vm_pageout.c revision 88318
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 88318 2001-12-20 22:42:27Z dillon $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout __P((void));
110static int vm_pageout_clean __P((vm_page_t));
111static void vm_pageout_scan __P((int pass));
112static int vm_pageout_free_page_calc __P((vm_size_t count));
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon __P((void));
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
207static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
208static freeer_fcn_t vm_pageout_object_deactivate_pages;
209static void vm_req_vmdaemon __P((void));
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_clean:
215 *
216 * Clean the page and remove it from the laundry.
217 *
218 * We set the busy bit to cause potential page faults on this page to
219 * block.  Note the careful timing, however, the busy bit isn't set till
220 * late and we cannot do anything that will mess with the page.
221 */
222
223static int
224vm_pageout_clean(m)
225	vm_page_t m;
226{
227	vm_object_t object;
228	vm_page_t mc[2*vm_pageout_page_count];
229	int pageout_count;
230	int ib, is, page_base;
231	vm_pindex_t pindex = m->pindex;
232
233	GIANT_REQUIRED;
234
235	object = m->object;
236
237	/*
238	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
239	 * with the new swapper, but we could have serious problems paging
240	 * out other object types if there is insufficient memory.
241	 *
242	 * Unfortunately, checking free memory here is far too late, so the
243	 * check has been moved up a procedural level.
244	 */
245
246	/*
247	 * Don't mess with the page if it's busy, held, or special
248	 */
249	if ((m->hold_count != 0) ||
250	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
251		return 0;
252	}
253
254	mc[vm_pageout_page_count] = m;
255	pageout_count = 1;
256	page_base = vm_pageout_page_count;
257	ib = 1;
258	is = 1;
259
260	/*
261	 * Scan object for clusterable pages.
262	 *
263	 * We can cluster ONLY if: ->> the page is NOT
264	 * clean, wired, busy, held, or mapped into a
265	 * buffer, and one of the following:
266	 * 1) The page is inactive, or a seldom used
267	 *    active page.
268	 * -or-
269	 * 2) we force the issue.
270	 *
271	 * During heavy mmap/modification loads the pageout
272	 * daemon can really fragment the underlying file
273	 * due to flushing pages out of order and not trying
274	 * align the clusters (which leave sporatic out-of-order
275	 * holes).  To solve this problem we do the reverse scan
276	 * first and attempt to align our cluster, then do a
277	 * forward scan if room remains.
278	 */
279
280more:
281	while (ib && pageout_count < vm_pageout_page_count) {
282		vm_page_t p;
283
284		if (ib > pindex) {
285			ib = 0;
286			break;
287		}
288
289		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
290			ib = 0;
291			break;
292		}
293		if (((p->queue - p->pc) == PQ_CACHE) ||
294		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
295			ib = 0;
296			break;
297		}
298		vm_page_test_dirty(p);
299		if ((p->dirty & p->valid) == 0 ||
300		    p->queue != PQ_INACTIVE ||
301		    p->wire_count != 0 ||	/* may be held by buf cache */
302		    p->hold_count != 0) {	/* may be undergoing I/O */
303			ib = 0;
304			break;
305		}
306		mc[--page_base] = p;
307		++pageout_count;
308		++ib;
309		/*
310		 * alignment boundry, stop here and switch directions.  Do
311		 * not clear ib.
312		 */
313		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
314			break;
315	}
316
317	while (pageout_count < vm_pageout_page_count &&
318	    pindex + is < object->size) {
319		vm_page_t p;
320
321		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
322			break;
323		if (((p->queue - p->pc) == PQ_CACHE) ||
324		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
325			break;
326		}
327		vm_page_test_dirty(p);
328		if ((p->dirty & p->valid) == 0 ||
329		    p->queue != PQ_INACTIVE ||
330		    p->wire_count != 0 ||	/* may be held by buf cache */
331		    p->hold_count != 0) {	/* may be undergoing I/O */
332			break;
333		}
334		mc[page_base + pageout_count] = p;
335		++pageout_count;
336		++is;
337	}
338
339	/*
340	 * If we exhausted our forward scan, continue with the reverse scan
341	 * when possible, even past a page boundry.  This catches boundry
342	 * conditions.
343	 */
344	if (ib && pageout_count < vm_pageout_page_count)
345		goto more;
346
347	/*
348	 * we allow reads during pageouts...
349	 */
350	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
351}
352
353/*
354 * vm_pageout_flush() - launder the given pages
355 *
356 *	The given pages are laundered.  Note that we setup for the start of
357 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
358 *	reference count all in here rather then in the parent.  If we want
359 *	the parent to do more sophisticated things we may have to change
360 *	the ordering.
361 */
362
363int
364vm_pageout_flush(mc, count, flags)
365	vm_page_t *mc;
366	int count;
367	int flags;
368{
369	vm_object_t object;
370	int pageout_status[count];
371	int numpagedout = 0;
372	int i;
373
374	GIANT_REQUIRED;
375	/*
376	 * Initiate I/O.  Bump the vm_page_t->busy counter and
377	 * mark the pages read-only.
