1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD$");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/sf_buf.h>
67
68#include <machine/atomic.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <vm/vm_object.h>
73#include <vm/vm_page.h>
74#include <vm/vm_pager.h>
75#include <vm/vm_map.h>
76#include <vm/vnode_pager.h>
77#include <vm/vm_extern.h>
78
79static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
80    daddr_t *rtaddress, int *run);
81static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
82static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
83static void vnode_pager_dealloc(vm_object_t);
84static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
85static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
86static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
87static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
88    vm_ooffset_t, struct ucred *cred);
89
90struct pagerops vnodepagerops = {
91	.pgo_alloc =	vnode_pager_alloc,
92	.pgo_dealloc =	vnode_pager_dealloc,
93	.pgo_getpages =	vnode_pager_getpages,
94	.pgo_putpages =	vnode_pager_putpages,
95	.pgo_haspage =	vnode_pager_haspage,
96};
97
98int vnode_pbuf_freecnt;
99
100/* Create the VM system backing object for this vnode */
101int
102vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
103{
104	vm_object_t object;
105	vm_ooffset_t size = isize;
106	struct vattr va;
107
108	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
109		return (0);
110
111	while ((object = vp->v_object) != NULL) {
112		VM_OBJECT_LOCK(object);
113		if (!(object->flags & OBJ_DEAD)) {
114			VM_OBJECT_UNLOCK(object);
115			return (0);
116		}
117		VOP_UNLOCK(vp, 0);
118		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
119		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
120		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
121	}
122
123	if (size == 0) {
124		if (vn_isdisk(vp, NULL)) {
125			size = IDX_TO_OFF(INT_MAX);
126		} else {
127			if (VOP_GETATTR(vp, &va, td->td_ucred))
128				return (0);
129			size = va.va_size;
130		}
131	}
132
133	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
134	/*
135	 * Dereference the reference we just created.  This assumes
136	 * that the object is associated with the vp.
137	 */
138	VM_OBJECT_LOCK(object);
139	object->ref_count--;
140	VM_OBJECT_UNLOCK(object);
141	vrele(vp);
142
143	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
144
145	return (0);
146}
147
148void
149vnode_destroy_vobject(struct vnode *vp)
150{
151	struct vm_object *obj;
152
153	obj = vp->v_object;
154	if (obj == NULL)
155		return;
156	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
157	VM_OBJECT_LOCK(obj);
158	if (obj->ref_count == 0) {
159		/*
160		 * vclean() may be called twice. The first time
161		 * removes the primary reference to the object,
162		 * the second time goes one further and is a
163		 * special-case to terminate the object.
164		 *
165		 * don't double-terminate the object
166		 */
167		if ((obj->flags & OBJ_DEAD) == 0)
168			vm_object_terminate(obj);
169		else
170			VM_OBJECT_UNLOCK(obj);
171	} else {
172		/*
173		 * Woe to the process that tries to page now :-).
174		 */
175		vm_pager_deallocate(obj);
176		VM_OBJECT_UNLOCK(obj);
177	}
178	vp->v_object = NULL;
179}
180
181
182/*
183 * Allocate (or lookup) pager for a vnode.
184 * Handle is a vnode pointer.
185 *
186 * MPSAFE
187 */
188vm_object_t
189vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
190    vm_ooffset_t offset, struct ucred *cred)
191{
192	vm_object_t object;
193	struct vnode *vp;
194
195	/*
196	 * Pageout to vnode, no can do yet.
197	 */
198	if (handle == NULL)
199		return (NULL);
200
201	vp = (struct vnode *) handle;
202
203	/*
204	 * If the object is being terminated, wait for it to
205	 * go away.
206	 */
207retry:
208	while ((object = vp->v_object) != NULL) {
209		VM_OBJECT_LOCK(object);
210		if ((object->flags & OBJ_DEAD) == 0)
211			break;
212		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
213		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
214	}
215
216	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
217
218	if (object == NULL) {
219		/*
220		 * Add an object of the appropriate size
221		 */
222		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
223
224		object->un_pager.vnp.vnp_size = size;
225		object->un_pager.vnp.writemappings = 0;
226
227		object->handle = handle;
228		VI_LOCK(vp);
229		if (vp->v_object != NULL) {
230			/*
231			 * Object has been created while we were sleeping
232			 */
233			VI_UNLOCK(vp);
234			vm_object_destroy(object);
235			goto retry;
236		}
237		vp->v_object = object;
238		VI_UNLOCK(vp);
239	} else {
240		object->ref_count++;
241		VM_OBJECT_UNLOCK(object);
242	}
243	vref(vp);
244	return (object);
245}
246
247/*
248 *	The object must be locked.
