machine.c revision 158282
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 158282 2006-05-04 03:56:31Z bde $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <kvm.h>
39#include <math.h>
40#include <nlist.h>
41#include <paths.h>
42#include <pwd.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <string.h>
46#include <strings.h>
47#include <unistd.h>
48
49#include "top.h"
50#include "machine.h"
51#include "screen.h"
52#include "utils.h"
53
54#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
55#define	SMPUNAMELEN	13
56#define	UPUNAMELEN	15
57
58extern struct process_select ps;
59extern char* printable(char *);
60static int smpmode;
61enum displaymodes displaymode;
62static int namelength = 8;
63static int cmdlengthdelta;
64
65/* Prototypes for top internals */
66void quit(int);
67
68/* get_process_info passes back a handle.  This is what it looks like: */
69
70struct handle {
71	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
72	int remaining;			/* number of pointers remaining */
73};
74
75/* declarations for load_avg */
76#include "loadavg.h"
77
78/* define what weighted cpu is.  */
79#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
80			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
81
82/* what we consider to be process size: */
83#define PROCSIZE(pp) ((pp)->ki_size / 1024)
84
85#define RU(pp)	(&(pp)->ki_rusage)
86#define RUTOT(pp) \
87	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
88
89
90/* definitions for indices in the nlist array */
91
92/*
93 *  These definitions control the format of the per-process area
94 */
95
96static char io_header[] =
97    "  PID %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
98
99#define io_Proc_format \
100    "%5d %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
101
102static char smp_header_thr[] =
103    "  PID %-*.*s  THR PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
104static char smp_header[] =
105    "  PID %-*.*s "   "PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
106
107#define smp_Proc_format \
108    "%5d %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
109
110static char up_header_thr[] =
111    "  PID %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
112static char up_header[] =
113    "  PID %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
114
115#define up_Proc_format \
116    "%5d %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
117
118
119/* process state names for the "STATE" column of the display */
120/* the extra nulls in the string "run" are for adding a slash and
121   the processor number when needed */
122
123char *state_abbrev[] = {
124	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
125};
126
127
128static kvm_t *kd;
129
130/* values that we stash away in _init and use in later routines */
131
132static double logcpu;
133
134/* these are retrieved from the kernel in _init */
135
136static load_avg  ccpu;
137
138/* these are used in the get_ functions */
139
140static int lastpid;
141
142/* these are for calculating cpu state percentages */
143
144static long cp_time[CPUSTATES];
145static long cp_old[CPUSTATES];
146static long cp_diff[CPUSTATES];
147
148/* these are for detailing the process states */
149
150int process_states[8];
151char *procstatenames[] = {
152	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
153	" zombie, ", " waiting, ", " lock, ",
154	NULL
155};
156
157/* these are for detailing the cpu states */
158
159int cpu_states[CPUSTATES];
160char *cpustatenames[] = {
161	"user", "nice", "system", "interrupt", "idle", NULL
162};
163
164/* these are for detailing the memory statistics */
165
166int memory_stats[7];
167char *memorynames[] = {
168	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
169	"K Free", NULL
170};
171
172int swap_stats[7];
173char *swapnames[] = {
174	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
175	NULL
176};
177
178
179/* these are for keeping track of the proc array */
180
181static int nproc;
182static int onproc = -1;
183static int pref_len;
184static struct kinfo_proc *pbase;
185static struct kinfo_proc **pref;
186static struct kinfo_proc *previous_procs;
187static struct kinfo_proc **previous_pref;
188static int previous_proc_count = 0;
189static int previous_proc_count_max = 0;
190
191/* total number of io operations */
192static long total_inblock;
193static long total_oublock;
194static long total_majflt;
195
196/* these are for getting the memory statistics */
197
198static int pageshift;		/* log base 2 of the pagesize */
199
200/* define pagetok in terms of pageshift */
201
202#define pagetok(size) ((size) << pageshift)
203
204/* useful externals */
205long percentages();
206
207#ifdef ORDER
208/*
209 * Sorting orders.  The first element is the default.
