vm_pageout.c revision 95610
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 95610 2002-04-28 06:07:54Z alc $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/swap_pager.h>
99#include <vm/vm_extern.h>
100#include <vm/uma.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout(void);
110static int vm_pageout_clean(vm_page_t);
111static void vm_pageout_scan(int pass);
112static int vm_pageout_free_page_calc(vm_size_t count);
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon(void);
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
207static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
208static freeer_fcn_t vm_pageout_object_deactivate_pages;
209static void vm_req_vmdaemon(void);
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_clean:
215 *
216 * Clean the page and remove it from the laundry.
217 *
218 * We set the busy bit to cause potential page faults on this page to
219 * block.  Note the careful timing, however, the busy bit isn't set till
220 * late and we cannot do anything that will mess with the page.
221 */
222static int
223vm_pageout_clean(m)
224	vm_page_t m;
225{
226	vm_object_t object;
227	vm_page_t mc[2*vm_pageout_page_count];
228	int pageout_count;
229	int ib, is, page_base;
230	vm_pindex_t pindex = m->pindex;
231
232	GIANT_REQUIRED;
233
234	object = m->object;
235
236	/*
237	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
238	 * with the new swapper, but we could have serious problems paging
239	 * out other object types if there is insufficient memory.
240	 *
241	 * Unfortunately, checking free memory here is far too late, so the
242	 * check has been moved up a procedural level.
243	 */
244
245	/*
246	 * Don't mess with the page if it's busy, held, or special
247	 */
248	if ((m->hold_count != 0) ||
249	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
250		return 0;
251	}
252
253	mc[vm_pageout_page_count] = m;
254	pageout_count = 1;
255	page_base = vm_pageout_page_count;
256	ib = 1;
257	is = 1;
258
259	/*
260	 * Scan object for clusterable pages.
261	 *
262	 * We can cluster ONLY if: ->> the page is NOT
263	 * clean, wired, busy, held, or mapped into a
264	 * buffer, and one of the following:
265	 * 1) The page is inactive, or a seldom used
266	 *    active page.
267	 * -or-
268	 * 2) we force the issue.
269	 *
270	 * During heavy mmap/modification loads the pageout
271	 * daemon can really fragment the underlying file
272	 * due to flushing pages out of order and not trying
273	 * align the clusters (which leave sporatic out-of-order
274	 * holes).  To solve this problem we do the reverse scan
275	 * first and attempt to align our cluster, then do a
276	 * forward scan if room remains.
277	 */
278more:
279	while (ib && pageout_count < vm_pageout_page_count) {
280		vm_page_t p;
281
282		if (ib > pindex) {
283			ib = 0;
284			break;
285		}
286
287		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
288			ib = 0;
289			break;
290		}
291		if (((p->queue - p->pc) == PQ_CACHE) ||
292		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
293			ib = 0;
294			break;
295		}
296		vm_page_test_dirty(p);
297		if ((p->dirty & p->valid) == 0 ||
298		    p->queue != PQ_INACTIVE ||
299		    p->wire_count != 0 ||	/* may be held by buf cache */
300		    p->hold_count != 0) {	/* may be undergoing I/O */
301			ib = 0;
302			break;
303		}
304		mc[--page_base] = p;
305		++pageout_count;
306		++ib;
307		/*
308		 * alignment boundry, stop here and switch directions.  Do
309		 * not clear ib.
310		 */
311		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
312			break;
313	}
314
315	while (pageout_count < vm_pageout_page_count &&
316	    pindex + is < object->size) {
317		vm_page_t p;
318
319		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
320			break;
321		if (((p->queue - p->pc) == PQ_CACHE) ||
322		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
323			break;
324		}
325		vm_page_test_dirty(p);
326		if ((p->dirty & p->valid) == 0 ||
327		    p->queue != PQ_INACTIVE ||
328		    p->wire_count != 0 ||	/* may be held by buf cache */
329		    p->hold_count != 0) {	/* may be undergoing I/O */
330			break;
331		}
332		mc[page_base + pageout_count] = p;
333		++pageout_count;
334		++is;
335	}
336
337	/*
338	 * If we exhausted our forward scan, continue with the reverse scan
339	 * when possible, even past a page boundry.  This catches boundry
340	 * conditions.
341	 */
342	if (ib && pageout_count < vm_pageout_page_count)
343		goto more;
344
345	/*
346	 * we allow reads during pageouts...
347	 */
348	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
349}
350
351/*
352 * vm_pageout_flush() - launder the given pages
353 *
354 *	The given pages are laundered.  Note that we setup for the start of
355 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
356 *	reference count all in here rather then in the parent.  If we want
357 *	the parent to do more sophisticated things we may have to change
358 *	the ordering.
359 */
360int
361vm_pageout_flush(mc, count, flags)
362	vm_page_t *mc;
363	int count;
364	int flags;
365{
366	vm_object_t object;
367	int pageout_status[count];
368	int numpagedout = 0;
369	int i;
370
371	GIANT_REQUIRED;
372	/*
373	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374	 * mark the pages read-only.
