1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD$");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/racct.h>
90#include <sys/resourcevar.h>
91#include <sys/sched.h>
92#include <sys/signalvar.h>
93#include <sys/vnode.h>
94#include <sys/vmmeter.h>
95#include <sys/sx.h>
96#include <sys/sysctl.h>
97
98#include <vm/vm.h>
99#include <vm/vm_param.h>
100#include <vm/vm_object.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/swap_pager.h>
106#include <vm/vm_extern.h>
107#include <vm/uma.h>
108
109/*
110 * System initialization
111 */
112
113/* the kernel process "vm_pageout"*/
114static void vm_pageout(void);
115static int vm_pageout_clean(vm_page_t);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126    &page_kp);
127
128#if !defined(NO_SWAPPING)
129/* the kernel process "vm_daemon"*/
130static void vm_daemon(void);
131static struct	proc *vmproc;
132
133static struct kproc_desc vm_kp = {
134	"vmdaemon",
135	vm_daemon,
136	&vmproc
137};
138SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139#endif
140
141
142int vm_pages_needed;		/* Event on which pageout daemon sleeps */
143int vm_pageout_deficit;		/* Estimated number of pages deficit */
144int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
145
146#if !defined(NO_SWAPPING)
147static int vm_pageout_req_swapout;	/* XXX */
148static int vm_daemon_needed;
149static struct mtx vm_daemon_mtx;
150/* Allow for use by vm_pageout before vm_daemon is initialized. */
151MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152#endif
153static int vm_max_launder = 32;
154static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155static int vm_pageout_full_stats_interval = 0;
156static int vm_pageout_algorithm=0;
157static int defer_swap_pageouts=0;
158static int disable_swap_pageouts=0;
159
160#if defined(NO_SWAPPING)
161static int vm_swap_enabled=0;
162static int vm_swap_idle_enabled=0;
163#else
164static int vm_swap_enabled=1;
165static int vm_swap_idle_enabled=0;
166#endif
167
168SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171SYSCTL_INT(_vm, OID_AUTO, max_launder,
172	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183#if defined(NO_SWAPPING)
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#else
189SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193#endif
194
195SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201static int pageout_lock_miss;
202SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205#define VM_PAGEOUT_PAGE_COUNT 16
206int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
209SYSCTL_INT(_vm, OID_AUTO, max_wired,
210	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212#if !defined(NO_SWAPPING)
213static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215static void vm_req_vmdaemon(int req);
216#endif
217static void vm_pageout_page_stats(void);
218
219/*
220 * Initialize a dummy page for marking the caller's place in the specified
221 * paging queue.  In principle, this function only needs to set the flag
222 * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223 * count to one as safety precautions.
224 */
225static void
226vm_pageout_init_marker(vm_page_t marker, u_short queue)
227{
228
229	bzero(marker, sizeof(*marker));
230	marker->flags = PG_MARKER;
231	marker->oflags = VPO_BUSY;
232	marker->queue = queue;
233	marker->hold_count = 1;
234}
235
236/*
237 * vm_pageout_fallback_object_lock:
238 *
239 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240 * known to have failed and page queue must be either PQ_ACTIVE or
241 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242 * while locking the vm object.  Use marker page to detect page queue
243 * changes and maintain notion of next page on page queue.  Return
244 * TRUE if no changes were detected, FALSE otherwise.  vm object is
245 * locked on return.
246 *
247 * This function depends on both the lock portion of struct vm_object
248 * and normal struct vm_page being type stable.
249 */
250boolean_t
251vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252{
253	struct vm_page marker;
254	boolean_t unchanged;
255	u_short queue;
256	vm_object_t object;
257
258	queue = m->queue;
259	vm_pageout_init_marker(&marker, queue);
260	object = m->object;
261
262	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263			   m, &marker, pageq);
264	vm_page_unlock_queues();
265	vm_page_unlock(m);
266	VM_OBJECT_LOCK(object);
267	vm_page_lock(m);
268	vm_page_lock_queues();
269
270	/* Page queue might have changed. */
271	*next = TAILQ_NEXT(&marker, pageq);
272	unchanged = (m->queue == queue &&
273		     m->object == object &&
274		     &marker == TAILQ_NEXT(m, pageq));
275	TAILQ_REMOVE(&vm_page_queues[queue].pl,
276		     &marker, pageq);
277	return (unchanged);
278}
279
280/*
281 * Lock the page while holding the page queue lock.  Use marker page
282 * to detect page queue changes and maintain notion of next page on
283 * page queue.  Return TRUE if no changes were detected, FALSE
284 * otherwise.  The page is locked on return. The page queue lock might
285 * be dropped and reacquired.
286 *
287 * This function depends on normal struct vm_page being type stable.
288 */
289boolean_t
290vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291{
292	struct vm_page marker;
293	boolean_t unchanged;
294	u_short queue;
295
296	vm_page_lock_assert(m, MA_NOTOWNED);
297	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299	if (vm_page_trylock(m))
300		return (TRUE);
301
302	queue = m->queue;
303	vm_pageout_init_marker(&marker, queue);
304
305	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306	vm_page_unlock_queues();
307	vm_page_lock(m);
308	vm_page_lock_queues();
309
310	/* Page queue might have changed. */
311	*next = TAILQ_NEXT(&marker, pageq);
312	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314	return (unchanged);
315}
316
317/*
318 * vm_pageout_clean:
319 *
320 * Clean the page and remove it from the laundry.
321 *
322 * We set the busy bit to cause potential page faults on this page to
323 * block.  Note the careful timing, however, the busy bit isn't set till
324 * late and we cannot do anything that will mess with the page.
325 */
326static int
327vm_pageout_clean(vm_page_t m)
328{
329	vm_object_t object;
330	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331	int pageout_count;
332	int ib, is, page_base;
333	vm_pindex_t pindex = m->pindex;
334
335	vm_page_lock_assert(m, MA_OWNED);
336	object = m->object;
337	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339	/*
340	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341	 * with the new swapper, but we could have serious problems paging
342	 * out other object types if there is insufficient memory.
343	 *
344	 * Unfortunately, checking free memory here is far too late, so the
345	 * check has been moved up a procedural level.
346	 */
347
348	/*
349	 * Can't clean the page if it's busy or held.
350	 */
351	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352	    ("vm_pageout_clean: page %p is busy", m));
353	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354	vm_page_unlock(m);
355
356	mc[vm_pageout_page_count] = pb = ps = m;
357	pageout_count = 1;
358	page_base = vm_pageout_page_count;
359	ib = 1;
360	is = 1;
361
362	/*
363	 * Scan object for clusterable pages.
364	 *
365	 * We can cluster ONLY if: ->> the page is NOT
366	 * clean, wired, busy, held, or mapped into a
367	 * buffer, and one of the following:
368	 * 1) The page is inactive, or a seldom used
369	 *    active page.
