machine.c revision 104388
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 104388 2002-10-02 20:33:52Z jhb $
24 */
25
26
27#include <sys/time.h>
28#include <sys/types.h>
29#include <sys/signal.h>
30#include <sys/param.h>
31
32#include "os.h"
33#include <stdio.h>
34#include <nlist.h>
35#include <math.h>
36#include <kvm.h>
37#include <pwd.h>
38#include <sys/errno.h>
39#include <sys/sysctl.h>
40#include <sys/dkstat.h>
41#include <sys/file.h>
42#include <sys/time.h>
43#include <sys/proc.h>
44#include <sys/user.h>
45#include <sys/vmmeter.h>
46#include <sys/resource.h>
47#include <sys/rtprio.h>
48
49/* Swap */
50#include <stdlib.h>
51
52#include <unistd.h>
53#include <osreldate.h> /* for changes in kernel structures */
54
55#include "top.h"
56#include "machine.h"
57#include "screen.h"
58#include "utils.h"
59
60static void getsysctl(char *, void *, size_t);
61
62#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
63
64extern char* printable(char *);
65int swapmode(int *retavail, int *retfree);
66static int smpmode;
67static int namelength;
68static int cmdlengthdelta;
69
70/* Prototypes for top internals */
71void quit(int);
72
73/* get_process_info passes back a handle.  This is what it looks like: */
74
75struct handle
76{
77    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
78    int remaining;		/* number of pointers remaining */
79};
80
81/* declarations for load_avg */
82#include "loadavg.h"
83
84/* define what weighted cpu is.  */
85#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
86			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
87
88/* what we consider to be process size: */
89#define PROCSIZE(pp) ((pp)->ki_size / 1024)
90
91/* definitions for indices in the nlist array */
92
93/*
94 *  These definitions control the format of the per-process area
95 */
96
97static char smp_header[] =
98  "  PID %-*.*s PRI NICE   SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
99
100#define smp_Proc_format \
101	"%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
102
103static char up_header[] =
104  "  PID %-*.*s PRI NICE   SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
105
106#define up_Proc_format \
107	"%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
108
109
110
111/* process state names for the "STATE" column of the display */
112/* the extra nulls in the string "run" are for adding a slash and
113   the processor number when needed */
114
115char *state_abbrev[] =
116{
117    "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
118};
119
120
121static kvm_t *kd;
122
123/* values that we stash away in _init and use in later routines */
124
125static double logcpu;
126
127/* these are retrieved from the kernel in _init */
128
129static load_avg  ccpu;
130
131/* these are used in the get_ functions */
132
133static int lastpid;
134
135/* these are for calculating cpu state percentages */
136
137static long cp_time[CPUSTATES];
138static long cp_old[CPUSTATES];
139static long cp_diff[CPUSTATES];
140
141/* these are for detailing the process states */
142
143int process_states[8];
144char *procstatenames[] = {
145    "", " starting, ", " running, ", " sleeping, ", " stopped, ",
146    " zombie, ", " waiting, ", " lock, ",
147    NULL
148};
149
150/* these are for detailing the cpu states */
151
152int cpu_states[CPUSTATES];
153char *cpustatenames[] = {
154    "user", "nice", "system", "interrupt", "idle", NULL
155};
156
157/* these are for detailing the memory statistics */
158
159int memory_stats[7];
160char *memorynames[] = {
161    "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
162    NULL
163};
164
165int swap_stats[7];
166char *swapnames[] = {
167/*   0           1            2           3            4       5 */
168    "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
169    NULL
170};
171
172