210 */
211char *ordernames[] = {
212	"cpu", "size", "res", "time", "pri", "threads",
213	"total", "read", "write", "fault", "vcsw", "ivcsw", NULL
214};
215#endif
216
217static int compare_pid(const void *a, const void *b);
218static const char *format_nice(const struct kinfo_proc *pp);
219static void getsysctl(const char *name, void *ptr, size_t len);
220static int swapmode(int *retavail, int *retfree);
221
222int
223machine_init(struct statics *statics)
224{
225	int pagesize;
226	size_t modelen;
227	struct passwd *pw;
228
229	modelen = sizeof(smpmode);
230	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
231	    NULL, 0) != 0 &&
232	    sysctlbyname("kern.smp.active", &smpmode, &modelen,
233	    NULL, 0) != 0) ||
234	    modelen != sizeof(smpmode))
235		smpmode = 0;
236
237	while ((pw = getpwent()) != NULL) {
238		if (strlen(pw->pw_name) > namelength)
239			namelength = strlen(pw->pw_name);
240	}
241	if (smpmode && namelength > SMPUNAMELEN)
242		namelength = SMPUNAMELEN;
243	else if (namelength > UPUNAMELEN)
244		namelength = UPUNAMELEN;
245
246	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
247	if (kd == NULL)
248		return (-1);
249
250	GETSYSCTL("kern.ccpu", ccpu);
251
252	/* this is used in calculating WCPU -- calculate it ahead of time */
253	logcpu = log(loaddouble(ccpu));
254
255	pbase = NULL;
256	pref = NULL;
257	nproc = 0;
258	onproc = -1;
259
260	/* get the page size and calculate pageshift from it */
261	pagesize = getpagesize();
262	pageshift = 0;
263	while (pagesize > 1) {
264		pageshift++;
265		pagesize >>= 1;
266	}
267
268	/* we only need the amount of log(2)1024 for our conversion */
269	pageshift -= LOG1024;
270
271	/* fill in the statics information */
272	statics->procstate_names = procstatenames;
273	statics->cpustate_names = cpustatenames;
274	statics->memory_names = memorynames;
275	statics->swap_names = swapnames;
276#ifdef ORDER
277	statics->order_names = ordernames;
278#endif
279
280	/* all done! */
281	return (0);
282}
283
284char *
285format_header(char *uname_field)
286{
287	static char Header[128];
288	const char *prehead;
289
290	switch (displaymode) {
291	case DISP_CPU:
292		/*
293		 * The logic of picking the right header format seems reverse
294		 * here because we only want to display a THR column when
295		 * "thread mode" is off (and threads are not listed as
296		 * separate lines).
297		 */
298		prehead = smpmode ?
299		    (ps.thread ? smp_header : smp_header_thr) :
300		    (ps.thread ? up_header : up_header_thr);
301		snprintf(Header, sizeof(Header), prehead,
302		    namelength, namelength, uname_field,
303		    ps.wcpu ? "WCPU" : "CPU");
304		break;
305	case DISP_IO:
306		prehead = io_header;
307		snprintf(Header, sizeof(Header), prehead,
308		    namelength, namelength, uname_field);
309		break;
310	}
311	cmdlengthdelta = strlen(Header) - 7;
312	return (Header);
313}
314
315static int swappgsin = -1;
316static int swappgsout = -1;
317extern struct timeval timeout;
318
319void
320get_system_info(struct system_info *si)
321{
322	long total;
323	struct loadavg sysload;
324	int mib[2];
325	struct timeval boottime;
326	size_t bt_size;
327	int i;
328
329	/* get the cp_time array */
330	GETSYSCTL("kern.cp_time", cp_time);
331	GETSYSCTL("vm.loadavg", sysload);
332	GETSYSCTL("kern.lastpid", lastpid);
333
334	/* convert load averages to doubles */
335	for (i = 0; i < 3; i++)
336		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
337
338	/* convert cp_time counts to percentages */
339	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
340
341	/* sum memory & swap statistics */
342	{
343		static unsigned int swap_delay = 0;
344		static int swapavail = 0;
345		static int swapfree = 0;
346		static int bufspace = 0;