378	 *
379	 * We do not have to fixup the clean/dirty bits here... we can
380	 * allow the pager to do it after the I/O completes.
381	 *
382	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
383	 * edge case with file fragments.
384	 */
385
386	for (i = 0; i < count; i++) {
387		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
388		vm_page_io_start(mc[i]);
389		vm_page_protect(mc[i], VM_PROT_READ);
390	}
391
392	object = mc[0]->object;
393	vm_object_pip_add(object, count);
394
395	vm_pager_put_pages(object, mc, count,
396	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
397	    pageout_status);
398
399	for (i = 0; i < count; i++) {
400		vm_page_t mt = mc[i];
401
402		switch (pageout_status[i]) {
403		case VM_PAGER_OK:
404			numpagedout++;
405			break;
406		case VM_PAGER_PEND:
407			numpagedout++;
408			break;
409		case VM_PAGER_BAD:
410			/*
411			 * Page outside of range of object. Right now we
412			 * essentially lose the changes by pretending it
413			 * worked.
414			 */
415			pmap_clear_modify(mt);
416			vm_page_undirty(mt);
417			break;
418		case VM_PAGER_ERROR:
419		case VM_PAGER_FAIL:
420			/*
421			 * If page couldn't be paged out, then reactivate the
422			 * page so it doesn't clog the inactive list.  (We
423			 * will try paging out it again later).
424			 */
425			vm_page_activate(mt);
426			break;
427		case VM_PAGER_AGAIN:
428			break;
429		}
430
431		/*
432		 * If the operation is still going, leave the page busy to
433		 * block all other accesses. Also, leave the paging in
434		 * progress indicator set so that we don't attempt an object
435		 * collapse.
436		 */
437		if (pageout_status[i] != VM_PAGER_PEND) {
438			vm_object_pip_wakeup(object);
439			vm_page_io_finish(mt);
440			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
441				vm_page_protect(mt, VM_PROT_READ);
442		}
443	}
444	return numpagedout;
445}
446
447#if !defined(NO_SWAPPING)
448/*
449 *	vm_pageout_object_deactivate_pages
450 *
451 *	deactivate enough pages to satisfy the inactive target
452 *	requirements or if vm_page_proc_limit is set, then
453 *	deactivate all of the pages in the object and its
454 *	backing_objects.
455 *
456 *	The object and map must be locked.
457 */
458static void
459vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
460	vm_map_t map;
461	vm_object_t object;
462	vm_pindex_t desired;
463	int map_remove_only;
464{
465	vm_page_t p, next;
466	int rcount;
467	int remove_mode;
468
469	GIANT_REQUIRED;
470	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
471		return;
472
473	while (object) {
474		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
475			return;
476		if (object->paging_in_progress)
477			return;
478
479		remove_mode = map_remove_only;
480		if (object->shadow_count > 1)
481			remove_mode = 1;
482	/*
483	 * scan the objects entire memory queue
484	 */
485		rcount = object->resident_page_count;
486		p = TAILQ_FIRST(&object->memq);
487		while (p && (rcount-- > 0)) {
488			int actcount;
489			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
490				return;
491			next = TAILQ_NEXT(p, listq);
492			cnt.v_pdpages++;
493			if (p->wire_count != 0 ||
494			    p->hold_count != 0 ||
495			    p->busy != 0 ||
496			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
497			    !pmap_page_exists(vm_map_pmap(map), p)) {
498				p = next;
499				continue;
500			}
501
502			actcount = pmap_ts_referenced(p);
503			if (actcount) {
504				vm_page_flag_set(p, PG_REFERENCED);
505			} else if (p->flags & PG_REFERENCED) {
506				actcount = 1;
507			}
508
509			if ((p->queue != PQ_ACTIVE) &&
510				(p->flags & PG_REFERENCED)) {
511				vm_page_activate(p);
512				p->act_count += actcount;
513				vm_page_flag_clear(p, PG_REFERENCED);
514			} else if (p->queue == PQ_ACTIVE) {
515				if ((p->flags & PG_REFERENCED) == 0) {
516					p->act_count -= min(p->act_count, ACT_DECLINE);
517					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
518						vm_page_protect(p, VM_PROT_NONE);
519						vm_page_deactivate(p);
520					} else {
521						vm_pageq_requeue(p);
522					}
523				} else {
524					vm_page_activate(p);
525					vm_page_flag_clear(p, PG_REFERENCED);
526					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
527						p->act_count += ACT_ADVANCE;
528					vm_pageq_requeue(p);
529				}
530			} else if (p->queue == PQ_INACTIVE) {
531				vm_page_protect(p, VM_PROT_NONE);
532			}
533			p = next;
534		}
535		object = object->backing_object;
536	}
537	return;
538}
539
540/*
541 * deactivate some number of pages in a map, try to do it fairly, but
542 * that is really hard to do.