173/* these are for keeping track of the proc array */
174
175static int nproc;
176static int onproc = -1;
177static int pref_len;
178static struct kinfo_proc *pbase;
179static struct kinfo_proc **pref;
180
181/* these are for getting the memory statistics */
182
183static int pageshift;		/* log base 2 of the pagesize */
184
185/* define pagetok in terms of pageshift */
186
187#define pagetok(size) ((size) << pageshift)
188
189/* useful externals */
190long percentages();
191
192#ifdef ORDER
193/* sorting orders. first is default */
194char *ordernames[] = {
195    "cpu", "size", "res", "time", "pri", NULL
196};
197#endif
198
199int
200machine_init(statics)
201
202struct statics *statics;
203
204{
205    register int pagesize;
206    size_t modelen;
207    struct passwd *pw;
208
209    modelen = sizeof(smpmode);
210    if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
211         sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
212	modelen != sizeof(smpmode))
213	    smpmode = 0;
214
215    while ((pw = getpwent()) != NULL) {
216	if (strlen(pw->pw_name) > namelength)
217	    namelength = strlen(pw->pw_name);
218    }
219    if (namelength < 8)
220	namelength = 8;
221    if (smpmode && namelength > 13)
222	namelength = 13;
223    else if (namelength > 15)
224	namelength = 15;
225
226    if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL)
227	return -1;
228
229    GETSYSCTL("kern.ccpu", ccpu);
230
231    /* this is used in calculating WCPU -- calculate it ahead of time */
232    logcpu = log(loaddouble(ccpu));
233
234    pbase = NULL;
235    pref = NULL;
236    nproc = 0;
237    onproc = -1;
238    /* get the page size with "getpagesize" and calculate pageshift from it */
239    pagesize = getpagesize();
240    pageshift = 0;
241    while (pagesize > 1)
242    {
243	pageshift++;
244	pagesize >>= 1;
245    }
246
247    /* we only need the amount of log(2)1024 for our conversion */
248    pageshift -= LOG1024;
249
250    /* fill in the statics information */
251    statics->procstate_names = procstatenames;
252    statics->cpustate_names = cpustatenames;
253    statics->memory_names = memorynames;
254    statics->swap_names = swapnames;
255#ifdef ORDER
256    statics->order_names = ordernames;
257#endif
258
259    /* all done! */
260    return(0);
261}
262
263char *format_header(uname_field)
264
265register char *uname_field;
266
267{
268    static char Header[128];
269
270    snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
271	     namelength, namelength, uname_field);
272
273    cmdlengthdelta = strlen(Header) - 7;
274
275    return Header;
276}
277
278static int swappgsin = -1;
279static int swappgsout = -1;
280extern struct timeval timeout;
281
282void
283get_system_info(si)
284
285struct system_info *si;
286
287{
288    long total;
289    struct loadavg sysload;
290    int mib[2];
291    struct timeval boottime;
292    size_t bt_size;
293
294    /* get the cp_time array */
295    GETSYSCTL("kern.cp_time", cp_time);
296    GETSYSCTL("vm.loadavg", sysload);
297    GETSYSCTL("kern.lastpid", lastpid);
298
299    /* convert load averages to doubles */
300    {
301	register int i;
302	register double *infoloadp;
303
304	infoloadp = si->load_avg;
305	for (i = 0; i < 3; i++)
306	{
307#ifdef notyet
308	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
309#endif
310	    *infoloadp++ = loaddouble(sysload.ldavg[i]);
311	}
312    }
313
314    /* convert cp_time counts to percentages */
315    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
316
317    /* sum memory & swap statistics */
318    {
319	static unsigned int swap_delay = 0;
320	static int swapavail = 0;
321	static int swapfree = 0;
322	static int bufspace = 0;
323	static int nspgsin, nspgsout;
324
325	GETSYSCTL("vfs.bufspace", bufspace);
326	GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