249 */
250static void
251vnode_pager_dealloc(object)
252	vm_object_t object;
253{
254	struct vnode *vp;
255	int refs;
256
257	vp = object->handle;
258	if (vp == NULL)
259		panic("vnode_pager_dealloc: pager already dealloced");
260
261	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
262	vm_object_pip_wait(object, "vnpdea");
263	refs = object->ref_count;
264
265	object->handle = NULL;
266	object->type = OBJT_DEAD;
267	if (object->flags & OBJ_DISCONNECTWNT) {
268		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
269		wakeup(object);
270	}
271	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
272	if (object->un_pager.vnp.writemappings > 0) {
273		object->un_pager.vnp.writemappings = 0;
274		VOP_ADD_WRITECOUNT(vp, -1);
275	}
276	vp->v_object = NULL;
277	VOP_UNSET_TEXT(vp);
278	VM_OBJECT_UNLOCK(object);
279	while (refs-- > 0)
280		vunref(vp);
281	VM_OBJECT_LOCK(object);
282}
283
284static boolean_t
285vnode_pager_haspage(object, pindex, before, after)
286	vm_object_t object;
287	vm_pindex_t pindex;
288	int *before;
289	int *after;
290{
291	struct vnode *vp = object->handle;
292	daddr_t bn;
293	int err;
294	daddr_t reqblock;
295	int poff;
296	int bsize;
297	int pagesperblock, blocksperpage;
298	int vfslocked;
299
300	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301	/*
302	 * If no vp or vp is doomed or marked transparent to VM, we do not
303	 * have the page.
304	 */
305	if (vp == NULL || vp->v_iflag & VI_DOOMED)
306		return FALSE;
307	/*
308	 * If the offset is beyond end of file we do
309	 * not have the page.
310	 */
311	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
312		return FALSE;
313
314	bsize = vp->v_mount->mnt_stat.f_iosize;
315	pagesperblock = bsize / PAGE_SIZE;
316	blocksperpage = 0;
317	if (pagesperblock > 0) {
318		reqblock = pindex / pagesperblock;
319	} else {
320		blocksperpage = (PAGE_SIZE / bsize);
321		reqblock = pindex * blocksperpage;
322	}
323	VM_OBJECT_UNLOCK(object);
324	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
325	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
326	VFS_UNLOCK_GIANT(vfslocked);
327	VM_OBJECT_LOCK(object);
328	if (err)
329		return TRUE;
330	if (bn == -1)
331		return FALSE;
332	if (pagesperblock > 0) {
333		poff = pindex - (reqblock * pagesperblock);
334		if (before) {
335			*before *= pagesperblock;
336			*before += poff;
337		}
338		if (after) {
339			int numafter;
340			*after *= pagesperblock;
341			numafter = pagesperblock - (poff + 1);
342			if (IDX_TO_OFF(pindex + numafter) >
343			    object->un_pager.vnp.vnp_size) {
344				numafter =
345		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
346				    pindex;
347			}
348			*after += numafter;
349		}
350	} else {
351		if (before) {
352			*before /= blocksperpage;
353		}
354
355		if (after) {
356			*after /= blocksperpage;
357		}
358	}
359	return TRUE;
360}
361
362/*
363 * Lets the VM system know about a change in size for a file.
364 * We adjust our own internal size and flush any cached pages in
365 * the associated object that are affected by the size change.
366 *
367 * Note: this routine may be invoked as a result of a pager put
368 * operation (possibly at object termination time), so we must be careful.
369 */
370void
371vnode_pager_setsize(vp, nsize)
372	struct vnode *vp;
373	vm_ooffset_t nsize;
374{
375	vm_object_t object;
376	vm_page_t m;
377	vm_pindex_t nobjsize;
378
379	if ((object = vp->v_object) == NULL)
380		return;
381/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
382	VM_OBJECT_LOCK(object);
383	if (object->type == OBJT_DEAD) {
384		VM_OBJECT_UNLOCK(object);
385		return;
386	}
387	KASSERT(object->type == OBJT_VNODE,
388	    ("not vnode-backed object %p", object));
389	if (nsize == object->un_pager.vnp.vnp_size) {
390		/*
391		 * Hasn't changed size
392		 */
393		VM_OBJECT_UNLOCK(object);
394		return;
395	}
396	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
397	if (nsize < object->un_pager.vnp.vnp_size) {
398		/*
399		 * File has shrunk. Toss any cached pages beyond the new EOF.
400		 */
401		if (nobjsize < object->size)
402			vm_object_page_remove(object, nobjsize, object->size,
403			    0);
404		/*
405		 * this gets rid of garbage at the end of a page that is now
406		 * only partially backed by the vnode.
407		 *
408		 * XXX for some reason (I don't know yet), if we take a
409		 * completely invalid page and mark it partially valid
410		 * it can screw up NFS reads, so we don't allow the case.