347		static int nspgsin, nspgsout;
348
349		GETSYSCTL("vfs.bufspace", bufspace);
350		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
351		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
352		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
353		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
354		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
355		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
356		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
357		/* convert memory stats to Kbytes */
358		memory_stats[0] = pagetok(memory_stats[0]);
359		memory_stats[1] = pagetok(memory_stats[1]);
360		memory_stats[2] = pagetok(memory_stats[2]);
361		memory_stats[3] = pagetok(memory_stats[3]);
362		memory_stats[4] = bufspace / 1024;
363		memory_stats[5] = pagetok(memory_stats[5]);
364		memory_stats[6] = -1;
365
366		/* first interval */
367		if (swappgsin < 0) {
368			swap_stats[4] = 0;
369			swap_stats[5] = 0;
370		}
371
372		/* compute differences between old and new swap statistic */
373		else {
374			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
375			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
376		}
377
378		swappgsin = nspgsin;
379		swappgsout = nspgsout;
380
381		/* call CPU heavy swapmode() only for changes */
382		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
383			swap_stats[3] = swapmode(&swapavail, &swapfree);
384			swap_stats[0] = swapavail;
385			swap_stats[1] = swapavail - swapfree;
386			swap_stats[2] = swapfree;
387		}
388		swap_delay = 1;
389		swap_stats[6] = -1;
390	}
391
392	/* set arrays and strings */
393	si->cpustates = cpu_states;
394	si->memory = memory_stats;
395	si->swap = swap_stats;
396
397
398	if (lastpid > 0) {
399		si->last_pid = lastpid;
400	} else {
401		si->last_pid = -1;
402	}
403
404	/*
405	 * Print how long system has been up.
406	 * (Found by looking getting "boottime" from the kernel)
407	 */
408	mib[0] = CTL_KERN;
409	mib[1] = KERN_BOOTTIME;
410	bt_size = sizeof(boottime);
411	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
412	    boottime.tv_sec != 0) {
413		si->boottime = boottime;
414	} else {
415		si->boottime.tv_sec = -1;
416	}
417}
418
419#define NOPROC	((void *)-1)
420
421/*
422 * We need to compare data from the old process entry with the new
423 * process entry.
424 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
425 * structure to cache the mapping.  We also use a negative cache pointer
426 * of NOPROC to avoid duplicate lookups.
427 * XXX: this could be done when the actual processes are fetched, we do
428 * it here out of laziness.
429 */
430const struct kinfo_proc *
431get_old_proc(struct kinfo_proc *pp)
432{
433	struct kinfo_proc **oldpp, *oldp;
434
435	/*
436	 * If this is the first fetch of the kinfo_procs then we don't have
437	 * any previous entries.
438	 */
439	if (previous_proc_count == 0)
440		return (NULL);
441	/* negative cache? */
442	if (pp->ki_udata == NOPROC)
443		return (NULL);
444	/* cached? */
445	if (pp->ki_udata != NULL)
446		return (pp->ki_udata);
447	/*
448	 * Not cached,
449	 * 1) look up based on pid.
450	 * 2) compare process start.
451	 * If we fail here, then setup a negative cache entry, otherwise
452	 * cache it.
453	 */
454	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
455	    sizeof(*previous_pref), compare_pid);
456	if (oldpp == NULL) {
457		pp->ki_udata = NOPROC;
458		return (NULL);
459	}
460	oldp = *oldpp;
461	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
462		pp->ki_udata = NOPROC;
463		return (NULL);
464	}
465	pp->ki_udata = oldp;
466	return (oldp);
467}
468
469/*
470 * Return the total amount of IO done in blocks in/out and faults.
471 * store the values individually in the pointers passed in.