375	 *
376	 * We do not have to fixup the clean/dirty bits here... we can
377	 * allow the pager to do it after the I/O completes.
378	 *
379	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380	 * edge case with file fragments.
381	 */
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387
388	object = mc[0]->object;
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	for (i = 0; i < count; i++) {
396		vm_page_t mt = mc[i];
397
398		switch (pageout_status[i]) {
399		case VM_PAGER_OK:
400			numpagedout++;
401			break;
402		case VM_PAGER_PEND:
403			numpagedout++;
404			break;
405		case VM_PAGER_BAD:
406			/*
407			 * Page outside of range of object. Right now we
408			 * essentially lose the changes by pretending it
409			 * worked.
410			 */
411			pmap_clear_modify(mt);
412			vm_page_undirty(mt);
413			break;
414		case VM_PAGER_ERROR:
415		case VM_PAGER_FAIL:
416			/*
417			 * If page couldn't be paged out, then reactivate the
418			 * page so it doesn't clog the inactive list.  (We
419			 * will try paging out it again later).
420			 */
421			vm_page_activate(mt);
422			break;
423		case VM_PAGER_AGAIN:
424			break;
425		}
426
427		/*
428		 * If the operation is still going, leave the page busy to
429		 * block all other accesses. Also, leave the paging in
430		 * progress indicator set so that we don't attempt an object
431		 * collapse.
432		 */
433		if (pageout_status[i] != VM_PAGER_PEND) {
434			vm_object_pip_wakeup(object);
435			vm_page_io_finish(mt);
436			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437				vm_page_protect(mt, VM_PROT_READ);
438		}
439	}
440	return numpagedout;
441}
442
443#if !defined(NO_SWAPPING)
444/*
445 *	vm_pageout_object_deactivate_pages
446 *
447 *	deactivate enough pages to satisfy the inactive target
448 *	requirements or if vm_page_proc_limit is set, then
449 *	deactivate all of the pages in the object and its
450 *	backing_objects.
451 *
452 *	The object and map must be locked.
453 */
454static void
455vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
456	vm_map_t map;
457	vm_object_t object;
458	vm_pindex_t desired;
459	int map_remove_only;
460{
461	vm_page_t p, next;
462	int rcount;
463	int remove_mode;
464
465	GIANT_REQUIRED;
466	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
467		return;
468
469	while (object) {
470		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
471			return;
472		if (object->paging_in_progress)
473			return;
474
475		remove_mode = map_remove_only;
476		if (object->shadow_count > 1)
477			remove_mode = 1;
478		/*
479		 * scan the objects entire memory queue
480		 */
481		rcount = object->resident_page_count;
482		p = TAILQ_FIRST(&object->memq);
483		while (p && (rcount-- > 0)) {
484			int actcount;
485			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
486				return;
487			next = TAILQ_NEXT(p, listq);
488			cnt.v_pdpages++;
489			if (p->wire_count != 0 ||
490			    p->hold_count != 0 ||
491			    p->busy != 0 ||
492			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
493			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
494				p = next;
495				continue;
496			}
497
498			actcount = pmap_ts_referenced(p);
499			if (actcount) {
500				vm_page_flag_set(p, PG_REFERENCED);
501			} else if (p->flags & PG_REFERENCED) {
502				actcount = 1;
503			}
504
505			if ((p->queue != PQ_ACTIVE) &&
506				(p->flags & PG_REFERENCED)) {
507				vm_page_activate(p);
508				p->act_count += actcount;
509				vm_page_flag_clear(p, PG_REFERENCED);
510			} else if (p->queue == PQ_ACTIVE) {
511				if ((p->flags & PG_REFERENCED) == 0) {
512					p->act_count -= min(p->act_count, ACT_DECLINE);
513					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
514						vm_page_protect(p, VM_PROT_NONE);
515						vm_page_deactivate(p);
516					} else {
517						vm_pageq_requeue(p);
518					}
519				} else {
520					vm_page_activate(p);
521					vm_page_flag_clear(p, PG_REFERENCED);
522					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
523						p->act_count += ACT_ADVANCE;
524					vm_pageq_requeue(p);
525				}
526			} else if (p->queue == PQ_INACTIVE) {
527				vm_page_protect(p, VM_PROT_NONE);
528			}
529			p = next;
530		}
531		object = object->backing_object;
532	}
533	return;
534}
535
536/*
537 * deactivate some number of pages in a map, try to do it fairly, but
538 * that is really hard to do.
539 */
540static void
541vm_pageout_map_deactivate_pages(map, desired)
542	vm_map_t map;
543	vm_pindex_t desired;
544{
545	vm_map_entry_t tmpe;
546	vm_object_t obj, bigobj;
547	int nothingwired;
548
549	GIANT_REQUIRED;
550	if (!vm_map_trylock(map))
551		return;
552
553	bigobj = NULL;
554	nothingwired = TRUE;
555
556	/*
557	 * first, search out the biggest object, and try to free pages from
558	 * that.