411		 */
412		if ((nsize & PAGE_MASK) &&
413		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
414		    m->valid != 0) {
415			int base = (int)nsize & PAGE_MASK;
416			int size = PAGE_SIZE - base;
417
418			/*
419			 * Clear out partial-page garbage in case
420			 * the page has been mapped.
421			 */
422			pmap_zero_page_area(m, base, size);
423
424			/*
425			 * Update the valid bits to reflect the blocks that
426			 * have been zeroed.  Some of these valid bits may
427			 * have already been set.
428			 */
429			vm_page_set_valid(m, base, size);
430
431			/*
432			 * Round "base" to the next block boundary so that the
433			 * dirty bit for a partially zeroed block is not
434			 * cleared.
435			 */
436			base = roundup2(base, DEV_BSIZE);
437
438			/*
439			 * Clear out partial-page dirty bits.
440			 *
441			 * note that we do not clear out the valid
442			 * bits.  This would prevent bogus_page
443			 * replacement from working properly.
444			 */
445			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
446		} else if ((nsize & PAGE_MASK) &&
447		    __predict_false(object->cache != NULL)) {
448			vm_page_cache_free(object, OFF_TO_IDX(nsize),
449			    nobjsize);
450		}
451	}
452	object->un_pager.vnp.vnp_size = nsize;
453	object->size = nobjsize;
454	VM_OBJECT_UNLOCK(object);
455}
456
457/*
458 * calculate the linear (byte) disk address of specified virtual
459 * file address
460 */
461static int
462vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
463    int *run)
464{
465	int bsize;
466	int err;
467	daddr_t vblock;
468	daddr_t voffset;
469
470	if (address < 0)
471		return -1;
472
473	if (vp->v_iflag & VI_DOOMED)
474		return -1;
475
476	bsize = vp->v_mount->mnt_stat.f_iosize;
477	vblock = address / bsize;
478	voffset = address % bsize;
479
480	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
481	if (err == 0) {
482		if (*rtaddress != -1)
483			*rtaddress += voffset / DEV_BSIZE;
484		if (run) {
485			*run += 1;
486			*run *= bsize/PAGE_SIZE;
487			*run -= voffset/PAGE_SIZE;
488		}
489	}
490
491	return (err);
492}
493
494/*
495 * small block filesystem vnode pager input
496 */
497static int
498vnode_pager_input_smlfs(object, m)
499	vm_object_t object;
500	vm_page_t m;
501{
502	struct vnode *vp;
503	struct bufobj *bo;
504	struct buf *bp;
505	struct sf_buf *sf;
506	daddr_t fileaddr;
507	vm_offset_t bsize;
508	vm_page_bits_t bits;
509	int error, i;
510
511	error = 0;
512	vp = object->handle;
513	if (vp->v_iflag & VI_DOOMED)
514		return VM_PAGER_BAD;
515
516	bsize = vp->v_mount->mnt_stat.f_iosize;
517
518	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
519
520	sf = sf_buf_alloc(m, 0);
521
522	for (i = 0; i < PAGE_SIZE / bsize; i++) {
523		vm_ooffset_t address;
524
525		bits = vm_page_bits(i * bsize, bsize);
526		if (m->valid & bits)
527			continue;
528
529		address = IDX_TO_OFF(m->pindex) + i * bsize;
530		if (address >= object->un_pager.vnp.vnp_size) {
531			fileaddr = -1;
532		} else {
533			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
534			if (error)
535				break;
536		}
537		if (fileaddr != -1) {
538			bp = getpbuf(&vnode_pbuf_freecnt);
539
540			/* build a minimal buffer header */
541			bp->b_iocmd = BIO_READ;
542			bp->b_iodone = bdone;
543			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
544			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
545			bp->b_rcred = crhold(curthread->td_ucred);
546			bp->b_wcred = crhold(curthread->td_ucred);
547			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
548			bp->b_blkno = fileaddr;
549			pbgetbo(bo, bp);
550			bp->b_vp = vp;
551			bp->b_bcount = bsize;
552			bp->b_bufsize = bsize;
553			bp->b_runningbufspace = bp->b_bufsize;
554			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
555
556			/* do the input */
557			bp->b_iooffset = dbtob(bp->b_blkno);
558			bstrategy(bp);
559
560			bwait(bp, PVM, "vnsrd");
561
562			if ((bp->b_ioflags & BIO_ERROR) != 0)
563				error = EIO;
564
565			/*
566			 * free the buffer header back to the swap buffer pool
567			 */
568			bp->b_vp = NULL;
569			pbrelbo(bp);
570			relpbuf(bp, &vnode_pbuf_freecnt);
571			if (error)
572				break;
573		} else
574			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
575		KASSERT((m->dirty & bits) == 0,
576		    ("vnode_pager_input_smlfs: page %p is dirty", m));
577		VM_OBJECT_LOCK(object);
578		m->valid |= bits;
579		VM_OBJECT_UNLOCK(object);
580	}
581	sf_buf_free(sf);
582	if (error) {
583		return VM_PAGER_ERROR;
584	}
585	return VM_PAGER_OK;
586}
587
588/*
589 * old style vnode pager input routine
590 */
591static int
592vnode_pager_input_old(object, m)
593	vm_object_t object;
594	vm_page_t m;
595{
596	struct uio auio;
597	struct iovec aiov;
598	int error;
599	int size;
600	struct sf_buf *sf;
601	struct vnode *vp;
602
603	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
604	error = 0;
605
606	/*
607	 * Return failure if beyond current EOF
608	 */
609	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
610		return VM_PAGER_BAD;
611	} else {
612		size = PAGE_SIZE;
613		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
614			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
615		vp = object->handle;
616		VM_OBJECT_UNLOCK(object);
617
618		/*
619		 * Allocate a kernel virtual address and initialize so that
620		 * we can use VOP_READ/WRITE routines.
