260/* compare_threads - the comparison function for sorting by threads */
1261int
1262compare_threads(void *arg1, void *arg2)
1263{
1264	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1265	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1266
1267	ORDERKEY_THREADS(p1, p2);
1268	ORDERKEY_PCTCPU(p1, p2);
1269	ORDERKEY_CPTICKS(p1, p2);
1270	ORDERKEY_STATE(p1, p2);
1271	ORDERKEY_PRIO(p1, p2);
1272	ORDERKEY_RSSIZE(p1, p2);
1273	ORDERKEY_MEM(p1, p2);
1274
1275	return (0);
1276}
1277
1278/* compare_jid - the comparison function for sorting by jid */
1279static int
1280compare_jid(const void *arg1, const void *arg2)
1281{
1282	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1283	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1284
1285	ORDERKEY_JID(p1, p2);
1286	ORDERKEY_PCTCPU(p1, p2);
1287	ORDERKEY_CPTICKS(p1, p2);
1288	ORDERKEY_STATE(p1, p2);
1289	ORDERKEY_PRIO(p1, p2);
1290	ORDERKEY_RSSIZE(p1, p2);
1291	ORDERKEY_MEM(p1, p2);
1292
1293	return (0);
1294}
1295#endif /* ORDER */
1296
1297/* assorted comparison functions for sorting by i/o */
1298
1299int
1300#ifdef ORDER
1301compare_iototal(void *arg1, void *arg2)
1302#else
1303io_compare(void *arg1, void *arg2)
1304#endif
1305{
1306	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1307	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1308
1309	return (get_io_total(p2) - get_io_total(p1));
1310}
1311
1312#ifdef ORDER
1313int
1314compare_ioread(void *arg1, void *arg2)
1315{
1316	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1317	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1318	long dummy, inp1, inp2;
1319
1320	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1321	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1322
1323	return (inp2 - inp1);
1324}
1325
1326int
1327compare_iowrite(void *arg1, void *arg2)
1328{
1329	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1330	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1331	long dummy, oup1, oup2;
1332
1333	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1334	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1335
1336	return (oup2 - oup1);
1337}
1338
1339int
1340compare_iofault(void *arg1, void *arg2)
1341{
1342	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1343	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1344	long dummy, flp1, flp2;
1345
1346	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1347	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1348
1349	return (flp2 - flp1);
1350}
1351
1352int
1353compare_vcsw(void *arg1, void *arg2)
1354{
1355	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1356	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1357	long dummy, flp1, flp2;
1358
1359	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1360	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1361
1362	return (flp2 - flp1);
1363}
1364
1365int
1366compare_ivcsw(void *arg1, void *arg2)
1367{
1368	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1369	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1370	long dummy, flp1, flp2;
1371
1372	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1373	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1374
1375	return (flp2 - flp1);
1376}
1377#endif /* ORDER */
1378
1379/*
1380 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1381 *		the process does not exist.
1382 *		It is EXTREMLY IMPORTANT that this function work correctly.
1383 *		If top runs setuid root (as in SVR4), then this function
1384 *		is the only thing that stands in the way of a serious
1385 *		security problem.  It validates requests for the "kill"
1386 *		and "renice" commands.
1387 */
1388
1389int
1390proc_owner(int pid)
1391{
1392	int cnt;
1393	struct kinfo_proc **prefp;
1394	struct kinfo_proc *pp;
1395
1396	prefp = pref;
1397	cnt = pref_len;
1398	while (--cnt >= 0) {
1399		pp = *prefp++;
1400		if (pp->ki_pid == (pid_t)pid)
1401			return ((int)pp->ki_ruid);
1402	}
1403	return (-1);
1404}
1405
1406static int
1407swapmode(int *retavail, int *retfree)
1408{
1409	int n;
1410	int pagesize = getpagesize();
1411	struct kvm_swap swapary[1];
1412
1413	*retavail = 0;
1414	*retfree = 0;
1415
1416#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1417
1418	n = kvm_getswapinfo(kd, swapary, 1, 0);
1419	if (n < 0 || swapary[0].ksw_total == 0)
1420		return (0);
1421
1422	*retavail = CONVERT(swapary[0].ksw_total);
1423	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1424
1425	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1426	return (n);
1427}
1428