472 */
473long
474get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
475    long *vcsw, long *ivcsw)
476{
477	const struct kinfo_proc *oldp;
478	static struct kinfo_proc dummy;
479	long ret;
480
481	oldp = get_old_proc(pp);
482	if (oldp == NULL) {
483		bzero(&dummy, sizeof(dummy));
484		oldp = &dummy;
485	}
486	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
487	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
488	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
489	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
490	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
491	ret =
492	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
493	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
494	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
495	return (ret);
496}
497
498/*
499 * Return the total number of block in/out and faults by a process.
500 */
501long
502get_io_total(struct kinfo_proc *pp)
503{
504	long dummy;
505
506	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
507}
508
509static struct handle handle;
510
511caddr_t
512get_process_info(struct system_info *si, struct process_select *sel,
513    int (*compare)(const void *, const void *))
514{
515	int i;
516	int total_procs;
517	long p_io;
518	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
519	int active_procs;
520	struct kinfo_proc **prefp;
521	struct kinfo_proc *pp;
522	struct kinfo_proc *prev_pp = NULL;
523
524	/* these are copied out of sel for speed */
525	int show_idle;
526	int show_self;
527	int show_system;
528	int show_uid;
529	int show_command;
530
531	/*
532	 * Save the previous process info.
533	 */
534	if (previous_proc_count_max < nproc) {
535		free(previous_procs);
536		previous_procs = malloc(nproc * sizeof(*previous_procs));
537		free(previous_pref);
538		previous_pref = malloc(nproc * sizeof(*previous_pref));
539		if (previous_procs == NULL || previous_pref == NULL) {
540			(void) fprintf(stderr, "top: Out of memory.\n");
541			quit(23);
542		}
543		previous_proc_count_max = nproc;
544	}
545	if (nproc) {
546		for (i = 0; i < nproc; i++)
547			previous_pref[i] = &previous_procs[i];
548		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
549		qsort(previous_pref, nproc, sizeof(*previous_pref),
550		    compare_pid);
551	}
552	previous_proc_count = nproc;
553
554	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
555	if (nproc > onproc)
556		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
557	if (pref == NULL || pbase == NULL) {
558		(void) fprintf(stderr, "top: Out of memory.\n");
559		quit(23);
560	}
561	/* get a pointer to the states summary array */
562	si->procstates = process_states;
563
564	/* set up flags which define what we are going to select */
565	show_idle = sel->idle;
566	show_self = sel->self == -1;
567	show_system = sel->system;
568	show_uid = sel->uid != -1;
569	show_command = sel->command != NULL;
570
571	/* count up process states and get pointers to interesting procs */
572	total_procs = 0;
573	active_procs = 0;
574	total_inblock = 0;
575	total_oublock = 0;
576	total_majflt = 0;
577	memset((char *)process_states, 0, sizeof(process_states));
578	prefp = pref;
579	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
580
581		if (pp->ki_stat == 0)
582			/* not in use */
583			continue;
584
585		if (!show_self && pp->ki_pid == sel->self)
586			/* skip self */
587			continue;
588
589		if (!show_system && (pp->ki_flag & P_SYSTEM))
590			/* skip system process */
591			continue;
592
593		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
594		    &p_vcsw, &p_ivcsw);
595		total_inblock += p_inblock;
596		total_oublock += p_oublock;
597		total_majflt += p_majflt;
598		total_procs++;
599		process_states[pp->ki_stat]++;
600
601		if (pp->ki_stat == SZOMB)
602			/* skip zombies */
603			continue;
604
605		if (displaymode == DISP_CPU && !show_idle &&
606		    (pp->ki_pctcpu == 0 || pp->ki_stat != SRUN))
607			/* skip idle or non-running processes */
608			continue;
609
610		if (displaymode == DISP_IO && !show_idle && p_io == 0)
611			/* skip processes that aren't doing I/O */
612			continue;
613
614		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
615			/* skip proc. that don't belong to the selected UID */
616			continue;
617
618		/*
619		 * When not showing threads, take the first thread
620		 * for output and add the fields that we can from
621		 * the rest of the process's threads rather than
622		 * using the system's mostly-broken KERN_PROC_PROC.
