vm_pageout.c revision 85272
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 85272 2001-10-21 06:12:06Z dillon $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout __P((void));
110static int vm_pageout_clean __P((vm_page_t));
111static void vm_pageout_scan __P((int pass));
112static int vm_pageout_free_page_calc __P((vm_size_t count));
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon __P((void));
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196#define VM_PAGEOUT_PAGE_COUNT 16
197int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200
201#if !defined(NO_SWAPPING)
202typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
203static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
204static freeer_fcn_t vm_pageout_object_deactivate_pages;
205static void vm_req_vmdaemon __P((void));
206#endif
207static void vm_pageout_page_stats(void);
208
209/*
210 * vm_pageout_clean:
211 *
212 * Clean the page and remove it from the laundry.
213 *
214 * We set the busy bit to cause potential page faults on this page to
215 * block.  Note the careful timing, however, the busy bit isn't set till
216 * late and we cannot do anything that will mess with the page.
217 */
218
219static int
220vm_pageout_clean(m)
221	vm_page_t m;
222{
223	vm_object_t object;
224	vm_page_t mc[2*vm_pageout_page_count];
225	int pageout_count;
226	int ib, is, page_base;
227	vm_pindex_t pindex = m->pindex;
228
229	GIANT_REQUIRED;
230
231	object = m->object;
232
233	/*
234	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235	 * with the new swapper, but we could have serious problems paging
236	 * out other object types if there is insufficient memory.
237	 *
238	 * Unfortunately, checking free memory here is far too late, so the
239	 * check has been moved up a procedural level.
240	 */
241
242	/*
243	 * Don't mess with the page if it's busy, held, or special
244	 */
245	if ((m->hold_count != 0) ||
246	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
247		return 0;
248	}
249
250	mc[vm_pageout_page_count] = m;
251	pageout_count = 1;
252	page_base = vm_pageout_page_count;
253	ib = 1;
254	is = 1;
255
256	/*
257	 * Scan object for clusterable pages.
258	 *
259	 * We can cluster ONLY if: ->> the page is NOT
260	 * clean, wired, busy, held, or mapped into a
261	 * buffer, and one of the following:
262	 * 1) The page is inactive, or a seldom used
263	 *    active page.
264	 * -or-
265	 * 2) we force the issue.
266	 *
267	 * During heavy mmap/modification loads the pageout
268	 * daemon can really fragment the underlying file
269	 * due to flushing pages out of order and not trying
270	 * align the clusters (which leave sporatic out-of-order
271	 * holes).  To solve this problem we do the reverse scan
272	 * first and attempt to align our cluster, then do a
273	 * forward scan if room remains.
274	 */
275
276more:
277	while (ib && pageout_count < vm_pageout_page_count) {
278		vm_page_t p;
279
280		if (ib > pindex) {
281			ib = 0;
282			break;
283		}
284
285		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
286			ib = 0;
287			break;
288		}
289		if (((p->queue - p->pc) == PQ_CACHE) ||
290		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
291			ib = 0;
292			break;
293		}
294		vm_page_test_dirty(p);
295		if ((p->dirty & p->valid) == 0 ||
296		    p->queue != PQ_INACTIVE ||
297		    p->wire_count != 0 ||	/* may be held by buf cache */
298		    p->hold_count != 0) {	/* may be undergoing I/O */
299			ib = 0;
300			break;
301		}
302		mc[--page_base] = p;
303		++pageout_count;
304		++ib;
305		/*
306		 * alignment boundry, stop here and switch directions.  Do
307		 * not clear ib.
308		 */
309		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
310			break;
311	}
312
313	while (pageout_count < vm_pageout_page_count &&
314	    pindex + is < object->size) {
315		vm_page_t p;
316
317		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
318			break;
319		if (((p->queue - p->pc) == PQ_CACHE) ||
320		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
321			break;
322		}
323		vm_page_test_dirty(p);
324		if ((p->dirty & p->valid) == 0 ||
325		    p->queue != PQ_INACTIVE ||
326		    p->wire_count != 0 ||	/* may be held by buf cache */
327		    p->hold_count != 0) {	/* may be undergoing I/O */
328			break;
329		}
330		mc[page_base + pageout_count] = p;
331		++pageout_count;
332		++is;
333	}
334
335	/*
336	 * If we exhausted our forward scan, continue with the reverse scan
337	 * when possible, even past a page boundry.  This catches boundry
338	 * conditions.
339	 */
340	if (ib && pageout_count < vm_pageout_page_count)
341		goto more;
342
343	/*
344	 * we allow reads during pageouts...
345	 */
346	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
347}
348
349/*
350 * vm_pageout_flush() - launder the given pages
351 *
352 *	The given pages are laundered.  Note that we setup for the start of
353 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
354 *	reference count all in here rather then in the parent.  If we want
355 *	the parent to do more sophisticated things we may have to change
356 *	the ordering.
357 */
358
359int
360vm_pageout_flush(mc, count, flags)
361	vm_page_t *mc;
362	int count;
363	int flags;
364{
365	vm_object_t object;
366	int pageout_status[count];
367	int numpagedout = 0;
368	int i;
369
370	GIANT_REQUIRED;
371	/*
372	 * Initiate I/O.  Bump the vm_page_t->busy counter and
373	 * mark the pages read-only.