370	 * -or-
371	 * 2) we force the issue.
372	 *
373	 * During heavy mmap/modification loads the pageout
374	 * daemon can really fragment the underlying file
375	 * due to flushing pages out of order and not trying
376	 * align the clusters (which leave sporatic out-of-order
377	 * holes).  To solve this problem we do the reverse scan
378	 * first and attempt to align our cluster, then do a
379	 * forward scan if room remains.
380	 */
381more:
382	while (ib && pageout_count < vm_pageout_page_count) {
383		vm_page_t p;
384
385		if (ib > pindex) {
386			ib = 0;
387			break;
388		}
389
390		if ((p = vm_page_prev(pb)) == NULL ||
391		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392			ib = 0;
393			break;
394		}
395		vm_page_lock(p);
396		vm_page_test_dirty(p);
397		if (p->dirty == 0 ||
398		    p->queue != PQ_INACTIVE ||
399		    p->hold_count != 0) {	/* may be undergoing I/O */
400			vm_page_unlock(p);
401			ib = 0;
402			break;
403		}
404		vm_page_unlock(p);
405		mc[--page_base] = pb = p;
406		++pageout_count;
407		++ib;
408		/*
409		 * alignment boundry, stop here and switch directions.  Do
410		 * not clear ib.
411		 */
412		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413			break;
414	}
415
416	while (pageout_count < vm_pageout_page_count &&
417	    pindex + is < object->size) {
418		vm_page_t p;
419
420		if ((p = vm_page_next(ps)) == NULL ||
421		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422			break;
423		vm_page_lock(p);
424		vm_page_test_dirty(p);
425		if (p->dirty == 0 ||
426		    p->queue != PQ_INACTIVE ||
427		    p->hold_count != 0) {	/* may be undergoing I/O */
428			vm_page_unlock(p);
429			break;
430		}
431		vm_page_unlock(p);
432		mc[page_base + pageout_count] = ps = p;
433		++pageout_count;
434		++is;
435	}
436
437	/*
438	 * If we exhausted our forward scan, continue with the reverse scan
439	 * when possible, even past a page boundry.  This catches boundry
440	 * conditions.
441	 */
442	if (ib && pageout_count < vm_pageout_page_count)
443		goto more;
444
445	/*
446	 * we allow reads during pageouts...
447	 */
448	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
449	    NULL));
450}
451
452/*
453 * vm_pageout_flush() - launder the given pages
454 *
455 *	The given pages are laundered.  Note that we setup for the start of
456 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
457 *	reference count all in here rather then in the parent.  If we want
458 *	the parent to do more sophisticated things we may have to change
459 *	the ordering.
460 *
461 *	Returned runlen is the count of pages between mreq and first
462 *	page after mreq with status VM_PAGER_AGAIN.
463 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464 *	for any page in runlen set.
465 */
466int
467vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468    boolean_t *eio)
469{
470	vm_object_t object = mc[0]->object;
471	int pageout_status[count];
472	int numpagedout = 0;
473	int i, runlen;
474
475	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478	/*
479	 * Initiate I/O.  Bump the vm_page_t->busy counter and
480	 * mark the pages read-only.
481	 *
482	 * We do not have to fixup the clean/dirty bits here... we can
483	 * allow the pager to do it after the I/O completes.
484	 *
485	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
486	 * edge case with file fragments.
487	 */
488	for (i = 0; i < count; i++) {
489		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
491			mc[i], i, count));
492		vm_page_io_start(mc[i]);
493		pmap_remove_write(mc[i]);
494	}
495	vm_object_pip_add(object, count);
496
497	vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499	runlen = count - mreq;
500	if (eio != NULL)
501		*eio = FALSE;
502	for (i = 0; i < count; i++) {
503		vm_page_t mt = mc[i];
504
505		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506		    !pmap_page_is_write_mapped(mt),
507		    ("vm_pageout_flush: page %p is not write protected", mt));
508		switch (pageout_status[i]) {
509		case VM_PAGER_OK:
510		case VM_PAGER_PEND:
511			numpagedout++;
512			break;
513		case VM_PAGER_BAD:
514			/*
515			 * Page outside of range of object. Right now we
516			 * essentially lose the changes by pretending it
517			 * worked.
518			 */
519			vm_page_undirty(mt);
520			break;
521		case VM_PAGER_ERROR:
522		case VM_PAGER_FAIL:
523			/*
524			 * If page couldn't be paged out, then reactivate the
525			 * page so it doesn't clog the inactive list.  (We
526			 * will try paging out it again later).
527			 */
528			vm_page_lock(mt);
529			vm_page_activate(mt);
530			vm_page_unlock(mt);
531			if (eio != NULL && i >= mreq && i - mreq < runlen)
532				*eio = TRUE;
533			break;
534		case VM_PAGER_AGAIN:
535			if (i >= mreq && i - mreq < runlen)
536				runlen = i - mreq;
537			break;
538		}
539
540		/*
541		 * If the operation is still going, leave the page busy to
542		 * block all other accesses. Also, leave the paging in
543		 * progress indicator set so that we don't attempt an object
544		 * collapse.
545		 */
546		if (pageout_status[i] != VM_PAGER_PEND) {
547			vm_object_pip_wakeup(object);
548			vm_page_io_finish(mt);
549			if (vm_page_count_severe()) {
550				vm_page_lock(mt);
551				vm_page_try_to_cache(mt);
552				vm_page_unlock(mt);
553			}
554		}
555	}
556	if (prunlen != NULL)
557		*prunlen = runlen;
558	return (numpagedout);
559}
560
561#if !defined(NO_SWAPPING)
562/*
563 *	vm_pageout_object_deactivate_pages
564 *
565 *	Deactivate enough pages to satisfy the inactive target
566 *	requirements.
567 *
568 *	The object and map must be locked.
569 */
570static void
571vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
572    long desired)
573{
574	vm_object_t backing_object, object;
575	vm_page_t p;
576	int actcount, remove_mode;
577
578	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
579	if (first_object->type == OBJT_DEVICE ||
580	    first_object->type == OBJT_SG)
581		return;
582	for (object = first_object;; object = backing_object) {
583		if (pmap_resident_count(pmap) <= desired)
584			goto unlock_return;
585		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
586		if (object->type == OBJT_PHYS || object->paging_in_progress)
587			goto unlock_return;
588
589		remove_mode = 0;
590		if (object->shadow_count > 1)
591			remove_mode = 1;
592		/*
593		 * Scan the object's entire memory queue.