559	 */
560	tmpe = map->header.next;
561	while (tmpe != &map->header) {
562		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
563			obj = tmpe->object.vm_object;
564			if ((obj != NULL) && (obj->shadow_count <= 1) &&
565				((bigobj == NULL) ||
566				 (bigobj->resident_page_count < obj->resident_page_count))) {
567				bigobj = obj;
568			}
569		}
570		if (tmpe->wired_count > 0)
571			nothingwired = FALSE;
572		tmpe = tmpe->next;
573	}
574
575	if (bigobj)
576		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
577
578	/*
579	 * Next, hunt around for other pages to deactivate.  We actually
580	 * do this search sort of wrong -- .text first is not the best idea.
581	 */
582	tmpe = map->header.next;
583	while (tmpe != &map->header) {
584		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
585			break;
586		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
587			obj = tmpe->object.vm_object;
588			if (obj)
589				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
590		}
591		tmpe = tmpe->next;
592	};
593
594	/*
595	 * Remove all mappings if a process is swapped out, this will free page
596	 * table pages.
597	 */
598	if (desired == 0 && nothingwired)
599		pmap_remove(vm_map_pmap(map),
600			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
601	vm_map_unlock(map);
602	return;
603}
604#endif		/* !defined(NO_SWAPPING) */
605
606/*
607 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
608 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
609 * which we know can be trivially freed.
610 */
611void
612vm_pageout_page_free(vm_page_t m) {
613	vm_object_t object = m->object;
614	int type = object->type;
615
616	GIANT_REQUIRED;
617	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618		vm_object_reference(object);
619	vm_page_busy(m);
620	vm_page_protect(m, VM_PROT_NONE);
621	vm_page_free(m);
622	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
623		vm_object_deallocate(object);
624}
625
626/*
627 *	vm_pageout_scan does the dirty work for the pageout daemon.
628 */
629static void
630vm_pageout_scan(int pass)
631{
632	vm_page_t m, next;
633	struct vm_page marker;
634	int save_page_shortage;
635	int save_inactive_count;
636	int page_shortage, maxscan, pcount;
637	int addl_page_shortage, addl_page_shortage_init;
638	struct proc *p, *bigproc;
639	vm_offset_t size, bigsize;
640	vm_object_t object;
641	int actcount;
642	int vnodes_skipped = 0;
643	int maxlaunder;
644	int s;
645
646	GIANT_REQUIRED;
647	/*
648	 * Do whatever cleanup that the pmap code can.
649	 */
650	pmap_collect();
651	uma_reclaim();
652
653	addl_page_shortage_init = vm_pageout_deficit;
654	vm_pageout_deficit = 0;
655
656	/*
657	 * Calculate the number of pages we want to either free or move
658	 * to the cache.
659	 */
660	page_shortage = vm_paging_target() + addl_page_shortage_init;
661	save_page_shortage = page_shortage;
662	save_inactive_count = cnt.v_inactive_count;
663
664	/*
665	 * Initialize our marker
666	 */
667	bzero(&marker, sizeof(marker));
668	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
669	marker.queue = PQ_INACTIVE;
670	marker.wire_count = 1;
671
672	/*
673	 * Start scanning the inactive queue for pages we can move to the
674	 * cache or free.  The scan will stop when the target is reached or
675	 * we have scanned the entire inactive queue.  Note that m->act_count
676	 * is not used to form decisions for the inactive queue, only for the
677	 * active queue.
678	 *
679	 * maxlaunder limits the number of dirty pages we flush per scan.
680	 * For most systems a smaller value (16 or 32) is more robust under
681	 * extreme memory and disk pressure because any unnecessary writes
682	 * to disk can result in extreme performance degredation.  However,
683	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
684	 * used) will die horribly with limited laundering.  If the pageout
685	 * daemon cannot clean enough pages in the first pass, we let it go
686	 * all out in succeeding passes.
687	 */
688	if ((maxlaunder = vm_max_launder) <= 1)
689		maxlaunder = 1;
690	if (pass)
691		maxlaunder = 10000;
692rescan0:
693	addl_page_shortage = addl_page_shortage_init;
694	maxscan = cnt.v_inactive_count;
695
696	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
697	     m != NULL && maxscan-- > 0 && page_shortage > 0;
698	     m = next) {
699
700		cnt.v_pdpages++;
701
702		if (m->queue != PQ_INACTIVE) {
703			goto rescan0;
704		}
705
706		next = TAILQ_NEXT(m, pageq);
707
708		/*
709		 * skip marker pages
710		 */
711		if (m->flags & PG_MARKER)
712			continue;
713
714		/*
715		 * A held page may be undergoing I/O, so skip it.
716		 */
717		if (m->hold_count) {
718			vm_pageq_requeue(m);
719			addl_page_shortage++;
720			continue;
721		}
722		/*
723		 * Don't mess with busy pages, keep in the front of the
724		 * queue, most likely are being paged out.