543 */
544static void
545vm_pageout_map_deactivate_pages(map, desired)
546	vm_map_t map;
547	vm_pindex_t desired;
548{
549	vm_map_entry_t tmpe;
550	vm_object_t obj, bigobj;
551	int nothingwired;
552
553	GIANT_REQUIRED;
554	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curthread)) {
555		return;
556	}
557
558	bigobj = NULL;
559	nothingwired = TRUE;
560
561	/*
562	 * first, search out the biggest object, and try to free pages from
563	 * that.
564	 */
565	tmpe = map->header.next;
566	while (tmpe != &map->header) {
567		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
568			obj = tmpe->object.vm_object;
569			if ((obj != NULL) && (obj->shadow_count <= 1) &&
570				((bigobj == NULL) ||
571				 (bigobj->resident_page_count < obj->resident_page_count))) {
572				bigobj = obj;
573			}
574		}
575		if (tmpe->wired_count > 0)
576			nothingwired = FALSE;
577		tmpe = tmpe->next;
578	}
579
580	if (bigobj)
581		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
582
583	/*
584	 * Next, hunt around for other pages to deactivate.  We actually
585	 * do this search sort of wrong -- .text first is not the best idea.
586	 */
587	tmpe = map->header.next;
588	while (tmpe != &map->header) {
589		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
590			break;
591		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
592			obj = tmpe->object.vm_object;
593			if (obj)
594				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
595		}
596		tmpe = tmpe->next;
597	};
598
599	/*
600	 * Remove all mappings if a process is swapped out, this will free page
601	 * table pages.
602	 */
603	if (desired == 0 && nothingwired)
604		pmap_remove(vm_map_pmap(map),
605			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
606	vm_map_unlock(map);
607	return;
608}
609#endif
610
611/*
612 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
613 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
614 * which we know can be trivially freed.
615 */
616
617void
618vm_pageout_page_free(vm_page_t m) {
619	vm_object_t object = m->object;
620	int type = object->type;
621
622	GIANT_REQUIRED;
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_reference(object);
625	vm_page_busy(m);
626	vm_page_protect(m, VM_PROT_NONE);
627	vm_page_free(m);
628	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
629		vm_object_deallocate(object);
630}
631
632/*
633 *	vm_pageout_scan does the dirty work for the pageout daemon.
634 */
635static void
636vm_pageout_scan(int pass)
637{
638	vm_page_t m, next;
639	struct vm_page marker;
640	int save_page_shortage;
641	int save_inactive_count;
642	int page_shortage, maxscan, pcount;
643	int addl_page_shortage, addl_page_shortage_init;
644	struct proc *p, *bigproc;
645	vm_offset_t size, bigsize;
646	vm_object_t object;
647	int actcount;
648	int vnodes_skipped = 0;
649	int maxlaunder;
650	int s;
651
652	GIANT_REQUIRED;
653	/*
654	 * Do whatever cleanup that the pmap code can.
655	 */
656	pmap_collect();
657
658	addl_page_shortage_init = vm_pageout_deficit;
659	vm_pageout_deficit = 0;
660
661	/*
662	 * Calculate the number of pages we want to either free or move
663	 * to the cache.
664	 */
665	page_shortage = vm_paging_target() + addl_page_shortage_init;
666	save_page_shortage = page_shortage;
667	save_inactive_count = cnt.v_inactive_count;
668
669	/*
670	 * Initialize our marker
671	 */
672	bzero(&marker, sizeof(marker));
673	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
674	marker.queue = PQ_INACTIVE;
675	marker.wire_count = 1;
676
677	/*
678	 * Start scanning the inactive queue for pages we can move to the
679	 * cache or free.  The scan will stop when the target is reached or
680	 * we have scanned the entire inactive queue.  Note that m->act_count
681	 * is not used to form decisions for the inactive queue, only for the
682	 * active queue.
683	 *
684	 * maxlaunder limits the number of dirty pages we flush per scan.
685	 * For most systems a smaller value (16 or 32) is more robust under
686	 * extreme memory and disk pressure because any unnecessary writes
687	 * to disk can result in extreme performance degredation.  However,
688	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
689	 * used) will die horribly with limited laundering.  If the pageout
690	 * daemon cannot clean enough pages in the first pass, we let it go
691	 * all out in succeeding passes.
692	 */
693
694	if ((maxlaunder = vm_max_launder) <= 1)
695		maxlaunder = 1;
696	if (pass)
697		maxlaunder = 10000;
698
699rescan0:
700	addl_page_shortage = addl_page_shortage_init;
701	maxscan = cnt.v_inactive_count;
702
703	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
704	     m != NULL && maxscan-- > 0 && page_shortage > 0;
705	     m = next) {
706
707		cnt.v_pdpages++;
708
709		if (m->queue != PQ_INACTIVE) {
710			goto rescan0;
711		}
712
713		next = TAILQ_NEXT(m, pageq);
714
715		/*
716		 * skip marker pages
717		 */
718		if (m->flags & PG_MARKER)
719			continue;
720
721		/*
722		 * A held page may be undergoing I/O, so skip it.