594		 */
595		TAILQ_FOREACH(p, &object->memq, listq) {
596			if (pmap_resident_count(pmap) <= desired)
597				goto unlock_return;
598			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
599				continue;
600			PCPU_INC(cnt.v_pdpages);
601			vm_page_lock(p);
602			if (p->wire_count != 0 || p->hold_count != 0 ||
603			    !pmap_page_exists_quick(pmap, p)) {
604				vm_page_unlock(p);
605				continue;
606			}
607			actcount = pmap_ts_referenced(p);
608			if ((p->aflags & PGA_REFERENCED) != 0) {
609				if (actcount == 0)
610					actcount = 1;
611				vm_page_aflag_clear(p, PGA_REFERENCED);
612			}
613			if (p->queue != PQ_ACTIVE && actcount != 0) {
614				vm_page_activate(p);
615				p->act_count += actcount;
616			} else if (p->queue == PQ_ACTIVE) {
617				if (actcount == 0) {
618					p->act_count -= min(p->act_count,
619					    ACT_DECLINE);
620					if (!remove_mode &&
621					    (vm_pageout_algorithm ||
622					    p->act_count == 0)) {
623						pmap_remove_all(p);
624						vm_page_deactivate(p);
625					} else {
626						vm_page_lock_queues();
627						vm_page_requeue(p);
628						vm_page_unlock_queues();
629					}
630				} else {
631					vm_page_activate(p);
632					if (p->act_count < ACT_MAX -
633					    ACT_ADVANCE)
634						p->act_count += ACT_ADVANCE;
635					vm_page_lock_queues();
636					vm_page_requeue(p);
637					vm_page_unlock_queues();
638				}
639			} else if (p->queue == PQ_INACTIVE)
640				pmap_remove_all(p);
641			vm_page_unlock(p);
642		}
643		if ((backing_object = object->backing_object) == NULL)
644			goto unlock_return;
645		VM_OBJECT_LOCK(backing_object);
646		if (object != first_object)
647			VM_OBJECT_UNLOCK(object);
648	}
649unlock_return:
650	if (object != first_object)
651		VM_OBJECT_UNLOCK(object);
652}
653
654/*
655 * deactivate some number of pages in a map, try to do it fairly, but
656 * that is really hard to do.
657 */
658static void
659vm_pageout_map_deactivate_pages(map, desired)
660	vm_map_t map;
661	long desired;
662{
663	vm_map_entry_t tmpe;
664	vm_object_t obj, bigobj;
665	int nothingwired;
666
667	if (!vm_map_trylock(map))
668		return;
669
670	bigobj = NULL;
671	nothingwired = TRUE;
672
673	/*
674	 * first, search out the biggest object, and try to free pages from
675	 * that.
676	 */
677	tmpe = map->header.next;
678	while (tmpe != &map->header) {
679		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
680			obj = tmpe->object.vm_object;
681			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
682				if (obj->shadow_count <= 1 &&
683				    (bigobj == NULL ||
684				     bigobj->resident_page_count < obj->resident_page_count)) {
685					if (bigobj != NULL)
686						VM_OBJECT_UNLOCK(bigobj);
687					bigobj = obj;
688				} else
689					VM_OBJECT_UNLOCK(obj);
690			}
691		}
692		if (tmpe->wired_count > 0)
693			nothingwired = FALSE;
694		tmpe = tmpe->next;
695	}
696
697	if (bigobj != NULL) {
698		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
699		VM_OBJECT_UNLOCK(bigobj);
700	}
701	/*
702	 * Next, hunt around for other pages to deactivate.  We actually
703	 * do this search sort of wrong -- .text first is not the best idea.
704	 */
705	tmpe = map->header.next;
706	while (tmpe != &map->header) {
707		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
708			break;
709		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
710			obj = tmpe->object.vm_object;
711			if (obj != NULL) {
712				VM_OBJECT_LOCK(obj);
713				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
714				VM_OBJECT_UNLOCK(obj);
715			}
716		}
717		tmpe = tmpe->next;
718	}
719
720	/*
721	 * Remove all mappings if a process is swapped out, this will free page
722	 * table pages.
723	 */
724	if (desired == 0 && nothingwired) {
725		pmap_remove(vm_map_pmap(map), vm_map_min(map),
726		    vm_map_max(map));
727	}
728	vm_map_unlock(map);
729}
730#endif		/* !defined(NO_SWAPPING) */
731
732/*
733 *	vm_pageout_scan does the dirty work for the pageout daemon.
734 */
735static void
736vm_pageout_scan(int pass)
737{
738	vm_page_t m, next;
739	struct vm_page marker;
740	int page_shortage, maxscan, pcount;
741	int addl_page_shortage;
742	vm_object_t object;
743	int actcount;
744	int vnodes_skipped = 0;
745	int maxlaunder;
746	boolean_t queues_locked;
747
748	/*
749	 * Decrease registered cache sizes.
750	 */
751	EVENTHANDLER_INVOKE(vm_lowmem, 0);
752	/*
753	 * We do this explicitly after the caches have been drained above.
754	 */
755	uma_reclaim();
756
757	/*
758	 * The addl_page_shortage is the number of temporarily
759	 * stuck pages in the inactive queue.  In other words, the
760	 * number of pages from cnt.v_inactive_count that should be
761	 * discounted in setting the target for the active queue scan.
762	 */
763	addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
764
765	/*
766	 * Calculate the number of pages we want to either free or move
767	 * to the cache.
768	 */
769	page_shortage = vm_paging_target() + addl_page_shortage;
770
771	vm_pageout_init_marker(&marker, PQ_INACTIVE);
772
773	/*
774	 * Start scanning the inactive queue for pages we can move to the
775	 * cache or free.  The scan will stop when the target is reached or
776	 * we have scanned the entire inactive queue.  Note that m->act_count
777	 * is not used to form decisions for the inactive queue, only for the
778	 * active queue.
779	 *
780	 * maxlaunder limits the number of dirty pages we flush per scan.
781	 * For most systems a smaller value (16 or 32) is more robust under
782	 * extreme memory and disk pressure because any unnecessary writes
783	 * to disk can result in extreme performance degredation.  However,
784	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
785	 * used) will die horribly with limited laundering.  If the pageout
786	 * daemon cannot clean enough pages in the first pass, we let it go
787	 * all out in succeeding passes.
788	 */
789	if ((maxlaunder = vm_max_launder) <= 1)
790		maxlaunder = 1;
791	if (pass)
792		maxlaunder = 10000;
793	vm_page_lock_queues();
794	queues_locked = TRUE;
795	maxscan = cnt.v_inactive_count;
796
797	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
798	     m != NULL && maxscan-- > 0 && page_shortage > 0;
799	     m = next) {
800		KASSERT(queues_locked, ("unlocked queues"));
801		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
802		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
803
804		cnt.v_pdpages++;
805		next = TAILQ_NEXT(m, pageq);
806
807		/*
808		 * skip marker pages
809		 */
810		if (m->flags & PG_MARKER)
811			continue;
812
813		KASSERT((m->flags & PG_FICTITIOUS) == 0,
814		    ("Fictitious page %p cannot be in inactive queue", m));
815		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
816		    ("Unmanaged page %p cannot be in inactive queue", m));
817
818		/*
819		 * The page or object lock acquisitions fail if the
820		 * page was removed from the queue or moved to a
821		 * different position within the queue.  In either
822		 * case, addl_page_shortage should not be incremented.