725		 */
726		if (m->busy || (m->flags & PG_BUSY)) {
727			addl_page_shortage++;
728			continue;
729		}
730
731		/*
732		 * If the object is not being used, we ignore previous
733		 * references.
734		 */
735		if (m->object->ref_count == 0) {
736			vm_page_flag_clear(m, PG_REFERENCED);
737			pmap_clear_reference(m);
738
739		/*
740		 * Otherwise, if the page has been referenced while in the
741		 * inactive queue, we bump the "activation count" upwards,
742		 * making it less likely that the page will be added back to
743		 * the inactive queue prematurely again.  Here we check the
744		 * page tables (or emulated bits, if any), given the upper
745		 * level VM system not knowing anything about existing
746		 * references.
747		 */
748		} else if (((m->flags & PG_REFERENCED) == 0) &&
749			(actcount = pmap_ts_referenced(m))) {
750			vm_page_activate(m);
751			m->act_count += (actcount + ACT_ADVANCE);
752			continue;
753		}
754
755		/*
756		 * If the upper level VM system knows about any page
757		 * references, we activate the page.  We also set the
758		 * "activation count" higher than normal so that we will less
759		 * likely place pages back onto the inactive queue again.
760		 */
761		if ((m->flags & PG_REFERENCED) != 0) {
762			vm_page_flag_clear(m, PG_REFERENCED);
763			actcount = pmap_ts_referenced(m);
764			vm_page_activate(m);
765			m->act_count += (actcount + ACT_ADVANCE + 1);
766			continue;
767		}
768
769		/*
770		 * If the upper level VM system doesn't know anything about
771		 * the page being dirty, we have to check for it again.  As
772		 * far as the VM code knows, any partially dirty pages are
773		 * fully dirty.
774		 */
775		if (m->dirty == 0) {
776			vm_page_test_dirty(m);
777		} else {
778			vm_page_dirty(m);
779		}
780
781		/*
782		 * Invalid pages can be easily freed
783		 */
784		if (m->valid == 0) {
785			vm_pageout_page_free(m);
786			cnt.v_dfree++;
787			--page_shortage;
788
789		/*
790		 * Clean pages can be placed onto the cache queue.  This
791		 * effectively frees them.
792		 */
793		} else if (m->dirty == 0) {
794			vm_page_cache(m);
795			--page_shortage;
796		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
797			/*
798			 * Dirty pages need to be paged out, but flushing
799			 * a page is extremely expensive verses freeing
800			 * a clean page.  Rather then artificially limiting
801			 * the number of pages we can flush, we instead give
802			 * dirty pages extra priority on the inactive queue
803			 * by forcing them to be cycled through the queue
804			 * twice before being flushed, after which the
805			 * (now clean) page will cycle through once more
806			 * before being freed.  This significantly extends
807			 * the thrash point for a heavily loaded machine.
808			 */
809			vm_page_flag_set(m, PG_WINATCFLS);
810			vm_pageq_requeue(m);
811		} else if (maxlaunder > 0) {
812			/*
813			 * We always want to try to flush some dirty pages if
814			 * we encounter them, to keep the system stable.
815			 * Normally this number is small, but under extreme
816			 * pressure where there are insufficient clean pages
817			 * on the inactive queue, we may have to go all out.
818			 */
819			int swap_pageouts_ok;
820			struct vnode *vp = NULL;
821			struct mount *mp;
822
823			object = m->object;
824
825			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
826				swap_pageouts_ok = 1;
827			} else {
828				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
829				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
830				vm_page_count_min());
831
832			}
833
834			/*
835			 * We don't bother paging objects that are "dead".
836			 * Those objects are in a "rundown" state.
837			 */
838			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
839				vm_pageq_requeue(m);
840				continue;
841			}
842
843			/*
844			 * The object is already known NOT to be dead.   It
845			 * is possible for the vget() to block the whole
846			 * pageout daemon, but the new low-memory handling
847			 * code should prevent it.
848			 *
849			 * The previous code skipped locked vnodes and, worse,
850			 * reordered pages in the queue.  This results in
851			 * completely non-deterministic operation and, on a
852			 * busy system, can lead to extremely non-optimal
853			 * pageouts.  For example, it can cause clean pages
854			 * to be freed and dirty pages to be moved to the end
855			 * of the queue.  Since dirty pages are also moved to
856			 * the end of the queue once-cleaned, this gives
857			 * way too large a weighting to defering the freeing
858			 * of dirty pages.
859			 *
860			 * We can't wait forever for the vnode lock, we might
861			 * deadlock due to a vn_read() getting stuck in
862			 * vm_wait while holding this vnode.  We skip the
863			 * vnode if we can't get it in a reasonable amount
864			 * of time.