621		 */
622		sf = sf_buf_alloc(m, 0);
623
624		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
625		aiov.iov_len = size;
626		auio.uio_iov = &aiov;
627		auio.uio_iovcnt = 1;
628		auio.uio_offset = IDX_TO_OFF(m->pindex);
629		auio.uio_segflg = UIO_SYSSPACE;
630		auio.uio_rw = UIO_READ;
631		auio.uio_resid = size;
632		auio.uio_td = curthread;
633
634		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
635		if (!error) {
636			int count = size - auio.uio_resid;
637
638			if (count == 0)
639				error = EINVAL;
640			else if (count != PAGE_SIZE)
641				bzero((caddr_t)sf_buf_kva(sf) + count,
642				    PAGE_SIZE - count);
643		}
644		sf_buf_free(sf);
645
646		VM_OBJECT_LOCK(object);
647	}
648	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
649	if (!error)
650		m->valid = VM_PAGE_BITS_ALL;
651	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
652}
653
654/*
655 * generic vnode pager input routine
656 */
657
658/*
659 * Local media VFS's that do not implement their own VOP_GETPAGES
660 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
661 * to implement the previous behaviour.
662 *
663 * All other FS's should use the bypass to get to the local media
664 * backing vp's VOP_GETPAGES.
665 */
666static int
667vnode_pager_getpages(object, m, count, reqpage)
668	vm_object_t object;
669	vm_page_t *m;
670	int count;
671	int reqpage;
672{
673	int rtval;
674	struct vnode *vp;
675	int bytes = count * PAGE_SIZE;
676	int vfslocked;
677
678	vp = object->handle;
679	VM_OBJECT_UNLOCK(object);
680	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
681	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
682	KASSERT(rtval != EOPNOTSUPP,
683	    ("vnode_pager: FS getpages not implemented\n"));
684	VFS_UNLOCK_GIANT(vfslocked);
685	VM_OBJECT_LOCK(object);
686	return rtval;
687}
688
689/*
690 * This is now called from local media FS's to operate against their
691 * own vnodes if they fail to implement VOP_GETPAGES.
692 */
693int
694vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
695	struct vnode *vp;
696	vm_page_t *m;
697	int bytecount;
698	int reqpage;
699{
700	vm_object_t object;
701	vm_offset_t kva;
702	off_t foff, tfoff, nextoff;
703	int i, j, size, bsize, first;
704	daddr_t firstaddr, reqblock;
705	struct bufobj *bo;
706	int runpg;
707	int runend;
708	struct buf *bp;
709	struct mount *mp;
710	int count;
711	int error;
712
713	object = vp->v_object;
714	count = bytecount / PAGE_SIZE;
715
716	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
717	    ("vnode_pager_generic_getpages does not support devices"));
718	if (vp->v_iflag & VI_DOOMED)
719		return VM_PAGER_BAD;
720
721	bsize = vp->v_mount->mnt_stat.f_iosize;
722
723	/* get the UNDERLYING device for the file with VOP_BMAP() */
724
725	/*
726	 * originally, we did not check for an error return value -- assuming
727	 * an fs always has a bmap entry point -- that assumption is wrong!!!