823		 */
824		if (!vm_pageout_page_lock(m, &next)) {
825			vm_page_unlock(m);
826			continue;
827		}
828		object = m->object;
829		if (!VM_OBJECT_TRYLOCK(object) &&
830		    !vm_pageout_fallback_object_lock(m, &next)) {
831			vm_page_unlock(m);
832			VM_OBJECT_UNLOCK(object);
833			continue;
834		}
835
836		/*
837		 * Don't mess with busy pages, keep them at at the
838		 * front of the queue, most likely they are being
839		 * paged out.  Increment addl_page_shortage for busy
840		 * pages, because they may leave the inactive queue
841		 * shortly after page scan is finished.
842		 */
843		if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
844			vm_page_unlock(m);
845			VM_OBJECT_UNLOCK(object);
846			addl_page_shortage++;
847			continue;
848		}
849
850		/*
851		 * We unlock vm_page_queue_mtx, invalidating the
852		 * 'next' pointer.  Use our marker to remember our
853		 * place.
854		 */
855		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
856		    m, &marker, pageq);
857		vm_page_unlock_queues();
858		queues_locked = FALSE;
859
860		/*
861		 * If the object is not being used, we ignore previous
862		 * references.
863		 */
864		if (object->ref_count == 0) {
865			vm_page_aflag_clear(m, PGA_REFERENCED);
866			KASSERT(!pmap_page_is_mapped(m),
867			    ("vm_pageout_scan: page %p is mapped", m));
868
869		/*
870		 * Otherwise, if the page has been referenced while in the
871		 * inactive queue, we bump the "activation count" upwards,
872		 * making it less likely that the page will be added back to
873		 * the inactive queue prematurely again.  Here we check the
874		 * page tables (or emulated bits, if any), given the upper
875		 * level VM system not knowing anything about existing
876		 * references.
877		 */
878		} else if ((m->aflags & PGA_REFERENCED) == 0 &&
879		    (actcount = pmap_ts_referenced(m)) != 0) {
880			vm_page_activate(m);
881			vm_page_unlock(m);
882			m->act_count += actcount + ACT_ADVANCE;
883			VM_OBJECT_UNLOCK(object);
884			goto relock_queues;
885		}
886
887		/*
888		 * If the upper level VM system knows about any page
889		 * references, we activate the page.  We also set the
890		 * "activation count" higher than normal so that we will less
891		 * likely place pages back onto the inactive queue again.
892		 */
893		if ((m->aflags & PGA_REFERENCED) != 0) {
894			vm_page_aflag_clear(m, PGA_REFERENCED);
895			actcount = pmap_ts_referenced(m);
896			vm_page_activate(m);
897			vm_page_unlock(m);
898			m->act_count += actcount + ACT_ADVANCE + 1;
899			VM_OBJECT_UNLOCK(object);
900			goto relock_queues;
901		}
902
903		if (m->hold_count != 0) {
904			vm_page_unlock(m);
905			VM_OBJECT_UNLOCK(object);
906
907			/*
908			 * Held pages are essentially stuck in the
909			 * queue.  So, they ought to be discounted
910			 * from cnt.v_inactive_count.  See the
911			 * calculation of the page_shortage for the
912			 * loop over the active queue below.
913			 */
914			addl_page_shortage++;
915			goto relock_queues;
916		}
917
918		/*
919		 * If the upper level VM system does not believe that the page
920		 * is fully dirty, but it is mapped for write access, then we
921		 * consult the pmap to see if the page's dirty status should
922		 * be updated.
923		 */
924		if (m->dirty != VM_PAGE_BITS_ALL &&
925		    pmap_page_is_write_mapped(m)) {
926			/*
927			 * Avoid a race condition: Unless write access is
928			 * removed from the page, another processor could
929			 * modify it before all access is removed by the call
930			 * to vm_page_cache() below.  If vm_page_cache() finds
931			 * that the page has been modified when it removes all
932			 * access, it panics because it cannot cache dirty
933			 * pages.  In principle, we could eliminate just write
934			 * access here rather than all access.  In the expected
935			 * case, when there are no last instant modifications
936			 * to the page, removing all access will be cheaper
937			 * overall.
938			 */
939			if (pmap_is_modified(m))
940				vm_page_dirty(m);
941			else if (m->dirty == 0)
942				pmap_remove_all(m);
943		}
944
945		if (m->valid == 0) {
946			/*
947			 * Invalid pages can be easily freed
948			 */
949			vm_page_free(m);
950			PCPU_INC(cnt.v_dfree);
951			--page_shortage;
952		} else if (m->dirty == 0) {
953			/*
954			 * Clean pages can be placed onto the cache queue.
955			 * This effectively frees them.
956			 */
957			vm_page_cache(m);
958			--page_shortage;
959		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
960			/*
961			 * Dirty pages need to be paged out, but flushing
962			 * a page is extremely expensive verses freeing
963			 * a clean page.  Rather then artificially limiting
964			 * the number of pages we can flush, we instead give
965			 * dirty pages extra priority on the inactive queue
966			 * by forcing them to be cycled through the queue
967			 * twice before being flushed, after which the
968			 * (now clean) page will cycle through once more
969			 * before being freed.  This significantly extends
970			 * the thrash point for a heavily loaded machine.
971			 */
972			m->flags |= PG_WINATCFLS;
973			vm_page_lock_queues();
974			queues_locked = TRUE;
975			vm_page_requeue(m);
976		} else if (maxlaunder > 0) {
977			/*
978			 * We always want to try to flush some dirty pages if
979			 * we encounter them, to keep the system stable.
980			 * Normally this number is small, but under extreme
981			 * pressure where there are insufficient clean pages
982			 * on the inactive queue, we may have to go all out.
983			 */
984			int swap_pageouts_ok, vfslocked = 0;
985			struct vnode *vp = NULL;
986			struct mount *mp = NULL;
987
988			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
989				swap_pageouts_ok = 1;
990			} else {
991				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
992				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
993				vm_page_count_min());
994
995			}
996
997			/*
998			 * We don't bother paging objects that are "dead".
999			 * Those objects are in a "rundown" state.
1000			 */
1001			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1002				vm_page_lock_queues();
1003				vm_page_unlock(m);
1004				VM_OBJECT_UNLOCK(object);
1005				queues_locked = TRUE;
1006				vm_page_requeue(m);
1007				goto relock_queues;
1008			}
1009
1010			/*
1011			 * The object is already known NOT to be dead.   It
1012			 * is possible for the vget() to block the whole
1013			 * pageout daemon, but the new low-memory handling
1014			 * code should prevent it.