865			 */
866			if (object->type == OBJT_VNODE) {
867				vp = object->handle;
868
869				mp = NULL;
870				if (vp->v_type == VREG)
871					vn_start_write(vp, &mp, V_NOWAIT);
872				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
873					++pageout_lock_miss;
874					vn_finished_write(mp);
875					if (object->flags & OBJ_MIGHTBEDIRTY)
876						vnodes_skipped++;
877					continue;
878				}
879
880				/*
881				 * The page might have been moved to another
882				 * queue during potential blocking in vget()
883				 * above.  The page might have been freed and
884				 * reused for another vnode.  The object might
885				 * have been reused for another vnode.
886				 */
887				if (m->queue != PQ_INACTIVE ||
888				    m->object != object ||
889				    object->handle != vp) {
890					if (object->flags & OBJ_MIGHTBEDIRTY)
891						vnodes_skipped++;
892					vput(vp);
893					vn_finished_write(mp);
894					continue;
895				}
896
897				/*
898				 * The page may have been busied during the
899				 * blocking in vput();  We don't move the
900				 * page back onto the end of the queue so that
901				 * statistics are more correct if we don't.
902				 */
903				if (m->busy || (m->flags & PG_BUSY)) {
904					vput(vp);
905					vn_finished_write(mp);
906					continue;
907				}
908
909				/*
910				 * If the page has become held it might
911				 * be undergoing I/O, so skip it
912				 */
913				if (m->hold_count) {
914					vm_pageq_requeue(m);
915					if (object->flags & OBJ_MIGHTBEDIRTY)
916						vnodes_skipped++;
917					vput(vp);
918					vn_finished_write(mp);
919					continue;
920				}
921			}
922
923			/*
924			 * If a page is dirty, then it is either being washed
925			 * (but not yet cleaned) or it is still in the
926			 * laundry.  If it is still in the laundry, then we
927			 * start the cleaning operation.
928			 *
929			 * This operation may cluster, invalidating the 'next'
930			 * pointer.  To prevent an inordinate number of
931			 * restarts we use our marker to remember our place.
932			 *
933			 * decrement page_shortage on success to account for
934			 * the (future) cleaned page.  Otherwise we could wind
935			 * up laundering or cleaning too many pages.
936			 */
937			s = splvm();
938			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
939			splx(s);
940			if (vm_pageout_clean(m) != 0) {
941				--page_shortage;
942				--maxlaunder;
943			}
944			s = splvm();
945			next = TAILQ_NEXT(&marker, pageq);
946			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
947			splx(s);
948			if (vp) {
949				vput(vp);
950				vn_finished_write(mp);
951			}
952		}
953	}
954
955	/*
956	 * Compute the number of pages we want to try to move from the
957	 * active queue to the inactive queue.
958	 */
959	page_shortage = vm_paging_target() +
960		cnt.v_inactive_target - cnt.v_inactive_count;
961	page_shortage += addl_page_shortage;
962
963	/*
964	 * Scan the active queue for things we can deactivate. We nominally
965	 * track the per-page activity counter and use it to locate
966	 * deactivation candidates.
967	 */
968	pcount = cnt.v_active_count;
969	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
970
971	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
972
973		/*
974		 * This is a consistency check, and should likely be a panic
975		 * or warning.
976		 */
977		if (m->queue != PQ_ACTIVE) {
978			break;
979		}
980
981		next = TAILQ_NEXT(m, pageq);
982		/*
983		 * Don't deactivate pages that are busy.
984		 */
985		if ((m->busy != 0) ||
986		    (m->flags & PG_BUSY) ||
987		    (m->hold_count != 0)) {
988			vm_pageq_requeue(m);
989			m = next;
990			continue;
991		}
992
993		/*
994		 * The count for pagedaemon pages is done after checking the
995		 * page for eligibility...
996		 */
997		cnt.v_pdpages++;
998
999		/*
1000		 * Check to see "how much" the page has been used.
1001		 */
1002		actcount = 0;
1003		if (m->object->ref_count != 0) {
1004			if (m->flags & PG_REFERENCED) {
1005				actcount += 1;
1006			}
1007			actcount += pmap_ts_referenced(m);
1008			if (actcount) {
1009				m->act_count += ACT_ADVANCE + actcount;
1010				if (m->act_count > ACT_MAX)
1011					m->act_count = ACT_MAX;
1012			}
1013		}
1014
1015		/*
1016		 * Since we have "tested" this bit, we need to clear it now.
1017		 */
1018		vm_page_flag_clear(m, PG_REFERENCED);
1019
1020		/*
1021		 * Only if an object is currently being used, do we use the
1022		 * page activation count stats.