728	 */
729	foff = IDX_TO_OFF(m[reqpage]->pindex);
730
731	/*
732	 * if we can't bmap, use old VOP code
733	 */
734	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
735	if (error == EOPNOTSUPP) {
736		VM_OBJECT_LOCK(object);
737
738		for (i = 0; i < count; i++)
739			if (i != reqpage) {
740				vm_page_lock(m[i]);
741				vm_page_free(m[i]);
742				vm_page_unlock(m[i]);
743			}
744		PCPU_INC(cnt.v_vnodein);
745		PCPU_INC(cnt.v_vnodepgsin);
746		error = vnode_pager_input_old(object, m[reqpage]);
747		VM_OBJECT_UNLOCK(object);
748		return (error);
749	} else if (error != 0) {
750		VM_OBJECT_LOCK(object);
751		for (i = 0; i < count; i++)
752			if (i != reqpage) {
753				vm_page_lock(m[i]);
754				vm_page_free(m[i]);
755				vm_page_unlock(m[i]);
756			}
757		VM_OBJECT_UNLOCK(object);
758		return (VM_PAGER_ERROR);
759
760		/*
761		 * if the blocksize is smaller than a page size, then use
762		 * special small filesystem code.  NFS sometimes has a small
763		 * blocksize, but it can handle large reads itself.
764		 */
765	} else if ((PAGE_SIZE / bsize) > 1 &&
766	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
767		VM_OBJECT_LOCK(object);
768		for (i = 0; i < count; i++)
769			if (i != reqpage) {
770				vm_page_lock(m[i]);
771				vm_page_free(m[i]);
772				vm_page_unlock(m[i]);
773			}
774		VM_OBJECT_UNLOCK(object);
775		PCPU_INC(cnt.v_vnodein);
776		PCPU_INC(cnt.v_vnodepgsin);
777		return vnode_pager_input_smlfs(object, m[reqpage]);
778	}
779
780	/*
781	 * If we have a completely valid page available to us, we can
782	 * clean up and return.  Otherwise we have to re-read the
783	 * media.
784	 */
785	VM_OBJECT_LOCK(object);
786	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
787		for (i = 0; i < count; i++)
788			if (i != reqpage) {
789				vm_page_lock(m[i]);
790				vm_page_free(m[i]);
791				vm_page_unlock(m[i]);
792			}
793		VM_OBJECT_UNLOCK(object);
794		return VM_PAGER_OK;
795	} else if (reqblock == -1) {
796		pmap_zero_page(m[reqpage]);
797		KASSERT(m[reqpage]->dirty == 0,
798		    ("vnode_pager_generic_getpages: page %p is dirty", m));
799		m[reqpage]->valid = VM_PAGE_BITS_ALL;
800		for (i = 0; i < count; i++)
801			if (i != reqpage) {
802				vm_page_lock(m[i]);
803				vm_page_free(m[i]);
804				vm_page_unlock(m[i]);
805			}
806		VM_OBJECT_UNLOCK(object);
807		return (VM_PAGER_OK);
808	}
809	m[reqpage]->valid = 0;
810	VM_OBJECT_UNLOCK(object);
811
812	/*
813	 * here on direct device I/O
814	 */
815	firstaddr = -1;
816
817	/*
818	 * calculate the run that includes the required page
819	 */
820	for (first = 0, i = 0; i < count; i = runend) {
821		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
822		    &runpg) != 0) {
823			VM_OBJECT_LOCK(object);
824			for (; i < count; i++)
825				if (i != reqpage) {
826					vm_page_lock(m[i]);
827					vm_page_free(m[i]);
828					vm_page_unlock(m[i]);
829				}
830			VM_OBJECT_UNLOCK(object);
831			return (VM_PAGER_ERROR);
832		}
833		if (firstaddr == -1) {
834			VM_OBJECT_LOCK(object);
835			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
836				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
837				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
838				    (uintmax_t)foff,
839				    (uintmax_t)
840				    (object->un_pager.vnp.vnp_size >> 32),
841				    (uintmax_t)object->un_pager.vnp.vnp_size);
842			}
843			vm_page_lock(m[i]);
844			vm_page_free(m[i]);
845			vm_page_unlock(m[i]);
846			VM_OBJECT_UNLOCK(object);
847			runend = i + 1;
848			first = runend;
849			continue;
850		}
851		runend = i + runpg;
852		if (runend <= reqpage) {
853			VM_OBJECT_LOCK(object);
854			for (j = i; j < runend; j++) {
855				vm_page_lock(m[j]);
856				vm_page_free(m[j]);
857				vm_page_unlock(m[j]);
858			}
859			VM_OBJECT_UNLOCK(object);
860		} else {
861			if (runpg < (count - first)) {
862				VM_OBJECT_LOCK(object);
863				for (i = first + runpg; i < count; i++) {
864					vm_page_lock(m[i]);
865					vm_page_free(m[i]);
866					vm_page_unlock(m[i]);
867				}
868				VM_OBJECT_UNLOCK(object);
869				count = first + runpg;
870			}
871			break;
872		}
873		first = runend;
874	}
875
876	/*
877	 * the first and last page have been calculated now, move input pages
878	 * to be zero based...