374	 *
375	 * We do not have to fixup the clean/dirty bits here... we can
376	 * allow the pager to do it after the I/O completes.
377	 *
378	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
379	 * edge case with file fragments.
380	 */
381
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387
388	object = mc[0]->object;
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	for (i = 0; i < count; i++) {
396		vm_page_t mt = mc[i];
397
398		switch (pageout_status[i]) {
399		case VM_PAGER_OK:
400			numpagedout++;
401			break;
402		case VM_PAGER_PEND:
403			numpagedout++;
404			break;
405		case VM_PAGER_BAD:
406			/*
407			 * Page outside of range of object. Right now we
408			 * essentially lose the changes by pretending it
409			 * worked.
410			 */
411			pmap_clear_modify(mt);
412			vm_page_undirty(mt);
413			break;
414		case VM_PAGER_ERROR:
415		case VM_PAGER_FAIL:
416			/*
417			 * If page couldn't be paged out, then reactivate the
418			 * page so it doesn't clog the inactive list.  (We
419			 * will try paging out it again later).
420			 */
421			vm_page_activate(mt);
422			break;
423		case VM_PAGER_AGAIN:
424			break;
425		}
426
427		/*
428		 * If the operation is still going, leave the page busy to
429		 * block all other accesses. Also, leave the paging in
430		 * progress indicator set so that we don't attempt an object
431		 * collapse.
432		 */
433		if (pageout_status[i] != VM_PAGER_PEND) {
434			vm_object_pip_wakeup(object);
435			vm_page_io_finish(mt);
436			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437				vm_page_protect(mt, VM_PROT_READ);
438		}
439	}
440	return numpagedout;
441}
442
443#if !defined(NO_SWAPPING)
444/*
445 *	vm_pageout_object_deactivate_pages
446 *
447 *	deactivate enough pages to satisfy the inactive target
448 *	requirements or if vm_page_proc_limit is set, then
449 *	deactivate all of the pages in the object and its
450 *	backing_objects.
451 *
452 *	The object and map must be locked.
453 */
454static void
455vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
456	vm_map_t map;
457	vm_object_t object;
458	vm_pindex_t desired;
459	int map_remove_only;
460{
461	vm_page_t p, next;
462	int rcount;
463	int remove_mode;
464
465	GIANT_REQUIRED;
466	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
467		return;
468
469	while (object) {
470		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
471			return;
472		if (object->paging_in_progress)
473			return;
474
475		remove_mode = map_remove_only;
476		if (object->shadow_count > 1)
477			remove_mode = 1;
478	/*
479	 * scan the objects entire memory queue
480	 */
481		rcount = object->resident_page_count;
482		p = TAILQ_FIRST(&object->memq);
483		while (p && (rcount-- > 0)) {
484			int actcount;
485			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
486				return;
487			next = TAILQ_NEXT(p, listq);
488			cnt.v_pdpages++;
489			if (p->wire_count != 0 ||
490			    p->hold_count != 0 ||
491			    p->busy != 0 ||
492			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
493			    !pmap_page_exists(vm_map_pmap(map), p)) {
494				p = next;
495				continue;
496			}
497
498			actcount = pmap_ts_referenced(p);
499			if (actcount) {
500				vm_page_flag_set(p, PG_REFERENCED);
501			} else if (p->flags & PG_REFERENCED) {
502				actcount = 1;
503			}
504
505			if ((p->queue != PQ_ACTIVE) &&
506				(p->flags & PG_REFERENCED)) {
507				vm_page_activate(p);
508				p->act_count += actcount;
509				vm_page_flag_clear(p, PG_REFERENCED);
510			} else if (p->queue == PQ_ACTIVE) {
511				if ((p->flags & PG_REFERENCED) == 0) {
512					p->act_count -= min(p->act_count, ACT_DECLINE);
513					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
514						vm_page_protect(p, VM_PROT_NONE);
515						vm_page_deactivate(p);
516					} else {
517						vm_pageq_requeue(p);
518					}
519				} else {
520					vm_page_activate(p);
521					vm_page_flag_clear(p, PG_REFERENCED);
522					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
523						p->act_count += ACT_ADVANCE;
524					vm_pageq_requeue(p);
525				}
526			} else if (p->queue == PQ_INACTIVE) {
527				vm_page_protect(p, VM_PROT_NONE);
528			}
529			p = next;
530		}
531		object = object->backing_object;
532	}
533	return;
534}
535
536/*
537 * deactivate some number of pages in a map, try to do it fairly, but
538 * that is really hard to do.
539 */
540static void
541vm_pageout_map_deactivate_pages(map, desired)
542	vm_map_t map;
543	vm_pindex_t desired;
544{
545	vm_map_entry_t tmpe;
546	vm_object_t obj, bigobj;
547	int nothingwired;
548
549	GIANT_REQUIRED;
550	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curthread)) {
551		return;
552	}
553
554	bigobj = NULL;
555	nothingwired = TRUE;
556
557	/*
558	 * first, search out the biggest object, and try to free pages from
559	 * that.