723		 */
724		if (m->hold_count) {
725			vm_pageq_requeue(m);
726			addl_page_shortage++;
727			continue;
728		}
729		/*
730		 * Dont mess with busy pages, keep in the front of the
731		 * queue, most likely are being paged out.
732		 */
733		if (m->busy || (m->flags & PG_BUSY)) {
734			addl_page_shortage++;
735			continue;
736		}
737
738		/*
739		 * If the object is not being used, we ignore previous
740		 * references.
741		 */
742		if (m->object->ref_count == 0) {
743			vm_page_flag_clear(m, PG_REFERENCED);
744			pmap_clear_reference(m);
745
746		/*
747		 * Otherwise, if the page has been referenced while in the
748		 * inactive queue, we bump the "activation count" upwards,
749		 * making it less likely that the page will be added back to
750		 * the inactive queue prematurely again.  Here we check the
751		 * page tables (or emulated bits, if any), given the upper
752		 * level VM system not knowing anything about existing
753		 * references.
754		 */
755		} else if (((m->flags & PG_REFERENCED) == 0) &&
756			(actcount = pmap_ts_referenced(m))) {
757			vm_page_activate(m);
758			m->act_count += (actcount + ACT_ADVANCE);
759			continue;
760		}
761
762		/*
763		 * If the upper level VM system knows about any page
764		 * references, we activate the page.  We also set the
765		 * "activation count" higher than normal so that we will less
766		 * likely place pages back onto the inactive queue again.
767		 */
768		if ((m->flags & PG_REFERENCED) != 0) {
769			vm_page_flag_clear(m, PG_REFERENCED);
770			actcount = pmap_ts_referenced(m);
771			vm_page_activate(m);
772			m->act_count += (actcount + ACT_ADVANCE + 1);
773			continue;
774		}
775
776		/*
777		 * If the upper level VM system doesn't know anything about
778		 * the page being dirty, we have to check for it again.  As
779		 * far as the VM code knows, any partially dirty pages are
780		 * fully dirty.
781		 */
782		if (m->dirty == 0) {
783			vm_page_test_dirty(m);
784		} else {
785			vm_page_dirty(m);
786		}
787
788		/*
789		 * Invalid pages can be easily freed
790		 */
791		if (m->valid == 0) {
792			vm_pageout_page_free(m);
793			cnt.v_dfree++;
794			--page_shortage;
795
796		/*
797		 * Clean pages can be placed onto the cache queue.  This
798		 * effectively frees them.
799		 */
800		} else if (m->dirty == 0) {
801			vm_page_cache(m);
802			--page_shortage;
803		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
804			/*
805			 * Dirty pages need to be paged out, but flushing
806			 * a page is extremely expensive verses freeing
807			 * a clean page.  Rather then artificially limiting
808			 * the number of pages we can flush, we instead give
809			 * dirty pages extra priority on the inactive queue
810			 * by forcing them to be cycled through the queue
811			 * twice before being flushed, after which the
812			 * (now clean) page will cycle through once more
813			 * before being freed.  This significantly extends
814			 * the thrash point for a heavily loaded machine.
815			 */
816			vm_page_flag_set(m, PG_WINATCFLS);
817			vm_pageq_requeue(m);
818		} else if (maxlaunder > 0) {
819			/*
820			 * We always want to try to flush some dirty pages if
821			 * we encounter them, to keep the system stable.
822			 * Normally this number is small, but under extreme
823			 * pressure where there are insufficient clean pages
824			 * on the inactive queue, we may have to go all out.
825			 */
826			int swap_pageouts_ok;
827			struct vnode *vp = NULL;
828			struct mount *mp;
829
830			object = m->object;
831
832			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
833				swap_pageouts_ok = 1;
834			} else {
835				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
836				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
837				vm_page_count_min());
838
839			}
840
841			/*
842			 * We don't bother paging objects that are "dead".
843			 * Those objects are in a "rundown" state.
844			 */
845			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
846				vm_pageq_requeue(m);
847				continue;
848			}
849
850			/*
851			 * The object is already known NOT to be dead.   It
852			 * is possible for the vget() to block the whole
853			 * pageout daemon, but the new low-memory handling
854			 * code should prevent it.
855			 *
856			 * The previous code skipped locked vnodes and, worse,
857			 * reordered pages in the queue.  This results in
858			 * completely non-deterministic operation and, on a
859			 * busy system, can lead to extremely non-optimal
860			 * pageouts.  For example, it can cause clean pages
861			 * to be freed and dirty pages to be moved to the end
862			 * of the queue.  Since dirty pages are also moved to
863			 * the end of the queue once-cleaned, this gives
864			 * way too large a weighting to defering the freeing
865			 * of dirty pages.
866			 *
867			 * We can't wait forever for the vnode lock, we might
868			 * deadlock due to a vn_read() getting stuck in
869			 * vm_wait while holding this vnode.  We skip the
870			 * vnode if we can't get it in a reasonable amount
871			 * of time.