623		 */
624		if (sel->thread || prev_pp == NULL ||
625		    prev_pp->ki_pid != pp->ki_pid) {
626			*prefp++ = pp;
627			active_procs++;
628			prev_pp = pp;
629		} else {
630			prev_pp->ki_pctcpu += pp->ki_pctcpu;
631		}
632	}
633
634	/* if requested, sort the "interesting" processes */
635	if (compare != NULL)
636		qsort(pref, active_procs, sizeof(*pref), compare);
637
638	/* remember active and total counts */
639	si->p_total = total_procs;
640	si->p_active = pref_len = active_procs;
641
642	/* pass back a handle */
643	handle.next_proc = pref;
644	handle.remaining = active_procs;
645	return ((caddr_t)&handle);
646}
647
648static char fmt[128];	/* static area where result is built */
649
650char *
651format_next_process(caddr_t handle, char *(*get_userid)(int))
652{
653	struct kinfo_proc *pp;
654	const struct kinfo_proc *oldp;
655	long cputime;
656	double pct;
657	struct handle *hp;
658	char status[16];
659	int state;
660	struct rusage ru, *rup;
661	long p_tot, s_tot;
662	char *proc_fmt, thr_buf[6];
663
664	/* find and remember the next proc structure */
665	hp = (struct handle *)handle;
666	pp = *(hp->next_proc++);
667	hp->remaining--;
668
669	/* get the process's command name */
670	if ((pp->ki_sflag & PS_INMEM) == 0) {
671		/*
672		 * Print swapped processes as <pname>
673		 */
674		size_t len;
675
676		len = strlen(pp->ki_comm);
677		if (len > sizeof(pp->ki_comm) - 3)
678			len = sizeof(pp->ki_comm) - 3;
679		memmove(pp->ki_comm + 1, pp->ki_comm, len);
680		pp->ki_comm[0] = '<';
681		pp->ki_comm[len + 1] = '>';
682		pp->ki_comm[len + 2] = '\0';
683	}
684
685	/*
686	 * Convert the process's runtime from microseconds to seconds.  This
687	 * time includes the interrupt time although that is not wanted here.
688	 * ps(1) is similarly sloppy.
689	 */
690	cputime = (pp->ki_runtime + 500000) / 1000000;
691
692	/* calculate the base for cpu percentages */
693	pct = pctdouble(pp->ki_pctcpu);
694
695	/* generate "STATE" field */
696	switch (state = pp->ki_stat) {
697	case SRUN:
698		if (smpmode && pp->ki_oncpu != 0xff)
699			sprintf(status, "CPU%d", pp->ki_oncpu);
700		else
701			strcpy(status, "RUN");
702		break;
703	case SLOCK:
704		if (pp->ki_kiflag & KI_LOCKBLOCK) {
705			sprintf(status, "*%.6s", pp->ki_lockname);
706			break;
707		}
708		/* fall through */
709	case SSLEEP:
710		if (pp->ki_wmesg != NULL) {
711			sprintf(status, "%.6s", pp->ki_wmesg);
712			break;
713		}
714		/* FALLTHROUGH */
715	default:
716
717		if (state >= 0 &&
718		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
719			sprintf(status, "%.6s", state_abbrev[state]);
720		else
721			sprintf(status, "?%5d", state);
722		break;
723	}
724
725	if (displaymode == DISP_IO) {
726		oldp = get_old_proc(pp);
727		if (oldp != NULL) {
728			ru.ru_inblock = RU(pp)->ru_inblock -
729			    RU(oldp)->ru_inblock;
730			ru.ru_oublock = RU(pp)->ru_oublock -
731			    RU(oldp)->ru_oublock;
732			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
733			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
734			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
735			rup = &ru;
736		} else {
737			rup = RU(pp);
738		}
739		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
740		s_tot = total_inblock + total_oublock + total_majflt;
741
742		sprintf(fmt, io_Proc_format,
743		    pp->ki_pid,
744		    namelength, namelength, (*get_userid)(pp->ki_ruid),
745		    rup->ru_nvcsw,
746		    rup->ru_nivcsw,
747		    rup->ru_inblock,
748		    rup->ru_oublock,
749		    rup->ru_majflt,
750		    p_tot,
751		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
752		    screen_width > cmdlengthdelta ?