1023		 */
1024		if (actcount && (m->object->ref_count != 0)) {
1025			vm_pageq_requeue(m);
1026		} else {
1027			m->act_count -= min(m->act_count, ACT_DECLINE);
1028			if (vm_pageout_algorithm ||
1029			    m->object->ref_count == 0 ||
1030			    m->act_count == 0) {
1031				page_shortage--;
1032				if (m->object->ref_count == 0) {
1033					vm_page_protect(m, VM_PROT_NONE);
1034					if (m->dirty == 0)
1035						vm_page_cache(m);
1036					else
1037						vm_page_deactivate(m);
1038				} else {
1039					vm_page_deactivate(m);
1040				}
1041			} else {
1042				vm_pageq_requeue(m);
1043			}
1044		}
1045		m = next;
1046	}
1047
1048	s = splvm();
1049
1050	/*
1051	 * We try to maintain some *really* free pages, this allows interrupt
1052	 * code to be guaranteed space.  Since both cache and free queues
1053	 * are considered basically 'free', moving pages from cache to free
1054	 * does not effect other calculations.
1055	 */
1056	while (cnt.v_free_count < cnt.v_free_reserved) {
1057		static int cache_rover = 0;
1058		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1059		if (!m)
1060			break;
1061		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1062		    m->busy ||
1063		    m->hold_count ||
1064		    m->wire_count) {
1065#ifdef INVARIANTS
1066			printf("Warning: busy page %p found in cache\n", m);
1067#endif
1068			vm_page_deactivate(m);
1069			continue;
1070		}
1071		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1072		vm_pageout_page_free(m);
1073		cnt.v_dfree++;
1074	}
1075	splx(s);
1076
1077#if !defined(NO_SWAPPING)
1078	/*
1079	 * Idle process swapout -- run once per second.
1080	 */
1081	if (vm_swap_idle_enabled) {
1082		static long lsec;
1083		if (time_second != lsec) {
1084			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1085			vm_req_vmdaemon();
1086			lsec = time_second;
1087		}
1088	}
1089#endif
1090
1091	/*
1092	 * If we didn't get enough free pages, and we have skipped a vnode
1093	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1094	 * if we did not get enough free pages.
1095	 */
1096	if (vm_paging_target() > 0) {
1097		if (vnodes_skipped && vm_page_count_min())
1098			(void) speedup_syncer();
1099#if !defined(NO_SWAPPING)
1100		if (vm_swap_enabled && vm_page_count_target()) {
1101			vm_req_vmdaemon();
1102			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1103		}
1104#endif
1105	}
1106
1107	/*
1108	 * If we are out of swap and were not able to reach our paging
1109	 * target, kill the largest process.
1110	 *
1111	 * We keep the process bigproc locked once we find it to keep anyone
1112	 * from messing with it; however, there is a possibility of
1113	 * deadlock if process B is bigproc and one of it's child processes
1114	 * attempts to propagate a signal to B while we are waiting for A's
1115	 * lock while walking this list.  To avoid this, we don't block on
1116	 * the process lock but just skip a process if it is already locked.
1117	 */
1118	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1119	    (swap_pager_full && vm_paging_target() > 0)) {
1120#if 0
1121	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1122#endif
1123		bigproc = NULL;
1124		bigsize = 0;
1125		sx_slock(&allproc_lock);
1126		LIST_FOREACH(p, &allproc, p_list) {
1127			/*
1128			 * If this process is already locked, skip it.
1129			 */
1130			if (PROC_TRYLOCK(p) == 0)
1131				continue;
1132			/*
1133			 * if this is a system process, skip it
1134			 */
1135			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1136			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1137				PROC_UNLOCK(p);
1138				continue;
1139			}
1140			/*
1141			 * if the process is in a non-running type state,
1142			 * don't touch it.
1143			 */
1144			mtx_lock_spin(&sched_lock);
1145			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1146				mtx_unlock_spin(&sched_lock);
1147				PROC_UNLOCK(p);
1148				continue;
1149			}
1150			mtx_unlock_spin(&sched_lock);
1151			/*
1152			 * get the process size
1153			 */
1154			size = vmspace_resident_count(p->p_vmspace) +
1155				vmspace_swap_count(p->p_vmspace);
1156			/*
1157			 * if the this process is bigger than the biggest one
1158			 * remember it.
1159			 */
1160			if (size > bigsize) {
1161				if (bigproc != NULL)
1162					PROC_UNLOCK(bigproc);
1163				bigproc = p;
1164				bigsize = size;
1165			} else
1166				PROC_UNLOCK(p);
1167		}
1168		sx_sunlock(&allproc_lock);
1169		if (bigproc != NULL) {
1170			struct ksegrp *kg;
1171			killproc(bigproc, "out of swap space");
1172			mtx_lock_spin(&sched_lock);
1173			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1174				kg->kg_estcpu = 0;
1175				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1176				resetpriority(kg);
1177			}
1178			mtx_unlock_spin(&sched_lock);
1179			PROC_UNLOCK(bigproc);
1180			wakeup(&cnt.v_free_count);
1181		}
1182	}
1183}
1184
1185/*
1186 * This routine tries to maintain the pseudo LRU active queue,
1187 * so that during long periods of time where there is no paging,
1188 * that some statistic accumulation still occurs.  This code
1189 * helps the situation where paging just starts to occur.