1015			 *
1016			 * The previous code skipped locked vnodes and, worse,
1017			 * reordered pages in the queue.  This results in
1018			 * completely non-deterministic operation and, on a
1019			 * busy system, can lead to extremely non-optimal
1020			 * pageouts.  For example, it can cause clean pages
1021			 * to be freed and dirty pages to be moved to the end
1022			 * of the queue.  Since dirty pages are also moved to
1023			 * the end of the queue once-cleaned, this gives
1024			 * way too large a weighting to defering the freeing
1025			 * of dirty pages.
1026			 *
1027			 * We can't wait forever for the vnode lock, we might
1028			 * deadlock due to a vn_read() getting stuck in
1029			 * vm_wait while holding this vnode.  We skip the
1030			 * vnode if we can't get it in a reasonable amount
1031			 * of time.
1032			 */
1033			if (object->type == OBJT_VNODE) {
1034				vm_page_unlock(m);
1035				vp = object->handle;
1036				if (vp->v_type == VREG &&
1037				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1038					mp = NULL;
1039					++pageout_lock_miss;
1040					if (object->flags & OBJ_MIGHTBEDIRTY)
1041						vnodes_skipped++;
1042					goto unlock_and_continue;
1043				}
1044				KASSERT(mp != NULL,
1045				    ("vp %p with NULL v_mount", vp));
1046				vm_object_reference_locked(object);
1047				VM_OBJECT_UNLOCK(object);
1048				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1049				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1050				    curthread)) {
1051					VM_OBJECT_LOCK(object);
1052					++pageout_lock_miss;
1053					if (object->flags & OBJ_MIGHTBEDIRTY)
1054						vnodes_skipped++;
1055					vp = NULL;
1056					goto unlock_and_continue;
1057				}
1058				VM_OBJECT_LOCK(object);
1059				vm_page_lock(m);
1060				vm_page_lock_queues();
1061				queues_locked = TRUE;
1062				/*
1063				 * The page might have been moved to another
1064				 * queue during potential blocking in vget()
1065				 * above.  The page might have been freed and
1066				 * reused for another vnode.
1067				 */
1068				if (m->queue != PQ_INACTIVE ||
1069				    m->object != object ||
1070				    TAILQ_NEXT(m, pageq) != &marker) {
1071					vm_page_unlock(m);
1072					if (object->flags & OBJ_MIGHTBEDIRTY)
1073						vnodes_skipped++;
1074					goto unlock_and_continue;
1075				}
1076
1077				/*
1078				 * The page may have been busied during the
1079				 * blocking in vget().  We don't move the
1080				 * page back onto the end of the queue so that
1081				 * statistics are more correct if we don't.
1082				 */
1083				if (m->busy || (m->oflags & VPO_BUSY)) {
1084					vm_page_unlock(m);
1085					goto unlock_and_continue;
1086				}
1087
1088				/*
1089				 * If the page has become held it might
1090				 * be undergoing I/O, so skip it
1091				 */
1092				if (m->hold_count) {
1093					vm_page_unlock(m);
1094					vm_page_requeue(m);
1095					if (object->flags & OBJ_MIGHTBEDIRTY)
1096						vnodes_skipped++;
1097					goto unlock_and_continue;
1098				}
1099				vm_page_unlock_queues();
1100				queues_locked = FALSE;
1101			}
1102
1103			/*
1104			 * If a page is dirty, then it is either being washed
1105			 * (but not yet cleaned) or it is still in the
1106			 * laundry.  If it is still in the laundry, then we
1107			 * start the cleaning operation.
1108			 *
1109			 * decrement page_shortage on success to account for
1110			 * the (future) cleaned page.  Otherwise we could wind
1111			 * up laundering or cleaning too many pages.
1112			 */
1113			if (vm_pageout_clean(m) != 0) {
1114				--page_shortage;
1115				--maxlaunder;
1116			}
1117unlock_and_continue:
1118			vm_page_lock_assert(m, MA_NOTOWNED);
1119			VM_OBJECT_UNLOCK(object);
1120			if (mp != NULL) {
1121				if (queues_locked) {
1122					vm_page_unlock_queues();
1123					queues_locked = FALSE;
1124				}
1125				if (vp != NULL)
1126					vput(vp);
1127				VFS_UNLOCK_GIANT(vfslocked);
1128				vm_object_deallocate(object);
1129				vn_finished_write(mp);
1130			}
1131			vm_page_lock_assert(m, MA_NOTOWNED);
1132			goto relock_queues;
1133		}
1134		vm_page_unlock(m);
1135		VM_OBJECT_UNLOCK(object);
1136relock_queues:
1137		if (!queues_locked) {
1138			vm_page_lock_queues();
1139			queues_locked = TRUE;
1140		}
1141		next = TAILQ_NEXT(&marker, pageq);
1142		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1143		    &marker, pageq);
1144	}
1145
1146	/*
1147	 * Compute the number of pages we want to try to move from the
1148	 * active queue to the inactive queue.
1149	 */
1150	page_shortage = vm_paging_target() +
1151		cnt.v_inactive_target - cnt.v_inactive_count;
1152	page_shortage += addl_page_shortage;
1153
1154	/*
1155	 * Scan the active queue for things we can deactivate. We nominally
1156	 * track the per-page activity counter and use it to locate
1157	 * deactivation candidates.
1158	 */
1159	pcount = cnt.v_active_count;
1160	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1161	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1162
1163	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1164
1165		KASSERT(m->queue == PQ_ACTIVE,
1166		    ("vm_pageout_scan: page %p isn't active", m));
1167
1168		next = TAILQ_NEXT(m, pageq);
1169		if ((m->flags & PG_MARKER) != 0) {
1170			m = next;
1171			continue;
1172		}
1173		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1174		    ("Fictitious page %p cannot be in active queue", m));
1175		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1176		    ("Unmanaged page %p cannot be in active queue", m));
1177		if (!vm_pageout_page_lock(m, &next)) {
1178			vm_page_unlock(m);
1179			m = next;
1180			continue;
1181		}
1182		object = m->object;
1183		if (!VM_OBJECT_TRYLOCK(object) &&
1184		    !vm_pageout_fallback_object_lock(m, &next)) {
1185			VM_OBJECT_UNLOCK(object);
1186			vm_page_unlock(m);
1187			m = next;
1188			continue;
1189		}
1190
1191		/*
1192		 * Don't deactivate pages that are busy.