872			 */
873			if (object->type == OBJT_VNODE) {
874				vp = object->handle;
875
876				mp = NULL;
877				if (vp->v_type == VREG)
878					vn_start_write(vp, &mp, V_NOWAIT);
879				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
880					++pageout_lock_miss;
881					vn_finished_write(mp);
882					if (object->flags & OBJ_MIGHTBEDIRTY)
883						vnodes_skipped++;
884					continue;
885				}
886
887				/*
888				 * The page might have been moved to another
889				 * queue during potential blocking in vget()
890				 * above.  The page might have been freed and
891				 * reused for another vnode.  The object might
892				 * have been reused for another vnode.
893				 */
894				if (m->queue != PQ_INACTIVE ||
895				    m->object != object ||
896				    object->handle != vp) {
897					if (object->flags & OBJ_MIGHTBEDIRTY)
898						vnodes_skipped++;
899					vput(vp);
900					vn_finished_write(mp);
901					continue;
902				}
903
904				/*
905				 * The page may have been busied during the
906				 * blocking in vput();  We don't move the
907				 * page back onto the end of the queue so that
908				 * statistics are more correct if we don't.
909				 */
910				if (m->busy || (m->flags & PG_BUSY)) {
911					vput(vp);
912					vn_finished_write(mp);
913					continue;
914				}
915
916				/*
917				 * If the page has become held it might
918				 * be undergoing I/O, so skip it
919				 */
920				if (m->hold_count) {
921					vm_pageq_requeue(m);
922					if (object->flags & OBJ_MIGHTBEDIRTY)
923						vnodes_skipped++;
924					vput(vp);
925					vn_finished_write(mp);
926					continue;
927				}
928			}
929
930			/*
931			 * If a page is dirty, then it is either being washed
932			 * (but not yet cleaned) or it is still in the
933			 * laundry.  If it is still in the laundry, then we
934			 * start the cleaning operation.
935			 *
936			 * This operation may cluster, invalidating the 'next'
937			 * pointer.  To prevent an inordinate number of
938			 * restarts we use our marker to remember our place.
939			 *
940			 * decrement page_shortage on success to account for
941			 * the (future) cleaned page.  Otherwise we could wind
942			 * up laundering or cleaning too many pages.
943			 */
944			s = splvm();
945			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
946			splx(s);
947			if (vm_pageout_clean(m) != 0) {
948				--page_shortage;
949				--maxlaunder;
950			}
951			s = splvm();
952			next = TAILQ_NEXT(&marker, pageq);
953			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
954			splx(s);
955			if (vp) {
956				vput(vp);
957				vn_finished_write(mp);
958			}
959		}
960	}
961
962	/*
963	 * Compute the number of pages we want to try to move from the
964	 * active queue to the inactive queue.
965	 */
966	page_shortage = vm_paging_target() +
967		cnt.v_inactive_target - cnt.v_inactive_count;
968	page_shortage += addl_page_shortage;
969
970	/*
971	 * Scan the active queue for things we can deactivate. We nominally
972	 * track the per-page activity counter and use it to locate
973	 * deactivation candidates.
974	 */
975
976	pcount = cnt.v_active_count;
977	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
978
979	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
980
981		/*
982		 * This is a consistency check, and should likely be a panic
983		 * or warning.
984		 */
985		if (m->queue != PQ_ACTIVE) {
986			break;
987		}
988
989		next = TAILQ_NEXT(m, pageq);
990		/*
991		 * Don't deactivate pages that are busy.
992		 */
993		if ((m->busy != 0) ||
994		    (m->flags & PG_BUSY) ||
995		    (m->hold_count != 0)) {
996			vm_pageq_requeue(m);
997			m = next;
998			continue;
999		}
1000
1001		/*
1002		 * The count for pagedaemon pages is done after checking the
1003		 * page for eligibility...
1004		 */
1005		cnt.v_pdpages++;
1006
1007		/*
1008		 * Check to see "how much" the page has been used.
1009		 */
1010		actcount = 0;
1011		if (m->object->ref_count != 0) {
1012			if (m->flags & PG_REFERENCED) {
1013				actcount += 1;
1014			}
1015			actcount += pmap_ts_referenced(m);
1016			if (actcount) {
1017				m->act_count += ACT_ADVANCE + actcount;
1018				if (m->act_count > ACT_MAX)
1019					m->act_count = ACT_MAX;
1020			}
1021		}
1022
1023		/*
1024		 * Since we have "tested" this bit, we need to clear it now.
1025		 */
1026		vm_page_flag_clear(m, PG_REFERENCED);
1027
1028		/*
1029		 * Only if an object is currently being used, do we use the
1030		 * page activation count stats.