1190 */
1191static void
1192vm_pageout_page_stats()
1193{
1194	vm_page_t m,next;
1195	int pcount,tpcount;		/* Number of pages to check */
1196	static int fullintervalcount = 0;
1197	int page_shortage;
1198	int s0;
1199
1200	page_shortage =
1201	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1202	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1203
1204	if (page_shortage <= 0)
1205		return;
1206
1207	s0 = splvm();
1208
1209	pcount = cnt.v_active_count;
1210	fullintervalcount += vm_pageout_stats_interval;
1211	if (fullintervalcount < vm_pageout_full_stats_interval) {
1212		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1213		if (pcount > tpcount)
1214			pcount = tpcount;
1215	} else {
1216		fullintervalcount = 0;
1217	}
1218
1219	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1220	while ((m != NULL) && (pcount-- > 0)) {
1221		int actcount;
1222
1223		if (m->queue != PQ_ACTIVE) {
1224			break;
1225		}
1226
1227		next = TAILQ_NEXT(m, pageq);
1228		/*
1229		 * Don't deactivate pages that are busy.
1230		 */
1231		if ((m->busy != 0) ||
1232		    (m->flags & PG_BUSY) ||
1233		    (m->hold_count != 0)) {
1234			vm_pageq_requeue(m);
1235			m = next;
1236			continue;
1237		}
1238
1239		actcount = 0;
1240		if (m->flags & PG_REFERENCED) {
1241			vm_page_flag_clear(m, PG_REFERENCED);
1242			actcount += 1;
1243		}
1244
1245		actcount += pmap_ts_referenced(m);
1246		if (actcount) {
1247			m->act_count += ACT_ADVANCE + actcount;
1248			if (m->act_count > ACT_MAX)
1249				m->act_count = ACT_MAX;
1250			vm_pageq_requeue(m);
1251		} else {
1252			if (m->act_count == 0) {
1253				/*
1254				 * We turn off page access, so that we have
1255				 * more accurate RSS stats.  We don't do this
1256				 * in the normal page deactivation when the
1257				 * system is loaded VM wise, because the
1258				 * cost of the large number of page protect
1259				 * operations would be higher than the value
1260				 * of doing the operation.
1261				 */
1262				vm_page_protect(m, VM_PROT_NONE);
1263				vm_page_deactivate(m);
1264			} else {
1265				m->act_count -= min(m->act_count, ACT_DECLINE);
1266				vm_pageq_requeue(m);
1267			}
1268		}
1269
1270		m = next;
1271	}
1272	splx(s0);
1273}
1274
1275static int
1276vm_pageout_free_page_calc(count)
1277vm_size_t count;
1278{
1279	if (count < cnt.v_page_count)
1280		 return 0;
1281	/*
1282	 * free_reserved needs to include enough for the largest swap pager
1283	 * structures plus enough for any pv_entry structs when paging.
1284	 */
1285	if (cnt.v_page_count > 1024)
1286		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1287	else
1288		cnt.v_free_min = 4;
1289	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1290		cnt.v_interrupt_free_min;
1291	cnt.v_free_reserved = vm_pageout_page_count +
1292		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1293	cnt.v_free_severe = cnt.v_free_min / 2;
1294	cnt.v_free_min += cnt.v_free_reserved;
1295	cnt.v_free_severe += cnt.v_free_reserved;
1296	return 1;
1297}
1298
1299/*
1300 *	vm_pageout is the high level pageout daemon.
1301 */
1302static void
1303vm_pageout()
1304{
1305	int pass;
1306
1307	mtx_lock(&Giant);
1308
1309	/*
1310	 * Initialize some paging parameters.
1311	 */
1312	cnt.v_interrupt_free_min = 2;
1313	if (cnt.v_page_count < 2000)
1314		vm_pageout_page_count = 8;
1315
1316	vm_pageout_free_page_calc(cnt.v_page_count);
1317	/*
1318	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1319	 * that these are more a measure of the VM cache queue hysteresis
1320	 * then the VM free queue.  Specifically, v_free_target is the
1321	 * high water mark (free+cache pages).
1322	 *
1323	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1324	 * low water mark, while v_free_min is the stop.  v_cache_min must
1325	 * be big enough to handle memory needs while the pageout daemon
1326	 * is signalled and run to free more pages.
1327	 */
1328	if (cnt.v_free_count > 6144)
1329		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1330	else
1331		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1332
1333	if (cnt.v_free_count > 2048) {
1334		cnt.v_cache_min = cnt.v_free_target;
1335		cnt.v_cache_max = 2 * cnt.v_cache_min;
1336		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1337	} else {
1338		cnt.v_cache_min = 0;
1339		cnt.v_cache_max = 0;
1340		cnt.v_inactive_target = cnt.v_free_count / 4;
1341	}
1342	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1343		cnt.v_inactive_target = cnt.v_free_count / 3;
1344
1345	/* XXX does not really belong here */
1346	if (vm_page_max_wired == 0)
1347		vm_page_max_wired = cnt.v_free_count / 3;
1348
1349	if (vm_pageout_stats_max == 0)
1350		vm_pageout_stats_max = cnt.v_free_target;
1351
1352	/*
1353	 * Set interval in seconds for stats scan.