1193		 */
1194		if ((m->busy != 0) ||
1195		    (m->oflags & VPO_BUSY) ||
1196		    (m->hold_count != 0)) {
1197			vm_page_unlock(m);
1198			VM_OBJECT_UNLOCK(object);
1199			vm_page_requeue(m);
1200			m = next;
1201			continue;
1202		}
1203
1204		/*
1205		 * The count for pagedaemon pages is done after checking the
1206		 * page for eligibility...
1207		 */
1208		cnt.v_pdpages++;
1209
1210		/*
1211		 * Check to see "how much" the page has been used.
1212		 */
1213		actcount = 0;
1214		if (object->ref_count != 0) {
1215			if (m->aflags & PGA_REFERENCED) {
1216				actcount += 1;
1217			}
1218			actcount += pmap_ts_referenced(m);
1219			if (actcount) {
1220				m->act_count += ACT_ADVANCE + actcount;
1221				if (m->act_count > ACT_MAX)
1222					m->act_count = ACT_MAX;
1223			}
1224		}
1225
1226		/*
1227		 * Since we have "tested" this bit, we need to clear it now.
1228		 */
1229		vm_page_aflag_clear(m, PGA_REFERENCED);
1230
1231		/*
1232		 * Only if an object is currently being used, do we use the
1233		 * page activation count stats.
1234		 */
1235		if (actcount && (object->ref_count != 0)) {
1236			vm_page_requeue(m);
1237		} else {
1238			m->act_count -= min(m->act_count, ACT_DECLINE);
1239			if (vm_pageout_algorithm ||
1240			    object->ref_count == 0 ||
1241			    m->act_count == 0) {
1242				page_shortage--;
1243				if (object->ref_count == 0) {
1244					KASSERT(!pmap_page_is_mapped(m),
1245				    ("vm_pageout_scan: page %p is mapped", m));
1246					if (m->dirty == 0)
1247						vm_page_cache(m);
1248					else
1249						vm_page_deactivate(m);
1250				} else {
1251					vm_page_deactivate(m);
1252				}
1253			} else {
1254				vm_page_requeue(m);
1255			}
1256		}
1257		vm_page_unlock(m);
1258		VM_OBJECT_UNLOCK(object);
1259		m = next;
1260	}
1261	vm_page_unlock_queues();
1262#if !defined(NO_SWAPPING)
1263	/*
1264	 * Idle process swapout -- run once per second.
1265	 */
1266	if (vm_swap_idle_enabled) {
1267		static long lsec;
1268		if (time_second != lsec) {
1269			vm_req_vmdaemon(VM_SWAP_IDLE);
1270			lsec = time_second;
1271		}
1272	}
1273#endif
1274
1275	/*
1276	 * If we didn't get enough free pages, and we have skipped a vnode
1277	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1278	 * if we did not get enough free pages.
1279	 */
1280	if (vm_paging_target() > 0) {
1281		if (vnodes_skipped && vm_page_count_min())
1282			(void) speedup_syncer();
1283#if !defined(NO_SWAPPING)
1284		if (vm_swap_enabled && vm_page_count_target())
1285			vm_req_vmdaemon(VM_SWAP_NORMAL);
1286#endif
1287	}
1288
1289	/*
1290	 * If we are critically low on one of RAM or swap and low on
1291	 * the other, kill the largest process.  However, we avoid
1292	 * doing this on the first pass in order to give ourselves a
1293	 * chance to flush out dirty vnode-backed pages and to allow
1294	 * active pages to be moved to the inactive queue and reclaimed.
1295	 */
1296	if (pass != 0 &&
1297	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1298	     (swap_pager_full && vm_paging_target() > 0)))
1299		vm_pageout_oom(VM_OOM_MEM);
1300}
1301
1302
1303void
1304vm_pageout_oom(int shortage)
1305{
1306	struct proc *p, *bigproc;
1307	vm_offset_t size, bigsize;
1308	struct thread *td;
1309	struct vmspace *vm;
1310
1311	/*
1312	 * We keep the process bigproc locked once we find it to keep anyone
1313	 * from messing with it; however, there is a possibility of
1314	 * deadlock if process B is bigproc and one of it's child processes
1315	 * attempts to propagate a signal to B while we are waiting for A's
1316	 * lock while walking this list.  To avoid this, we don't block on
1317	 * the process lock but just skip a process if it is already locked.
1318	 */
1319	bigproc = NULL;
1320	bigsize = 0;
1321	sx_slock(&allproc_lock);
1322	FOREACH_PROC_IN_SYSTEM(p) {
1323		int breakout;
1324
1325		if (PROC_TRYLOCK(p) == 0)
1326			continue;
1327		/*
1328		 * If this is a system, protected or killed process, skip it.
1329		 */
1330		if (p->p_state != PRS_NORMAL ||
1331		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1332		    (p->p_pid == 1) || P_KILLED(p) ||
1333		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1334			PROC_UNLOCK(p);
1335			continue;
1336		}
1337		/*
1338		 * If the process is in a non-running type state,
1339		 * don't touch it.  Check all the threads individually.
1340		 */
1341		breakout = 0;
1342		FOREACH_THREAD_IN_PROC(p, td) {
1343			thread_lock(td);
1344			if (!TD_ON_RUNQ(td) &&
1345			    !TD_IS_RUNNING(td) &&
1346			    !TD_IS_SLEEPING(td) &&
1347			    !TD_IS_SUSPENDED(td)) {
1348				thread_unlock(td);
1349				breakout = 1;
1350				break;
1351			}
1352			thread_unlock(td);
1353		}
1354		if (breakout) {
1355			PROC_UNLOCK(p);
1356			continue;
1357		}
1358		/*
1359		 * get the process size
1360		 */
1361		vm = vmspace_acquire_ref(p);
1362		if (vm == NULL) {
1363			PROC_UNLOCK(p);
1364			continue;
1365		}
1366		if (!vm_map_trylock_read(&vm->vm_map)) {
1367			vmspace_free(vm);
1368			PROC_UNLOCK(p);
1369			continue;
1370		}
1371		size = vmspace_swap_count(vm);
1372		vm_map_unlock_read(&vm->vm_map);
1373		if (shortage == VM_OOM_MEM)
1374			size += vmspace_resident_count(vm);
1375		vmspace_free(vm);
1376		/*
1377		 * if the this process is bigger than the biggest one
1378		 * remember it.
1379		 */
1380		if (size > bigsize) {
1381			if (bigproc != NULL)
1382				PROC_UNLOCK(bigproc);
1383			bigproc = p;
1384			bigsize = size;
1385		} else
1386			PROC_UNLOCK(p);
1387	}
1388	sx_sunlock(&allproc_lock);
1389	if (bigproc != NULL) {
1390		killproc(bigproc, "out of swap space");
1391		sched_nice(bigproc, PRIO_MIN);
1392		PROC_UNLOCK(bigproc);
1393		wakeup(&cnt.v_free_count);
1394	}
1395}
1396
1397/*
1398 * This routine tries to maintain the pseudo LRU active queue,
1399 * so that during long periods of time where there is no paging,
1400 * that some statistic accumulation still occurs.  This code
1401 * helps the situation where paging just starts to occur.