753		    screen_width - cmdlengthdelta : 0,
754		    printable(pp->ki_comm));
755		return (fmt);
756	}
757
758	/* format this entry */
759	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
760	if (ps.thread != 0)
761		thr_buf[0] = '\0';
762	else
763		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
764		    sizeof(thr_buf) - 2, pp->ki_numthreads);
765
766	sprintf(fmt, proc_fmt,
767	    pp->ki_pid,
768	    namelength, namelength, (*get_userid)(pp->ki_ruid),
769	    thr_buf,
770	    pp->ki_pri.pri_level - PZERO,
771	    format_nice(pp),
772	    format_k2(PROCSIZE(pp)),
773	    format_k2(pagetok(pp->ki_rssize)),
774	    status,
775	    smpmode ? pp->ki_lastcpu : 0,
776	    format_time(cputime),
777	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
778	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
779	    printable(pp->ki_comm));
780
781	/* return the result */
782	return (fmt);
783}
784
785static void
786getsysctl(const char *name, void *ptr, size_t len)
787{
788	size_t nlen = len;
789
790	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
791		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
792		    strerror(errno));
793		quit(23);
794	}
795	if (nlen != len) {
796		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
797		    name, (unsigned long)len, (unsigned long)nlen);
798		quit(23);
799	}
800}
801
802static
803const char *format_nice(const struct kinfo_proc *pp)
804{
805	static char nicebuf[5];
806
807	snprintf(nicebuf, sizeof(nicebuf), "%4d",
808	    /*
809	     * normal time      -> nice value -20 - +20
810	     * real time 0 - 31 -> nice value -52 - -21
811	     * idle time 0 - 31 -> nice value +21 - +52
812	     */
813	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
814		pp->ki_nice - NZERO :
815		(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
816		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
817		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))));
818	return (nicebuf);
819}
820
821/* comparison routines for qsort */
822
823static int
824compare_pid(const void *p1, const void *p2)
825{
826	const struct kinfo_proc * const *pp1 = p1;
827	const struct kinfo_proc * const *pp2 = p2;
828
829	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
830		abort();
831
832	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
833}
834
835/*
836 *  proc_compare - comparison function for "qsort"
837 *	Compares the resource consumption of two processes using five
838 *	distinct keys.  The keys (in descending order of importance) are:
839 *	percent cpu, cpu ticks, state, resident set size, total virtual
840 *	memory usage.  The process states are ordered as follows (from least
841 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
842 *	array declaration below maps a process state index into a number
843 *	that reflects this ordering.