1031		 */
1032		if (actcount && (m->object->ref_count != 0)) {
1033			vm_pageq_requeue(m);
1034		} else {
1035			m->act_count -= min(m->act_count, ACT_DECLINE);
1036			if (vm_pageout_algorithm ||
1037			    m->object->ref_count == 0 ||
1038			    m->act_count == 0) {
1039				page_shortage--;
1040				if (m->object->ref_count == 0) {
1041					vm_page_protect(m, VM_PROT_NONE);
1042					if (m->dirty == 0)
1043						vm_page_cache(m);
1044					else
1045						vm_page_deactivate(m);
1046				} else {
1047					vm_page_deactivate(m);
1048				}
1049			} else {
1050				vm_pageq_requeue(m);
1051			}
1052		}
1053		m = next;
1054	}
1055
1056	s = splvm();
1057
1058	/*
1059	 * We try to maintain some *really* free pages, this allows interrupt
1060	 * code to be guaranteed space.  Since both cache and free queues
1061	 * are considered basically 'free', moving pages from cache to free
1062	 * does not effect other calculations.
1063	 */
1064
1065	while (cnt.v_free_count < cnt.v_free_reserved) {
1066		static int cache_rover = 0;
1067		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1068		if (!m)
1069			break;
1070		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1071		    m->busy ||
1072		    m->hold_count ||
1073		    m->wire_count) {
1074#ifdef INVARIANTS
1075			printf("Warning: busy page %p found in cache\n", m);
1076#endif
1077			vm_page_deactivate(m);
1078			continue;
1079		}
1080		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1081		vm_pageout_page_free(m);
1082		cnt.v_dfree++;
1083	}
1084	splx(s);
1085
1086#if !defined(NO_SWAPPING)
1087	/*
1088	 * Idle process swapout -- run once per second.
1089	 */
1090	if (vm_swap_idle_enabled) {
1091		static long lsec;
1092		if (time_second != lsec) {
1093			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1094			vm_req_vmdaemon();
1095			lsec = time_second;
1096		}
1097	}
1098#endif
1099
1100	/*
1101	 * If we didn't get enough free pages, and we have skipped a vnode
1102	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1103	 * if we did not get enough free pages.
1104	 */
1105	if (vm_paging_target() > 0) {
1106		if (vnodes_skipped && vm_page_count_min())
1107			(void) speedup_syncer();
1108#if !defined(NO_SWAPPING)
1109		if (vm_swap_enabled && vm_page_count_target()) {
1110			vm_req_vmdaemon();
1111			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1112		}
1113#endif
1114	}
1115
1116	/*
1117	 * If we are out of swap and were not able to reach our paging
1118	 * target, kill the largest process.
1119	 *
1120	 * We keep the process bigproc locked once we find it to keep anyone
1121	 * from messing with it; however, there is a possibility of
1122	 * deadlock if process B is bigproc and one of it's child processes
1123	 * attempts to propagate a signal to B while we are waiting for A's
1124	 * lock while walking this list.  To avoid this, we don't block on
1125	 * the process lock but just skip a process if it is already locked.
1126	 */
1127	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1128	    (swap_pager_full && vm_paging_target() > 0)) {
1129#if 0
1130	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1131#endif
1132		bigproc = NULL;
1133		bigsize = 0;
1134		sx_slock(&allproc_lock);
1135		LIST_FOREACH(p, &allproc, p_list) {
1136			/*
1137			 * If this process is already locked, skip it.
1138			 */
1139			if (PROC_TRYLOCK(p) == 0)
1140				continue;
1141			/*
1142			 * if this is a system process, skip it
1143			 */
1144			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1145			    (p->p_pid == 1) ||
1146			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1147				PROC_UNLOCK(p);
1148				continue;
1149			}
1150			/*
1151			 * if the process is in a non-running type state,
1152			 * don't touch it.
1153			 */
1154			mtx_lock_spin(&sched_lock);
1155			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1156				mtx_unlock_spin(&sched_lock);
1157				PROC_UNLOCK(p);
1158				continue;
1159			}
1160			mtx_unlock_spin(&sched_lock);
1161			/*
1162			 * get the process size
1163			 */
1164			size = vmspace_resident_count(p->p_vmspace) +
1165				vmspace_swap_count(p->p_vmspace);
1166			/*
1167			 * if the this process is bigger than the biggest one
1168			 * remember it.
1169			 */
1170			if (size > bigsize) {
1171				if (bigproc != NULL)
1172					PROC_UNLOCK(bigproc);
1173				bigproc = p;
1174				bigsize = size;
1175			} else
1176				PROC_UNLOCK(p);
1177		}
1178		sx_sunlock(&allproc_lock);
1179		if (bigproc != NULL) {
1180			struct ksegrp *kg;
1181			killproc(bigproc, "out of swap space");
1182			mtx_lock_spin(&sched_lock);
1183			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1184				kg->kg_estcpu = 0;
1185				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1186				resetpriority(kg);
1187			}
1188			mtx_unlock_spin(&sched_lock);
1189			PROC_UNLOCK(bigproc);
1190			wakeup(&cnt.v_free_count);
1191		}
1192	}
1193}
1194
1195/*
1196 * This routine tries to maintain the pseudo LRU active queue,
1197 * so that during long periods of time where there is no paging,
1198 * that some statistic accumulation still occurs.  This code
1199 * helps the situation where paging just starts to occur.