1402 */
1403static void
1404vm_pageout_page_stats()
1405{
1406	vm_object_t object;
1407	vm_page_t m,next;
1408	int pcount,tpcount;		/* Number of pages to check */
1409	static int fullintervalcount = 0;
1410	int page_shortage;
1411
1412	page_shortage =
1413	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1414	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1415
1416	if (page_shortage <= 0)
1417		return;
1418
1419	vm_page_lock_queues();
1420	pcount = cnt.v_active_count;
1421	fullintervalcount += vm_pageout_stats_interval;
1422	if (fullintervalcount < vm_pageout_full_stats_interval) {
1423		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1424		    cnt.v_page_count;
1425		if (pcount > tpcount)
1426			pcount = tpcount;
1427	} else {
1428		fullintervalcount = 0;
1429	}
1430
1431	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1432	while ((m != NULL) && (pcount-- > 0)) {
1433		int actcount;
1434
1435		KASSERT(m->queue == PQ_ACTIVE,
1436		    ("vm_pageout_page_stats: page %p isn't active", m));
1437
1438		next = TAILQ_NEXT(m, pageq);
1439		if ((m->flags & PG_MARKER) != 0) {
1440			m = next;
1441			continue;
1442		}
1443		vm_page_lock_assert(m, MA_NOTOWNED);
1444		if (!vm_pageout_page_lock(m, &next)) {
1445			vm_page_unlock(m);
1446			m = next;
1447			continue;
1448		}
1449		object = m->object;
1450		if (!VM_OBJECT_TRYLOCK(object) &&
1451		    !vm_pageout_fallback_object_lock(m, &next)) {
1452			VM_OBJECT_UNLOCK(object);
1453			vm_page_unlock(m);
1454			m = next;
1455			continue;
1456		}
1457
1458		/*
1459		 * Don't deactivate pages that are busy.
1460		 */
1461		if ((m->busy != 0) ||
1462		    (m->oflags & VPO_BUSY) ||
1463		    (m->hold_count != 0)) {
1464			vm_page_unlock(m);
1465			VM_OBJECT_UNLOCK(object);
1466			vm_page_requeue(m);
1467			m = next;
1468			continue;
1469		}
1470
1471		actcount = 0;
1472		if (m->aflags & PGA_REFERENCED) {
1473			vm_page_aflag_clear(m, PGA_REFERENCED);
1474			actcount += 1;
1475		}
1476
1477		actcount += pmap_ts_referenced(m);
1478		if (actcount) {
1479			m->act_count += ACT_ADVANCE + actcount;
1480			if (m->act_count > ACT_MAX)
1481				m->act_count = ACT_MAX;
1482			vm_page_requeue(m);
1483		} else {
1484			if (m->act_count == 0) {
1485				/*
1486				 * We turn off page access, so that we have
1487				 * more accurate RSS stats.  We don't do this
1488				 * in the normal page deactivation when the
1489				 * system is loaded VM wise, because the
1490				 * cost of the large number of page protect
1491				 * operations would be higher than the value
1492				 * of doing the operation.
1493				 */
1494				pmap_remove_all(m);
1495				vm_page_deactivate(m);
1496			} else {
1497				m->act_count -= min(m->act_count, ACT_DECLINE);
1498				vm_page_requeue(m);
1499			}
1500		}
1501		vm_page_unlock(m);
1502		VM_OBJECT_UNLOCK(object);
1503		m = next;
1504	}
1505	vm_page_unlock_queues();
1506}
1507
1508/*
1509 *	vm_pageout is the high level pageout daemon.
1510 */
1511static void
1512vm_pageout()
1513{
1514	int error, pass;
1515
1516	/*
1517	 * Initialize some paging parameters.
1518	 */
1519	cnt.v_interrupt_free_min = 2;
1520	if (cnt.v_page_count < 2000)
1521		vm_pageout_page_count = 8;
1522
1523	/*
1524	 * v_free_reserved needs to include enough for the largest
1525	 * swap pager structures plus enough for any pv_entry structs
1526	 * when paging.
1527	 */
1528	if (cnt.v_page_count > 1024)
1529		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1530	else
1531		cnt.v_free_min = 4;
1532	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1533	    cnt.v_interrupt_free_min;
1534	cnt.v_free_reserved = vm_pageout_page_count +
1535	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1536	cnt.v_free_severe = cnt.v_free_min / 2;
1537	cnt.v_free_min += cnt.v_free_reserved;
1538	cnt.v_free_severe += cnt.v_free_reserved;
1539
1540	/*
1541	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1542	 * that these are more a measure of the VM cache queue hysteresis
1543	 * then the VM free queue.  Specifically, v_free_target is the
1544	 * high water mark (free+cache pages).
1545	 *
1546	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1547	 * low water mark, while v_free_min is the stop.  v_cache_min must
1548	 * be big enough to handle memory needs while the pageout daemon
1549	 * is signalled and run to free more pages.
1550	 */
1551	if (cnt.v_free_count > 6144)
1552		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1553	else
1554		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1555
1556	if (cnt.v_free_count > 2048) {
1557		cnt.v_cache_min = cnt.v_free_target;
1558		cnt.v_cache_max = 2 * cnt.v_cache_min;
1559		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1560	} else {
1561		cnt.v_cache_min = 0;
1562		cnt.v_cache_max = 0;
1563		cnt.v_inactive_target = cnt.v_free_count / 4;
1564	}
1565	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1566		cnt.v_inactive_target = cnt.v_free_count / 3;
1567
1568	/* XXX does not really belong here */
1569	if (vm_page_max_wired == 0)
1570		vm_page_max_wired = cnt.v_free_count / 3;
1571
1572	if (vm_pageout_stats_max == 0)
1573		vm_pageout_stats_max = cnt.v_free_target;
1574
1575	/*
1576	 * Set interval in seconds for stats scan.
1577	 */
1578	if (vm_pageout_stats_interval == 0)
1579		vm_pageout_stats_interval = 5;
1580	if (vm_pageout_full_stats_interval == 0)
1581		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1582
1583	swap_pager_swap_init();
1584	pass = 0;
1585	/*
1586	 * The pageout daemon is never done, so loop forever.
1587	 */
1588	while (TRUE) {
1589		/*
1590		 * If we have enough free memory, wakeup waiters.  Do
1591		 * not clear vm_pages_needed until we reach our target,
1592		 * otherwise we may be woken up over and over again and
1593		 * waste a lot of cpu.