844 */
845
846static int sorted_state[] = {
847	0,	/* not used		*/
848	3,	/* sleep		*/
849	1,	/* ABANDONED (WAIT)	*/
850	6,	/* run			*/
851	5,	/* start		*/
852	2,	/* zombie		*/
853	4	/* stop			*/
854};
855
856
857#define ORDERKEY_PCTCPU(a, b) do { \
858	long diff; \
859	if (ps.wcpu) \
860		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
861		    (b))) - \
862		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
863		    (a))); \
864	else \
865		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
866	if (diff != 0) \
867		return (diff > 0 ? 1 : -1); \
868} while (0)
869
870#define ORDERKEY_CPTICKS(a, b) do { \
871	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
872	if (diff != 0) \
873		return (diff > 0 ? 1 : -1); \
874} while (0)
875
876#define ORDERKEY_STATE(a, b) do { \
877	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
878	if (diff != 0) \
879		return (diff > 0 ? 1 : -1); \
880} while (0)
881
882#define ORDERKEY_PRIO(a, b) do { \
883	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
884	if (diff != 0) \
885		return (diff > 0 ? 1 : -1); \
886} while (0)
887
888#define	ORDERKEY_THREADS(a, b) do { \
889	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
890	if (diff != 0) \
891		return (diff > 0 ? 1 : -1); \
892} while (0)
893
894#define ORDERKEY_RSSIZE(a, b) do { \
895	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
896	if (diff != 0) \
897		return (diff > 0 ? 1 : -1); \
898} while (0)
899
900#define ORDERKEY_MEM(a, b) do { \
901	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
902	if (diff != 0) \
903		return (diff > 0 ? 1 : -1); \
904} while (0)
905
906/* compare_cpu - the comparison function for sorting by cpu percentage */
907
908int
909#ifdef ORDER
910compare_cpu(void *arg1, void *arg2)
911#else
912proc_compare(void *arg1, void *arg2)
913#endif
914{
915	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
916	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
917
918	ORDERKEY_PCTCPU(p1, p2);
919	ORDERKEY_CPTICKS(p1, p2);
920	ORDERKEY_STATE(p1, p2);
921	ORDERKEY_PRIO(p1, p2);
922	ORDERKEY_RSSIZE(p1, p2);
923	ORDERKEY_MEM(p1, p2);
924
925	return (0);
926}
927
928#ifdef ORDER
929/* "cpu" compare routines */
930int compare_size(), compare_res(), compare_time(), compare_prio(),
931    compare_threads();
932
933/*
934 * "io" compare routines.  Context switches aren't i/o, but are displayed
935 * on the "io" display.
936 */
937int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
938    compare_vcsw(), compare_ivcsw();
939
940int (*compares[])() = {
941	compare_cpu,
942	compare_size,
943	compare_res,
944	compare_time,
945	compare_prio,
946	compare_threads,
947	compare_iototal,
948	compare_ioread,
949	compare_iowrite,
950	compare_iofault,
951	compare_vcsw,
952	compare_ivcsw,
953	NULL
954};
955
956/* compare_size - the comparison function for sorting by total memory usage */
957
958int
959compare_size(void *arg1, void *arg2)
960{
961	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
962	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
963
964	ORDERKEY_MEM(p1, p2);
965	ORDERKEY_RSSIZE(p1, p2);
966	ORDERKEY_PCTCPU(p1, p2);
967	ORDERKEY_CPTICKS(p1, p2);
968	ORDERKEY_STATE(p1, p2);
969	ORDERKEY_PRIO(p1, p2);
970
971	return (0);
972}
973
974/* compare_res - the comparison function for sorting by resident set size */
975
976int
977compare_res(void *arg1, void *arg2)
978{
979	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
980	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
981
982	ORDERKEY_RSSIZE(p1, p2);
983	ORDERKEY_MEM(p1, p2);
984	ORDERKEY_PCTCPU(p1, p2);
985	ORDERKEY_CPTICKS(p1, p2);
986	ORDERKEY_STATE(p1, p2);
987	ORDERKEY_PRIO(p1, p2);
988
989	return (0);
990}
991
992/* compare_time - the comparison function for sorting by total cpu time */
993
994int
995compare_time(void *arg1, void *arg2)
996{
997	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
998	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
999
1000	ORDERKEY_CPTICKS(p1, p2);
1001	ORDERKEY_PCTCPU(p1, p2);
1002	ORDERKEY_STATE(p1, p2);
1003	ORDERKEY_PRIO(p1, p2);
1004	ORDERKEY_RSSIZE(p1, p2);
1005	ORDERKEY_MEM(p1, p2);
1006
1007	return (0);
1008}
1009
1010/* compare_prio - the comparison function for sorting by priority */
1011
1012int
1013compare_prio(void *arg1, void *arg2)
1014{