327	GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
328	GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
329	GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
330	GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
331	GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
332	GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
333	/* convert memory stats to Kbytes */
334	memory_stats[0] = pagetok(memory_stats[0]);
335	memory_stats[1] = pagetok(memory_stats[1]);
336	memory_stats[2] = pagetok(memory_stats[2]);
337	memory_stats[3] = pagetok(memory_stats[3]);
338	memory_stats[4] = bufspace / 1024;
339	memory_stats[5] = pagetok(memory_stats[5]);
340	memory_stats[6] = -1;
341
342	/* first interval */
343        if (swappgsin < 0) {
344	    swap_stats[4] = 0;
345	    swap_stats[5] = 0;
346	}
347
348	/* compute differences between old and new swap statistic */
349	else {
350	    swap_stats[4] = pagetok(((nspgsin - swappgsin)));
351	    swap_stats[5] = pagetok(((nspgsout - swappgsout)));
352	}
353
354        swappgsin = nspgsin;
355	swappgsout = nspgsout;
356
357	/* call CPU heavy swapmode() only for changes */
358        if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
359	    swap_stats[3] = swapmode(&swapavail, &swapfree);
360	    swap_stats[0] = swapavail;
361	    swap_stats[1] = swapavail - swapfree;
362	    swap_stats[2] = swapfree;
363	}
364        swap_delay = 1;
365	swap_stats[6] = -1;
366    }
367
368    /* set arrays and strings */
369    si->cpustates = cpu_states;
370    si->memory = memory_stats;
371    si->swap = swap_stats;
372
373
374    if(lastpid > 0) {
375	si->last_pid = lastpid;
376    } else {
377	si->last_pid = -1;
378    }
379
380    /*
381     * Print how long system has been up.
382     * (Found by looking getting "boottime" from the kernel)
383     */
384    mib[0] = CTL_KERN;
385    mib[1] = KERN_BOOTTIME;
386    bt_size = sizeof(boottime);
387    if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
388	boottime.tv_sec != 0) {
389	si->boottime = boottime;
390    } else {
391	si->boottime.tv_sec = -1;
392    }
393}
394
395static struct handle handle;
396
397caddr_t get_process_info(si, sel, compare)
398
399struct system_info *si;
400struct process_select *sel;
401int (*compare)();
402
403{
404    register int i;
405    register int total_procs;
406    register int active_procs;
407    register struct kinfo_proc **prefp;
408    register struct kinfo_proc *pp;
409
410    /* these are copied out of sel for speed */
411    int show_idle;
412    int show_self;
413    int show_system;
414    int show_uid;
415    int show_command;
416
417
418    pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
419    if (nproc > onproc)
420	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
421		* (onproc = nproc));
422    if (pref == NULL || pbase == NULL) {
423	(void) fprintf(stderr, "top: Out of memory.\n");
424	quit(23);
425    }
426    /* get a pointer to the states summary array */
427    si->procstates = process_states;
428
429    /* set up flags which define what we are going to select */
430    show_idle = sel->idle;
431    show_self = sel->self;
432    show_system = sel->system;
433    show_uid = sel->uid != -1;
434    show_command = sel->command != NULL;
435
436    /* count up process states and get pointers to interesting procs */
437    total_procs = 0;
438    active_procs = 0;
439    memset((char *)process_states, 0, sizeof(process_states));
440    prefp = pref;
441    for (pp = pbase, i = 0; i < nproc; pp++, i++)
442    {
443	/*
444	 *  Place pointers to each valid proc structure in pref[].
445	 *  Process slots that are actually in use have a non-zero
446	 *  status field.  Processes with P_SYSTEM set are system
447	 *  processes---these get ignored unless show_sysprocs is set.