1354	 */
1355	if (vm_pageout_stats_interval == 0)
1356		vm_pageout_stats_interval = 5;
1357	if (vm_pageout_full_stats_interval == 0)
1358		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1359
1360	/*
1361	 * Set maximum free per pass
1362	 */
1363	if (vm_pageout_stats_free_max == 0)
1364		vm_pageout_stats_free_max = 5;
1365
1366	swap_pager_swap_init();
1367	pass = 0;
1368	/*
1369	 * The pageout daemon is never done, so loop forever.
1370	 */
1371	while (TRUE) {
1372		int error;
1373		int s = splvm();
1374
1375		/*
1376		 * If we have enough free memory, wakeup waiters.  Do
1377		 * not clear vm_pages_needed until we reach our target,
1378		 * otherwise we may be woken up over and over again and
1379		 * waste a lot of cpu.
1380		 */
1381		if (vm_pages_needed && !vm_page_count_min()) {
1382			if (vm_paging_needed() <= 0)
1383				vm_pages_needed = 0;
1384			wakeup(&cnt.v_free_count);
1385		}
1386		if (vm_pages_needed) {
1387			/*
1388			 * Still not done, take a second pass without waiting
1389			 * (unlimited dirty cleaning), otherwise sleep a bit
1390			 * and try again.
1391			 */
1392			++pass;
1393			if (pass > 1)
1394				tsleep(&vm_pages_needed, PVM,
1395				       "psleep", hz/2);
1396		} else {
1397			/*
1398			 * Good enough, sleep & handle stats.  Prime the pass
1399			 * for the next run.
1400			 */
1401			if (pass > 1)
1402				pass = 1;
1403			else
1404				pass = 0;
1405			error = tsleep(&vm_pages_needed, PVM,
1406				    "psleep", vm_pageout_stats_interval * hz);
1407			if (error && !vm_pages_needed) {
1408				splx(s);
1409				pass = 0;
1410				vm_pageout_page_stats();
1411				continue;
1412			}
1413		}
1414
1415		if (vm_pages_needed)
1416			cnt.v_pdwakeups++;
1417		splx(s);
1418		vm_pageout_scan(pass);
1419		vm_pageout_deficit = 0;
1420	}
1421}
1422
1423void
1424pagedaemon_wakeup()
1425{
1426	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1427		vm_pages_needed++;
1428		wakeup(&vm_pages_needed);
1429	}
1430}
1431
1432#if !defined(NO_SWAPPING)
1433static void
1434vm_req_vmdaemon()
1435{
1436	static int lastrun = 0;
1437
1438	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1439		wakeup(&vm_daemon_needed);
1440		lastrun = ticks;
1441	}
1442}
1443
1444static void
1445vm_daemon()
1446{
1447	struct proc *p;
1448
1449	mtx_lock(&Giant);
1450	while (TRUE) {
1451		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1452		if (vm_pageout_req_swapout) {
1453			swapout_procs(vm_pageout_req_swapout);
1454			vm_pageout_req_swapout = 0;
1455		}
1456		/*
1457		 * scan the processes for exceeding their rlimits or if
1458		 * process is swapped out -- deactivate pages
1459		 */
1460		sx_slock(&allproc_lock);
1461		LIST_FOREACH(p, &allproc, p_list) {
1462			vm_pindex_t limit, size;
1463
1464			/*
1465			 * if this is a system process or if we have already
1466			 * looked at this process, skip it.
1467			 */
1468			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1469				continue;
1470			}
1471			/*
1472			 * if the process is in a non-running type state,
1473			 * don't touch it.
1474			 */
1475			mtx_lock_spin(&sched_lock);
1476			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1477				mtx_unlock_spin(&sched_lock);
1478				continue;
1479			}
1480			/*
1481			 * get a limit
1482			 */
1483			limit = OFF_TO_IDX(
1484			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1485				p->p_rlimit[RLIMIT_RSS].rlim_max));
1486
1487			/*
1488			 * let processes that are swapped out really be
1489			 * swapped out set the limit to nothing (will force a
1490			 * swap-out.)
1491			 */
1492			if ((p->p_sflag & PS_INMEM) == 0)
1493				limit = 0;	/* XXX */
1494			mtx_unlock_spin(&sched_lock);
1495
1496			size = vmspace_resident_count(p->p_vmspace);
1497			if (limit >= 0 && size >= limit) {
1498				vm_pageout_map_deactivate_pages(
1499				    &p->p_vmspace->vm_map, limit);
1500			}
1501		}
1502		sx_sunlock(&allproc_lock);
1503	}
1504}
1505#endif			/* !defined(NO_SWAPPING) */
1506