1015	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1016	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1017
1018	ORDERKEY_PRIO(p1, p2);
1019	ORDERKEY_CPTICKS(p1, p2);
1020	ORDERKEY_PCTCPU(p1, p2);
1021	ORDERKEY_STATE(p1, p2);
1022	ORDERKEY_RSSIZE(p1, p2);
1023	ORDERKEY_MEM(p1, p2);
1024
1025	return (0);
1026}
1027
1028/* compare_threads - the comparison function for sorting by threads */
1029int
1030compare_threads(void *arg1, void *arg2)
1031{
1032	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1033	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1034
1035	ORDERKEY_THREADS(p1, p2);
1036	ORDERKEY_PCTCPU(p1, p2);
1037	ORDERKEY_CPTICKS(p1, p2);
1038	ORDERKEY_STATE(p1, p2);
1039	ORDERKEY_PRIO(p1, p2);
1040	ORDERKEY_RSSIZE(p1, p2);
1041	ORDERKEY_MEM(p1, p2);
1042
1043	return (0);
1044}
1045#endif /* ORDER */
1046
1047/* assorted comparison functions for sorting by i/o */
1048
1049int
1050#ifdef ORDER
1051compare_iototal(void *arg1, void *arg2)
1052#else
1053io_compare(void *arg1, void *arg2)
1054#endif
1055{
1056	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1057	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1058
1059	return (get_io_total(p2) - get_io_total(p1));
1060}
1061
1062#ifdef ORDER
1063int
1064compare_ioread(void *arg1, void *arg2)
1065{
1066	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1067	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1068	long dummy, inp1, inp2;
1069
1070	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1071	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1072
1073	return (inp2 - inp1);
1074}
1075
1076int
1077compare_iowrite(void *arg1, void *arg2)
1078{
1079	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1080	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1081	long dummy, oup1, oup2;
1082
1083	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1084	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1085
1086	return (oup2 - oup1);
1087}
1088
1089int
1090compare_iofault(void *arg1, void *arg2)
1091{
1092	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1093	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1094	long dummy, flp1, flp2;
1095
1096	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1097	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1098
1099	return (flp2 - flp1);
1100}
1101
1102int
1103compare_vcsw(void *arg1, void *arg2)
1104{
1105	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1106	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1107	long dummy, flp1, flp2;
1108
1109	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1110	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1111
1112	return (flp2 - flp1);
1113}
1114
1115int
1116compare_ivcsw(void *arg1, void *arg2)
1117{
1118	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1119	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1120	long dummy, flp1, flp2;
1121
1122	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1123	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1124
1125	return (flp2 - flp1);
1126}
1127#endif /* ORDER */
1128
1129/*
1130 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1131 *		the process does not exist.
1132 *		It is EXTREMLY IMPORTANT that this function work correctly.
1133 *		If top runs setuid root (as in SVR4), then this function
1134 *		is the only thing that stands in the way of a serious
1135 *		security problem.  It validates requests for the "kill"
1136 *		and "renice" commands.
1137 */
1138
1139int
1140proc_owner(int pid)
1141{
1142	int cnt;
1143	struct kinfo_proc **prefp;
1144	struct kinfo_proc *pp;
1145
1146	prefp = pref;
1147	cnt = pref_len;
1148	while (--cnt >= 0) {
1149		pp = *prefp++;
1150		if (pp->ki_pid == (pid_t)pid)
1151			return ((int)pp->ki_ruid);
1152	}
1153	return (-1);
1154}
1155
1156static int
1157swapmode(int *retavail, int *retfree)
1158{
1159	int n;
1160	int pagesize = getpagesize();
1161	struct kvm_swap swapary[1];
1162
1163	*retavail = 0;
1164	*retfree = 0;
1165
1166#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1167
1168	n = kvm_getswapinfo(kd, swapary, 1, 0);
1169	if (n < 0 || swapary[0].ksw_total == 0)
1170		return (0);
1171
1172	*retavail = CONVERT(swapary[0].ksw_total);
1173	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1174
1175	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1176	return (n);
1177}
1178