879	 */
880	if (first != 0) {
881		m += first;
882		count -= first;
883		reqpage -= first;
884	}
885
886	/*
887	 * calculate the file virtual address for the transfer
888	 */
889	foff = IDX_TO_OFF(m[0]->pindex);
890
891	/*
892	 * calculate the size of the transfer
893	 */
894	size = count * PAGE_SIZE;
895	KASSERT(count > 0, ("zero count"));
896	if ((foff + size) > object->un_pager.vnp.vnp_size)
897		size = object->un_pager.vnp.vnp_size - foff;
898	KASSERT(size > 0, ("zero size"));
899
900	/*
901	 * round up physical size for real devices.
902	 */
903	if (1) {
904		int secmask = bo->bo_bsize - 1;
905		KASSERT(secmask < PAGE_SIZE && secmask > 0,
906		    ("vnode_pager_generic_getpages: sector size %d too large",
907		    secmask + 1));
908		size = (size + secmask) & ~secmask;
909	}
910
911	bp = getpbuf(&vnode_pbuf_freecnt);
912	kva = (vm_offset_t)bp->b_data;
913
914	/*
915	 * and map the pages to be read into the kva, if the filesystem
916	 * requires mapped buffers.
917	 */
918	mp = vp->v_mount;
919	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
920	    unmapped_buf_allowed) {
921		bp->b_data = unmapped_buf;
922		bp->b_kvabase = unmapped_buf;
923		bp->b_offset = 0;
924		bp->b_flags |= B_UNMAPPED;
925		bp->b_npages = count;
926		for (i = 0; i < count; i++)
927			bp->b_pages[i] = m[i];
928	} else
929		pmap_qenter(kva, m, count);
930
931	/* build a minimal buffer header */
932	bp->b_iocmd = BIO_READ;
933	bp->b_iodone = bdone;
934	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
935	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
936	bp->b_rcred = crhold(curthread->td_ucred);
937	bp->b_wcred = crhold(curthread->td_ucred);
938	bp->b_blkno = firstaddr;
939	pbgetbo(bo, bp);
940	bp->b_vp = vp;
941	bp->b_bcount = size;
942	bp->b_bufsize = size;
943	bp->b_runningbufspace = bp->b_bufsize;
944	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
945
946	PCPU_INC(cnt.v_vnodein);
947	PCPU_ADD(cnt.v_vnodepgsin, count);
948
949	/* do the input */
950	bp->b_iooffset = dbtob(bp->b_blkno);
951	bstrategy(bp);
952
953	bwait(bp, PVM, "vnread");
954
955	if ((bp->b_ioflags & BIO_ERROR) != 0)
956		error = EIO;
957
958	if (error == 0 && size != count * PAGE_SIZE) {
959		if ((bp->b_flags & B_UNMAPPED) != 0) {
960			bp->b_flags &= ~B_UNMAPPED;
961			pmap_qenter(kva, m, count);
962		}
963		bzero((caddr_t)kva + size, PAGE_SIZE * count - size);
964	}
965	if ((bp->b_flags & B_UNMAPPED) == 0)
966		pmap_qremove(kva, count);
967	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
968		bp->b_data = (caddr_t)kva;
969		bp->b_kvabase = (caddr_t)kva;
970		bp->b_flags &= ~B_UNMAPPED;
971		for (i = 0; i < count; i++)
972			bp->b_pages[i] = NULL;
973	}
974
975	/*
976	 * free the buffer header back to the swap buffer pool
977	 */
978	bp->b_vp = NULL;
979	pbrelbo(bp);
980	relpbuf(bp, &vnode_pbuf_freecnt);
981
982	VM_OBJECT_LOCK(object);
983	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
984		vm_page_t mt;
985
986		nextoff = tfoff + PAGE_SIZE;
987		mt = m[i];
988
989		if (nextoff <= object->un_pager.vnp.vnp_size) {
990			/*
991			 * Read filled up entire page.
992			 */
993			mt->valid = VM_PAGE_BITS_ALL;
994			KASSERT(mt->dirty == 0,
995			    ("vnode_pager_generic_getpages: page %p is dirty",
996			    mt));
997			KASSERT(!pmap_page_is_mapped(mt),
998			    ("vnode_pager_generic_getpages: page %p is mapped",
999			    mt));
1000		} else {
1001			/*
1002			 * Read did not fill up entire page.
1003			 *
1004			 * Currently we do not set the entire page valid,
1005			 * we just try to clear the piece that we couldn't
1006			 * read.