448	 */
449	if (pp->ki_stat != 0 &&
450	    (show_self != pp->ki_pid) &&
451	    (show_system || ((pp->ki_flag & P_SYSTEM) == 0)))
452	{
453	    total_procs++;
454	    process_states[(unsigned char) pp->ki_stat]++;
455	    if ((pp->ki_stat != SZOMB) &&
456		(show_idle || (pp->ki_pctcpu != 0) ||
457		 (pp->ki_stat == SRUN)) &&
458		(!show_uid || pp->ki_ruid == (uid_t)sel->uid))
459	    {
460		*prefp++ = pp;
461		active_procs++;
462	    }
463	}
464    }
465
466    /* if requested, sort the "interesting" processes */
467    if (compare != NULL)
468    {
469	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
470    }
471
472    /* remember active and total counts */
473    si->p_total = total_procs;
474    si->p_active = pref_len = active_procs;
475
476    /* pass back a handle */
477    handle.next_proc = pref;
478    handle.remaining = active_procs;
479    return((caddr_t)&handle);
480}
481
482char fmt[128];		/* static area where result is built */
483
484char *format_next_process(handle, get_userid)
485
486caddr_t handle;
487char *(*get_userid)();
488
489{
490    register struct kinfo_proc *pp;
491    register long cputime;
492    register double pct;
493    struct handle *hp;
494    char status[16];
495    int state;
496
497    /* find and remember the next proc structure */
498    hp = (struct handle *)handle;
499    pp = *(hp->next_proc++);
500    hp->remaining--;
501
502    /* get the process's command name */
503    if ((pp->ki_sflag & PS_INMEM) == 0) {
504	/*
505	 * Print swapped processes as <pname>
506	 */
507	char *comm = pp->ki_comm;
508#define COMSIZ sizeof(pp->ki_comm)
509	char buf[COMSIZ];
510	(void) strncpy(buf, comm, COMSIZ);
511	comm[0] = '<';
512	(void) strncpy(&comm[1], buf, COMSIZ - 2);
513	comm[COMSIZ - 2] = '\0';
514	(void) strncat(comm, ">", COMSIZ - 1);
515	comm[COMSIZ - 1] = '\0';
516    }
517
518    /*
519     * Convert the process's runtime from microseconds to seconds.  This
520     * time includes the interrupt time although that is not wanted here.
521     * ps(1) is similarly sloppy.
522     */
523    cputime = (pp->ki_runtime + 500000) / 1000000;
524
525    /* calculate the base for cpu percentages */
526    pct = pctdouble(pp->ki_pctcpu);
527
528    /* generate "STATE" field */
529    switch (state = pp->ki_stat) {
530	case SRUN:
531	    if (smpmode && pp->ki_oncpu != 0xff)
532		sprintf(status, "CPU%d", pp->ki_oncpu);
533	    else
534		strcpy(status, "RUN");
535	    break;
536	case SLOCK:
537	    if (pp->ki_kiflag & KI_LOCKBLOCK) {
538		sprintf(status, "*%.6s", pp->ki_lockname);
539	        break;
540	    }
541	    /* fall through */
542	case SSLEEP:
543	    if (pp->ki_wmesg != NULL) {
544		sprintf(status, "%.6s", pp->ki_wmesg);
545		break;
546	    }
547	    /* FALLTHROUGH */
548	default:
549
550	    if (state >= 0 &&
551	        state < sizeof(state_abbrev) / sizeof(*state_abbrev))
552		    sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
553	    else
554		    sprintf(status, "?%5d", state);
555	    break;
556    }
557
558    /* format this entry */
559    sprintf(fmt,
560	    smpmode ? smp_Proc_format : up_Proc_format,
561	    pp->ki_pid,
562	    namelength, namelength,
563	    (*get_userid)(pp->ki_ruid),
564	    pp->ki_pri.pri_level - PZERO,
565
566	    /*
567	     * normal time      -> nice value -20 - +20
568	     * real time 0 - 31 -> nice value -52 - -21
569	     * idle time 0 - 31 -> nice value +21 - +52
570	     */
571	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
572	    	pp->ki_nice - NZERO :
573	    	(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
574		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
575		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
576	    format_k2(PROCSIZE(pp)),
577	    format_k2(pagetok(pp->ki_rssize)),
578	    status,
579	    smpmode ? pp->ki_lastcpu : 0,
580	    format_time(cputime),
581	    100.0 * weighted_cpu(pct, pp),
582	    100.0 * pct,
583	    screen_width > cmdlengthdelta ?