1200 */
1201static void
1202vm_pageout_page_stats()
1203{
1204	vm_page_t m,next;
1205	int pcount,tpcount;		/* Number of pages to check */
1206	static int fullintervalcount = 0;
1207	int page_shortage;
1208	int s0;
1209
1210	page_shortage =
1211	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1212	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1213
1214	if (page_shortage <= 0)
1215		return;
1216
1217	s0 = splvm();
1218
1219	pcount = cnt.v_active_count;
1220	fullintervalcount += vm_pageout_stats_interval;
1221	if (fullintervalcount < vm_pageout_full_stats_interval) {
1222		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1223		if (pcount > tpcount)
1224			pcount = tpcount;
1225	} else {
1226		fullintervalcount = 0;
1227	}
1228
1229	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1230	while ((m != NULL) && (pcount-- > 0)) {
1231		int actcount;
1232
1233		if (m->queue != PQ_ACTIVE) {
1234			break;
1235		}
1236
1237		next = TAILQ_NEXT(m, pageq);
1238		/*
1239		 * Don't deactivate pages that are busy.
1240		 */
1241		if ((m->busy != 0) ||
1242		    (m->flags & PG_BUSY) ||
1243		    (m->hold_count != 0)) {
1244			vm_pageq_requeue(m);
1245			m = next;
1246			continue;
1247		}
1248
1249		actcount = 0;
1250		if (m->flags & PG_REFERENCED) {
1251			vm_page_flag_clear(m, PG_REFERENCED);
1252			actcount += 1;
1253		}
1254
1255		actcount += pmap_ts_referenced(m);
1256		if (actcount) {
1257			m->act_count += ACT_ADVANCE + actcount;
1258			if (m->act_count > ACT_MAX)
1259				m->act_count = ACT_MAX;
1260			vm_pageq_requeue(m);
1261		} else {
1262			if (m->act_count == 0) {
1263				/*
1264				 * We turn off page access, so that we have
1265				 * more accurate RSS stats.  We don't do this
1266				 * in the normal page deactivation when the
1267				 * system is loaded VM wise, because the
1268				 * cost of the large number of page protect
1269				 * operations would be higher than the value
1270				 * of doing the operation.
1271				 */
1272				vm_page_protect(m, VM_PROT_NONE);
1273				vm_page_deactivate(m);
1274			} else {
1275				m->act_count -= min(m->act_count, ACT_DECLINE);
1276				vm_pageq_requeue(m);
1277			}
1278		}
1279
1280		m = next;
1281	}
1282	splx(s0);
1283}
1284
1285static int
1286vm_pageout_free_page_calc(count)
1287vm_size_t count;
1288{
1289	if (count < cnt.v_page_count)
1290		 return 0;
1291	/*
1292	 * free_reserved needs to include enough for the largest swap pager
1293	 * structures plus enough for any pv_entry structs when paging.
1294	 */
1295	if (cnt.v_page_count > 1024)
1296		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1297	else
1298		cnt.v_free_min = 4;
1299	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1300		cnt.v_interrupt_free_min;
1301	cnt.v_free_reserved = vm_pageout_page_count +
1302		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1303	cnt.v_free_severe = cnt.v_free_min / 2;
1304	cnt.v_free_min += cnt.v_free_reserved;
1305	cnt.v_free_severe += cnt.v_free_reserved;
1306	return 1;
1307}
1308
1309
1310/*
1311 *	vm_pageout is the high level pageout daemon.
1312 */
1313static void
1314vm_pageout()
1315{
1316	int pass;
1317
1318	mtx_lock(&Giant);
1319
1320	/*
1321	 * Initialize some paging parameters.
1322	 */
1323
1324	cnt.v_interrupt_free_min = 2;
1325	if (cnt.v_page_count < 2000)
1326		vm_pageout_page_count = 8;
1327
1328	vm_pageout_free_page_calc(cnt.v_page_count);
1329	/*
1330	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1331	 * that these are more a measure of the VM cache queue hysteresis
1332	 * then the VM free queue.  Specifically, v_free_target is the
1333	 * high water mark (free+cache pages).
1334	 *
1335	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1336	 * low water mark, while v_free_min is the stop.  v_cache_min must
1337	 * be big enough to handle memory needs while the pageout daemon
1338	 * is signalled and run to free more pages.
1339	 */
1340	if (cnt.v_free_count > 6144)
1341		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1342	else
1343		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1344
1345	if (cnt.v_free_count > 2048) {
1346		cnt.v_cache_min = cnt.v_free_target;
1347		cnt.v_cache_max = 2 * cnt.v_cache_min;
1348		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1349	} else {
1350		cnt.v_cache_min = 0;
1351		cnt.v_cache_max = 0;
1352		cnt.v_inactive_target = cnt.v_free_count / 4;
1353	}
1354	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1355		cnt.v_inactive_target = cnt.v_free_count / 3;
1356
1357	/* XXX does not really belong here */
1358	if (vm_page_max_wired == 0)
1359		vm_page_max_wired = cnt.v_free_count / 3;
1360
1361	if (vm_pageout_stats_max == 0)
1362		vm_pageout_stats_max = cnt.v_free_target;
1363
1364	/*
1365	 * Set interval in seconds for stats scan.