1594		 */
1595		mtx_lock(&vm_page_queue_free_mtx);
1596		if (vm_pages_needed && !vm_page_count_min()) {
1597			if (!vm_paging_needed())
1598				vm_pages_needed = 0;
1599			wakeup(&cnt.v_free_count);
1600		}
1601		if (vm_pages_needed) {
1602			/*
1603			 * Still not done, take a second pass without waiting
1604			 * (unlimited dirty cleaning), otherwise sleep a bit
1605			 * and try again.
1606			 */
1607			++pass;
1608			if (pass > 1)
1609				msleep(&vm_pages_needed,
1610				    &vm_page_queue_free_mtx, PVM, "psleep",
1611				    hz / 2);
1612		} else {
1613			/*
1614			 * Good enough, sleep & handle stats.  Prime the pass
1615			 * for the next run.
1616			 */
1617			if (pass > 1)
1618				pass = 1;
1619			else
1620				pass = 0;
1621			error = msleep(&vm_pages_needed,
1622			    &vm_page_queue_free_mtx, PVM, "psleep",
1623			    vm_pageout_stats_interval * hz);
1624			if (error && !vm_pages_needed) {
1625				mtx_unlock(&vm_page_queue_free_mtx);
1626				pass = 0;
1627				vm_pageout_page_stats();
1628				continue;
1629			}
1630		}
1631		if (vm_pages_needed)
1632			cnt.v_pdwakeups++;
1633		mtx_unlock(&vm_page_queue_free_mtx);
1634		vm_pageout_scan(pass);
1635	}
1636}
1637
1638/*
1639 * Unless the free page queue lock is held by the caller, this function
1640 * should be regarded as advisory.  Specifically, the caller should
1641 * not msleep() on &cnt.v_free_count following this function unless
1642 * the free page queue lock is held until the msleep() is performed.
1643 */
1644void
1645pagedaemon_wakeup()
1646{
1647
1648	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1649		vm_pages_needed = 1;
1650		wakeup(&vm_pages_needed);
1651	}
1652}
1653
1654#if !defined(NO_SWAPPING)
1655static void
1656vm_req_vmdaemon(int req)
1657{
1658	static int lastrun = 0;
1659
1660	mtx_lock(&vm_daemon_mtx);
1661	vm_pageout_req_swapout |= req;
1662	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1663		wakeup(&vm_daemon_needed);
1664		lastrun = ticks;
1665	}
1666	mtx_unlock(&vm_daemon_mtx);
1667}
1668
1669static void
1670vm_daemon()
1671{
1672	struct rlimit rsslim;
1673	struct proc *p;
1674	struct thread *td;
1675	struct vmspace *vm;
1676	int breakout, swapout_flags, tryagain, attempts;
1677#ifdef RACCT
1678	uint64_t rsize, ravailable;
1679#endif
1680
1681	while (TRUE) {
1682		mtx_lock(&vm_daemon_mtx);
1683#ifdef RACCT
1684		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1685#else
1686		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1687#endif
1688		swapout_flags = vm_pageout_req_swapout;
1689		vm_pageout_req_swapout = 0;
1690		mtx_unlock(&vm_daemon_mtx);
1691		if (swapout_flags)
1692			swapout_procs(swapout_flags);
1693
1694		/*
1695		 * scan the processes for exceeding their rlimits or if
1696		 * process is swapped out -- deactivate pages
1697		 */
1698		tryagain = 0;
1699		attempts = 0;
1700again:
1701		attempts++;
1702		sx_slock(&allproc_lock);
1703		FOREACH_PROC_IN_SYSTEM(p) {
1704			vm_pindex_t limit, size;
1705
1706			/*
1707			 * if this is a system process or if we have already
1708			 * looked at this process, skip it.
1709			 */
1710			PROC_LOCK(p);
1711			if (p->p_state != PRS_NORMAL ||
1712			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1713				PROC_UNLOCK(p);
1714				continue;
1715			}
1716			/*
1717			 * if the process is in a non-running type state,
1718			 * don't touch it.
1719			 */
1720			breakout = 0;
1721			FOREACH_THREAD_IN_PROC(p, td) {
1722				thread_lock(td);
1723				if (!TD_ON_RUNQ(td) &&
1724				    !TD_IS_RUNNING(td) &&
1725				    !TD_IS_SLEEPING(td) &&
1726				    !TD_IS_SUSPENDED(td)) {
1727					thread_unlock(td);
1728					breakout = 1;
1729					break;
1730				}
1731				thread_unlock(td);
1732			}
1733			if (breakout) {
1734				PROC_UNLOCK(p);
1735				continue;
1736			}
1737			/*
1738			 * get a limit
1739			 */
1740			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1741			limit = OFF_TO_IDX(
1742			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1743
1744			/*
1745			 * let processes that are swapped out really be
1746			 * swapped out set the limit to nothing (will force a
1747			 * swap-out.)
1748			 */
1749			if ((p->p_flag & P_INMEM) == 0)
1750				limit = 0;	/* XXX */
1751			vm = vmspace_acquire_ref(p);
1752			PROC_UNLOCK(p);
1753			if (vm == NULL)
1754				continue;
1755
1756			size = vmspace_resident_count(vm);
1757			if (limit >= 0 && size >= limit) {
1758				vm_pageout_map_deactivate_pages(
1759				    &vm->vm_map, limit);
1760			}
1761#ifdef RACCT
1762			rsize = IDX_TO_OFF(size);
1763			PROC_LOCK(p);
1764			racct_set(p, RACCT_RSS, rsize);
1765			ravailable = racct_get_available(p, RACCT_RSS);
1766			PROC_UNLOCK(p);
1767			if (rsize > ravailable) {
1768				/*
1769				 * Don't be overly aggressive; this might be
1770				 * an innocent process, and the limit could've
1771				 * been exceeded by some memory hog.  Don't
1772				 * try to deactivate more than 1/4th of process'
1773				 * resident set size.
1774				 */
1775				if (attempts <= 8) {
1776					if (ravailable < rsize - (rsize / 4))
1777						ravailable = rsize - (rsize / 4);
1778				}
1779				vm_pageout_map_deactivate_pages(
1780				    &vm->vm_map, OFF_TO_IDX(ravailable));
1781				/* Update RSS usage after paging out. */
1782				size = vmspace_resident_count(vm);
1783				rsize = IDX_TO_OFF(size);
1784				PROC_LOCK(p);
1785				racct_set(p, RACCT_RSS, rsize);
1786				PROC_UNLOCK(p);
1787				if (rsize > ravailable)
1788					tryagain = 1;
1789			}
1790#endif
1791			vmspace_free(vm);
1792		}
1793		sx_sunlock(&allproc_lock);
1794		if (tryagain != 0 && attempts <= 10)
1795			goto again;
1796	}
1797}
1798#endif			/* !defined(NO_SWAPPING) */
1799