1007			 */
1008			vm_page_set_valid(mt, 0,
1009			    object->un_pager.vnp.vnp_size - tfoff);
1010			KASSERT((mt->dirty & vm_page_bits(0,
1011			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1012			    ("vnode_pager_generic_getpages: page %p is dirty",
1013			    mt));
1014		}
1015
1016		if (i != reqpage)
1017			vm_page_readahead_finish(mt);
1018	}
1019	VM_OBJECT_UNLOCK(object);
1020	if (error) {
1021		printf("vnode_pager_getpages: I/O read error\n");
1022	}
1023	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1024}
1025
1026/*
1027 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1028 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1029 * vnode_pager_generic_putpages() to implement the previous behaviour.
1030 *
1031 * All other FS's should use the bypass to get to the local media
1032 * backing vp's VOP_PUTPAGES.
1033 */
1034static void
1035vnode_pager_putpages(object, m, count, sync, rtvals)
1036	vm_object_t object;
1037	vm_page_t *m;
1038	int count;
1039	boolean_t sync;
1040	int *rtvals;
1041{
1042	int rtval;
1043	struct vnode *vp;
1044	int bytes = count * PAGE_SIZE;
1045
1046	/*
1047	 * Force synchronous operation if we are extremely low on memory
1048	 * to prevent a low-memory deadlock.  VOP operations often need to
1049	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1050	 * operation ).  The swapper handles the case by limiting the amount
1051	 * of asynchronous I/O, but that sort of solution doesn't scale well
1052	 * for the vnode pager without a lot of work.
1053	 *
1054	 * Also, the backing vnode's iodone routine may not wake the pageout
1055	 * daemon up.  This should be probably be addressed XXX.
1056	 */
1057
1058	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1059		sync |= OBJPC_SYNC;
1060
1061	/*
1062	 * Call device-specific putpages function
1063	 */
1064	vp = object->handle;
1065	VM_OBJECT_UNLOCK(object);
1066	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1067	KASSERT(rtval != EOPNOTSUPP,
1068	    ("vnode_pager: stale FS putpages\n"));
1069	VM_OBJECT_LOCK(object);
1070}
1071
1072
1073/*
1074 * This is now called from local media FS's to operate against their
1075 * own vnodes if they fail to implement VOP_PUTPAGES.
1076 *
1077 * This is typically called indirectly via the pageout daemon and
1078 * clustering has already typically occured, so in general we ask the
1079 * underlying filesystem to write the data out asynchronously rather
1080 * then delayed.
1081 */
1082int
1083vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1084    int flags, int *rtvals)
1085{
1086	int i;
1087	vm_object_t object;
1088	vm_page_t m;
1089	int count;
1090
1091	int maxsize, ncount;
1092	vm_ooffset_t poffset;
1093	struct uio auio;
1094	struct iovec aiov;
1095	int error;
1096	int ioflags;
1097	int ppscheck = 0;
1098	static struct timeval lastfail;
1099	static int curfail;
1100
1101	object = vp->v_object;
1102	count = bytecount / PAGE_SIZE;
1103
1104	for (i = 0; i < count; i++)
1105		rtvals[i] = VM_PAGER_ERROR;
1106
1107	if ((int64_t)ma[0]->pindex < 0) {
1108		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1109		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1110		rtvals[0] = VM_PAGER_BAD;
1111		return VM_PAGER_BAD;
1112	}
1113
1114	maxsize = count * PAGE_SIZE;
1115	ncount = count;
1116
1117	poffset = IDX_TO_OFF(ma[0]->pindex);
1118
1119	/*
1120	 * If the page-aligned write is larger then the actual file we
1121	 * have to invalidate pages occuring beyond the file EOF.  However,
1122	 * there is an edge case where a file may not be page-aligned where
1123	 * the last page is partially invalid.  In this case the filesystem
1124	 * may not properly clear the dirty bits for the entire page (which
1125	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1126	 * With the page locked we are free to fix-up the dirty bits here.
1127	 *
1128	 * We do not under any circumstances truncate the valid bits, as
1129	 * this will screw up bogus page replacement.
1130	 */
1131	VM_OBJECT_LOCK(object);
1132	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1133		if (object->un_pager.vnp.vnp_size > poffset) {
1134			int pgoff;
1135
1136			maxsize = object->un_pager.vnp.vnp_size - poffset;
1137			ncount = btoc(maxsize);
1138			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1139				/*
1140				 * If the object is locked and the following
1141				 * conditions hold, then the page's dirty
1142				 * field cannot be concurrently changed by a
1143				 * pmap operation.