1366	 */
1367	if (vm_pageout_stats_interval == 0)
1368		vm_pageout_stats_interval = 5;
1369	if (vm_pageout_full_stats_interval == 0)
1370		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1371
1372
1373	/*
1374	 * Set maximum free per pass
1375	 */
1376	if (vm_pageout_stats_free_max == 0)
1377		vm_pageout_stats_free_max = 5;
1378
1379	PROC_LOCK(curthread->td_proc);
1380	curthread->td_proc->p_flag |= P_BUFEXHAUST;
1381	PROC_UNLOCK(curthread->td_proc);
1382	swap_pager_swap_init();
1383	pass = 0;
1384	/*
1385	 * The pageout daemon is never done, so loop forever.
1386	 */
1387	while (TRUE) {
1388		int error;
1389		int s = splvm();
1390
1391		/*
1392		 * If we have enough free memory, wakeup waiters.  Do
1393		 * not clear vm_pages_needed until we reach our target,
1394		 * otherwise we may be woken up over and over again and
1395		 * waste a lot of cpu.
1396		 */
1397		if (vm_pages_needed && !vm_page_count_min()) {
1398			if (vm_paging_needed() <= 0)
1399				vm_pages_needed = 0;
1400			wakeup(&cnt.v_free_count);
1401		}
1402		if (vm_pages_needed) {
1403			/*
1404			 * Still not done, take a second pass without waiting
1405			 * (unlimited dirty cleaning), otherwise sleep a bit
1406			 * and try again.
1407			 */
1408			++pass;
1409			if (pass > 1)
1410				tsleep(&vm_pages_needed, PVM,
1411				       "psleep", hz/2);
1412		} else {
1413			/*
1414			 * Good enough, sleep & handle stats.  Prime the pass
1415			 * for the next run.
1416			 */
1417			if (pass > 1)
1418				pass = 1;
1419			else
1420				pass = 0;
1421			error = tsleep(&vm_pages_needed, PVM,
1422				    "psleep", vm_pageout_stats_interval * hz);
1423			if (error && !vm_pages_needed) {
1424				splx(s);
1425				pass = 0;
1426				vm_pageout_page_stats();
1427				continue;
1428			}
1429		}
1430
1431		if (vm_pages_needed)
1432			cnt.v_pdwakeups++;
1433		splx(s);
1434		vm_pageout_scan(pass);
1435		vm_pageout_deficit = 0;
1436	}
1437}
1438
1439void
1440pagedaemon_wakeup()
1441{
1442	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1443		vm_pages_needed++;
1444		wakeup(&vm_pages_needed);
1445	}
1446}
1447
1448#if !defined(NO_SWAPPING)
1449static void
1450vm_req_vmdaemon()
1451{
1452	static int lastrun = 0;
1453
1454	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1455		wakeup(&vm_daemon_needed);
1456		lastrun = ticks;
1457	}
1458}
1459
1460static void
1461vm_daemon()
1462{
1463	struct proc *p;
1464
1465	mtx_lock(&Giant);
1466	while (TRUE) {
1467		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1468		if (vm_pageout_req_swapout) {
1469			swapout_procs(vm_pageout_req_swapout);
1470			vm_pageout_req_swapout = 0;
1471		}
1472		/*
1473		 * scan the processes for exceeding their rlimits or if
1474		 * process is swapped out -- deactivate pages
1475		 */
1476
1477		sx_slock(&allproc_lock);
1478		LIST_FOREACH(p, &allproc, p_list) {
1479			vm_pindex_t limit, size;
1480
1481			/*
1482			 * if this is a system process or if we have already
1483			 * looked at this process, skip it.
1484			 */
1485			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1486				continue;
1487			}
1488			/*
1489			 * if the process is in a non-running type state,
1490			 * don't touch it.
1491			 */
1492			mtx_lock_spin(&sched_lock);
1493			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1494				mtx_unlock_spin(&sched_lock);
1495				continue;
1496			}
1497			/*
1498			 * get a limit
1499			 */
1500			limit = OFF_TO_IDX(
1501			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1502				p->p_rlimit[RLIMIT_RSS].rlim_max));
1503
1504			/*
1505			 * let processes that are swapped out really be
1506			 * swapped out set the limit to nothing (will force a
1507			 * swap-out.)
1508			 */
1509			if ((p->p_sflag & PS_INMEM) == 0)
1510				limit = 0;	/* XXX */
1511			mtx_unlock_spin(&sched_lock);
1512
1513			size = vmspace_resident_count(p->p_vmspace);
1514			if (limit >= 0 && size >= limit) {
1515				vm_pageout_map_deactivate_pages(
1516				    &p->p_vmspace->vm_map, limit);
1517			}
1518		}
1519		sx_sunlock(&allproc_lock);
1520	}
1521}
1522#endif
1523