584		screen_width - cmdlengthdelta :
585		0,
586	    printable(pp->ki_comm));
587
588    /* return the result */
589    return(fmt);
590}
591
592static void getsysctl (name, ptr, len)
593
594char *name;
595void *ptr;
596size_t len;
597
598{
599    size_t nlen = len;
600    if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
601	    fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
602		strerror(errno));
603	    quit(23);
604    }
605    if (nlen != len) {
606	    fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
607		(unsigned long)len, (unsigned long)nlen);
608	    quit(23);
609    }
610}
611
612/* comparison routines for qsort */
613
614/*
615 *  proc_compare - comparison function for "qsort"
616 *	Compares the resource consumption of two processes using five
617 *  	distinct keys.  The keys (in descending order of importance) are:
618 *  	percent cpu, cpu ticks, state, resident set size, total virtual
619 *  	memory usage.  The process states are ordered as follows (from least
620 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
621 *  	array declaration below maps a process state index into a number
622 *  	that reflects this ordering.
623 */
624
625static unsigned char sorted_state[] =
626{
627    0,	/* not used		*/
628    3,	/* sleep		*/
629    1,	/* ABANDONED (WAIT)	*/
630    6,	/* run			*/
631    5,	/* start		*/
632    2,	/* zombie		*/
633    4	/* stop			*/
634};
635
636
637#define ORDERKEY_PCTCPU \
638  if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \
639     (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
640
641#define ORDERKEY_CPTICKS \
642  if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \
643                p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0)
644
645#define ORDERKEY_STATE \
646  if ((result = sorted_state[(unsigned char) p2->ki_stat] - \
647                sorted_state[(unsigned char) p1->ki_stat]) == 0)
648
649#define ORDERKEY_PRIO \
650  if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0)
651
652#define ORDERKEY_RSSIZE \
653  if ((result = p2->ki_rssize - p1->ki_rssize) == 0)
654
655#define ORDERKEY_MEM \
656  if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
657
658/* compare_cpu - the comparison function for sorting by cpu percentage */
659
660int
661#ifdef ORDER
662compare_cpu(pp1, pp2)
663#else
664proc_compare(pp1, pp2)
665#endif
666
667struct proc **pp1;
668struct proc **pp2;
669
670{
671    register struct kinfo_proc *p1;
672    register struct kinfo_proc *p2;
673    register int result;
674    register pctcpu lresult;
675
676    /* remove one level of indirection */
677    p1 = *(struct kinfo_proc **) pp1;
678    p2 = *(struct kinfo_proc **) pp2;
679
680    ORDERKEY_PCTCPU
681    ORDERKEY_CPTICKS
682    ORDERKEY_STATE
683    ORDERKEY_PRIO
684    ORDERKEY_RSSIZE
685    ORDERKEY_MEM
686    ;
687
688    return(result);
689}
690
691#ifdef ORDER
692/* compare routines */
693int compare_size(), compare_res(), compare_time(), compare_prio();
694
695int (*proc_compares[])() = {
696    compare_cpu,
697    compare_size,
698    compare_res,
699    compare_time,
700    compare_prio,
701    NULL
702};
703
704/* compare_size - the comparison function for sorting by total memory usage */
705
706int
707compare_size(pp1, pp2)
708
709struct proc **pp1;
710struct proc **pp2;
711
712{
713    register struct kinfo_proc *p1;
714    register struct kinfo_proc *p2;
715    register int result;
716    register pctcpu lresult;
717
718    /* remove one level of indirection */