1144				 */
1145				m = ma[ncount - 1];
1146				KASSERT(m->busy > 0,
1147		("vnode_pager_generic_putpages: page %p is not busy", m));
1148				KASSERT(!pmap_page_is_write_mapped(m),
1149		("vnode_pager_generic_putpages: page %p is not read-only", m));
1150				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1151				    pgoff);
1152			}
1153		} else {
1154			maxsize = 0;
1155			ncount = 0;
1156		}
1157		if (ncount < count) {
1158			for (i = ncount; i < count; i++) {
1159				rtvals[i] = VM_PAGER_BAD;
1160			}
1161		}
1162	}
1163	VM_OBJECT_UNLOCK(object);
1164
1165	/*
1166	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1167	 * rather then a bdwrite() to prevent paging I/O from saturating
1168	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1169	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1170	 * the system decides how to cluster.
1171	 */
1172	ioflags = IO_VMIO;
1173	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1174		ioflags |= IO_SYNC;
1175	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1176		ioflags |= IO_ASYNC;
1177	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1178	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1179
1180	aiov.iov_base = (caddr_t) 0;
1181	aiov.iov_len = maxsize;
1182	auio.uio_iov = &aiov;
1183	auio.uio_iovcnt = 1;
1184	auio.uio_offset = poffset;
1185	auio.uio_segflg = UIO_NOCOPY;
1186	auio.uio_rw = UIO_WRITE;
1187	auio.uio_resid = maxsize;
1188	auio.uio_td = (struct thread *) 0;
1189	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1190	PCPU_INC(cnt.v_vnodeout);
1191	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1192
1193	if (error) {
1194		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1195			printf("vnode_pager_putpages: I/O error %d\n", error);
1196	}
1197	if (auio.uio_resid) {
1198		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1199			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1200			    auio.uio_resid, (u_long)ma[0]->pindex);
1201	}
1202	for (i = 0; i < ncount; i++) {
1203		rtvals[i] = VM_PAGER_OK;
1204	}
1205	return rtvals[0];
1206}
1207
1208void
1209vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1210{
1211	vm_object_t obj;
1212	int i, pos;
1213
1214	if (written == 0)
1215		return;
1216	obj = ma[0]->object;
1217	VM_OBJECT_LOCK(obj);
1218	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1219		if (pos < trunc_page(written)) {
1220			rtvals[i] = VM_PAGER_OK;
1221			vm_page_undirty(ma[i]);
1222		} else {
1223			/* Partially written page. */
1224			rtvals[i] = VM_PAGER_AGAIN;
1225			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1226		}
1227	}
1228	VM_OBJECT_UNLOCK(obj);
1229}
1230
1231void
1232vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1233    vm_offset_t end)
1234{
1235	struct vnode *vp;
1236	vm_ooffset_t old_wm;
1237
1238	VM_OBJECT_LOCK(object);
1239	if (object->type != OBJT_VNODE) {
1240		VM_OBJECT_UNLOCK(object);
1241		return;
1242	}
1243	old_wm = object->un_pager.vnp.writemappings;
1244	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1245	vp = object->handle;
1246	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1247		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1248		VOP_ADD_WRITECOUNT(vp, 1);
1249	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1250		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1251		VOP_ADD_WRITECOUNT(vp, -1);
1252	}
1253	VM_OBJECT_UNLOCK(object);
1254}
1255
1256void
1257vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1258    vm_offset_t end)
1259{
1260	struct vnode *vp;
1261	struct mount *mp;
1262	vm_offset_t inc;
1263	int vfslocked;
1264
1265	VM_OBJECT_LOCK(object);
1266
1267	/*
1268	 * First, recheck the object type to account for the race when
1269	 * the vnode is reclaimed.
1270	 */
1271	if (object->type != OBJT_VNODE) {
1272		VM_OBJECT_UNLOCK(object);
1273		return;
1274	}
1275
1276	/*
1277	 * Optimize for the case when writemappings is not going to
1278	 * zero.
1279	 */
1280	inc = end - start;
1281	if (object->un_pager.vnp.writemappings != inc) {
1282		object->un_pager.vnp.writemappings -= inc;
1283		VM_OBJECT_UNLOCK(object);
1284		return;
1285	}
1286
1287	vp = object->handle;
1288	vhold(vp);
1289	VM_OBJECT_UNLOCK(object);
1290	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1291	mp = NULL;
1292	vn_start_write(vp, &mp, V_WAIT);
1293	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1294
1295	/*
1296	 * Decrement the object's writemappings, by swapping the start
1297	 * and end arguments for vnode_pager_update_writecount().  If
1298	 * there was not a race with vnode reclaimation, then the
1299	 * vnode's v_writecount is decremented.
1300	 */
1301	vnode_pager_update_writecount(object, end, start);
1302	VOP_UNLOCK(vp, 0);
1303	vdrop(vp);
1304	if (mp != NULL)
1305		vn_finished_write(mp);
1306	VFS_UNLOCK_GIANT(vfslocked);
1307}
1308