719    p1 = *(struct kinfo_proc **) pp1;
720    p2 = *(struct kinfo_proc **) pp2;
721
722    ORDERKEY_MEM
723    ORDERKEY_RSSIZE
724    ORDERKEY_PCTCPU
725    ORDERKEY_CPTICKS
726    ORDERKEY_STATE
727    ORDERKEY_PRIO
728    ;
729
730    return(result);
731}
732
733/* compare_res - the comparison function for sorting by resident set size */
734
735int
736compare_res(pp1, pp2)
737
738struct proc **pp1;
739struct proc **pp2;
740
741{
742    register struct kinfo_proc *p1;
743    register struct kinfo_proc *p2;
744    register int result;
745    register pctcpu lresult;
746
747    /* remove one level of indirection */
748    p1 = *(struct kinfo_proc **) pp1;
749    p2 = *(struct kinfo_proc **) pp2;
750
751    ORDERKEY_RSSIZE
752    ORDERKEY_MEM
753    ORDERKEY_PCTCPU
754    ORDERKEY_CPTICKS
755    ORDERKEY_STATE
756    ORDERKEY_PRIO
757    ;
758
759    return(result);
760}
761
762/* compare_time - the comparison function for sorting by total cpu time */
763
764int
765compare_time(pp1, pp2)
766
767struct proc **pp1;
768struct proc **pp2;
769
770{
771    register struct kinfo_proc *p1;
772    register struct kinfo_proc *p2;
773    register int result;
774    register pctcpu lresult;
775
776    /* remove one level of indirection */
777    p1 = *(struct kinfo_proc **) pp1;
778    p2 = *(struct kinfo_proc **) pp2;
779
780    ORDERKEY_CPTICKS
781    ORDERKEY_PCTCPU
782    ORDERKEY_STATE
783    ORDERKEY_PRIO
784    ORDERKEY_RSSIZE
785    ORDERKEY_MEM
786    ;
787
788      return(result);
789  }
790
791/* compare_prio - the comparison function for sorting by cpu percentage */
792
793int
794compare_prio(pp1, pp2)
795
796struct proc **pp1;
797struct proc **pp2;
798
799{
800    register struct kinfo_proc *p1;
801    register struct kinfo_proc *p2;
802    register int result;
803    register pctcpu lresult;
804
805    /* remove one level of indirection */
806    p1 = *(struct kinfo_proc **) pp1;
807    p2 = *(struct kinfo_proc **) pp2;
808
809    ORDERKEY_PRIO
810    ORDERKEY_CPTICKS
811    ORDERKEY_PCTCPU
812    ORDERKEY_STATE
813    ORDERKEY_RSSIZE
814    ORDERKEY_MEM
815    ;
816
817    return(result);
818}
819#endif
820
821/*
822 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
823 *		the process does not exist.
824 *		It is EXTREMLY IMPORTANT that this function work correctly.
825 *		If top runs setuid root (as in SVR4), then this function
826 *		is the only thing that stands in the way of a serious
827 *		security problem.  It validates requests for the "kill"
828 *		and "renice" commands.
829 */
830
831int proc_owner(pid)
832
833int pid;
834
835{
836    register int cnt;
837    register struct kinfo_proc **prefp;
838    register struct kinfo_proc *pp;
839
840    prefp = pref;
841    cnt = pref_len;
842    while (--cnt >= 0)
843    {
844	pp = *prefp++;
845	if (pp->ki_pid == (pid_t)pid)
846	{
847	    return((int)pp->ki_ruid);
848	}
849    }
850    return(-1);
851}
852
853int
854swapmode(retavail, retfree)
855	int *retavail;
856	int *retfree;
857{
858	int n;
859	int pagesize = getpagesize();
860	struct kvm_swap swapary[1];
861
862	*retavail = 0;
863	*retfree = 0;
864
865#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
866
867	n = kvm_getswapinfo(kd, swapary, 1, 0);
868	if (n < 0 || swapary[0].ksw_total == 0)
869		return(0);
870
871	*retavail = CONVERT(swapary[0].ksw_total);
872	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
873
874	n = (int)((double)swapary[0].ksw_used * 100.0 /
875	    (double)swapary[0].ksw_total);
876	return(n);
877}
878
879