560	 */
561	tmpe = map->header.next;
562	while (tmpe != &map->header) {
563		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
564			obj = tmpe->object.vm_object;
565			if ((obj != NULL) && (obj->shadow_count <= 1) &&
566				((bigobj == NULL) ||
567				 (bigobj->resident_page_count < obj->resident_page_count))) {
568				bigobj = obj;
569			}
570		}
571		if (tmpe->wired_count > 0)
572			nothingwired = FALSE;
573		tmpe = tmpe->next;
574	}
575
576	if (bigobj)
577		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
578
579	/*
580	 * Next, hunt around for other pages to deactivate.  We actually
581	 * do this search sort of wrong -- .text first is not the best idea.
582	 */
583	tmpe = map->header.next;
584	while (tmpe != &map->header) {
585		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
586			break;
587		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
588			obj = tmpe->object.vm_object;
589			if (obj)
590				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
591		}
592		tmpe = tmpe->next;
593	};
594
595	/*
596	 * Remove all mappings if a process is swapped out, this will free page
597	 * table pages.
598	 */
599	if (desired == 0 && nothingwired)
600		pmap_remove(vm_map_pmap(map),
601			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
602	vm_map_unlock(map);
603	return;
604}
605#endif
606
607/*
608 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
609 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
610 * which we know can be trivially freed.
611 */
612
613void
614vm_pageout_page_free(vm_page_t m) {
615	vm_object_t object = m->object;
616	int type = object->type;
617
618	GIANT_REQUIRED;
619	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
620		vm_object_reference(object);
621	vm_page_busy(m);
622	vm_page_protect(m, VM_PROT_NONE);
623	vm_page_free(m);
624	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
625		vm_object_deallocate(object);
626}
627
628/*
629 *	vm_pageout_scan does the dirty work for the pageout daemon.
630 */
631static void
632vm_pageout_scan(int pass)
633{
634	vm_page_t m, next;
635	struct vm_page marker;
636	int save_page_shortage;
637	int save_inactive_count;
638	int page_shortage, maxscan, pcount;
639	int addl_page_shortage, addl_page_shortage_init;
640	struct proc *p, *bigproc;
641	vm_offset_t size, bigsize;
642	vm_object_t object;
643	int actcount;
644	int vnodes_skipped = 0;
645	int maxlaunder;
646	int s;
647
648	GIANT_REQUIRED;
649	/*
650	 * Do whatever cleanup that the pmap code can.
651	 */
652	pmap_collect();
653
654	addl_page_shortage_init = vm_pageout_deficit;
655	vm_pageout_deficit = 0;
656
657	/*
658	 * Calculate the number of pages we want to either free or move
659	 * to the cache.
660	 */
661	page_shortage = vm_paging_target() + addl_page_shortage_init;
662	save_page_shortage = page_shortage;
663	save_inactive_count = cnt.v_inactive_count;
664
665	/*
666	 * Initialize our marker
667	 */
668	bzero(&marker, sizeof(marker));
669	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
670	marker.queue = PQ_INACTIVE;
671	marker.wire_count = 1;
672
673	/*
674	 * Start scanning the inactive queue for pages we can move to the
675	 * cache or free.  The scan will stop when the target is reached or
676	 * we have scanned the entire inactive queue.  Note that m->act_count
677	 * is not used to form decisions for the inactive queue, only for the
678	 * active queue.
679	 *
680	 * maxlaunder limits the number of dirty pages we flush per scan.
681	 * For most systems a smaller value (16 or 32) is more robust under
682	 * extreme memory and disk pressure because any unnecessary writes
683	 * to disk can result in extreme performance degredation.  However,
684	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
685	 * used) will die horribly with limited laundering.  If the pageout
686	 * daemon cannot clean enough pages in the first pass, we let it go
687	 * all out in succeeding passes.
688	 */
689
690	if ((maxlaunder = vm_max_launder) <= 1)
691		maxlaunder = 1;
692	if (pass)
693		maxlaunder = 10000;
694
695rescan0:
696	addl_page_shortage = addl_page_shortage_init;
697	maxscan = cnt.v_inactive_count;
698
699	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
700	     m != NULL && maxscan-- > 0 && page_shortage > 0;
701	     m = next) {
702
703		cnt.v_pdpages++;
704
705		if (m->queue != PQ_INACTIVE) {
706			goto rescan0;
707		}
708
709		next = TAILQ_NEXT(m, pageq);
710
711		/*
712		 * skip marker pages
713		 */
714		if (m->flags & PG_MARKER)
715			continue;
716
717		/*
718		 * A held page may be undergoing I/O, so skip it.
719		 */
720		if (m->hold_count) {
721			vm_pageq_requeue(m);
722			addl_page_shortage++;
723			continue;
724		}
725		/*
726		 * Dont mess with busy pages, keep in the front of the
727		 * queue, most likely are being paged out.
728		 */
729		if (m->busy || (m->flags & PG_BUSY)) {
730			addl_page_shortage++;
731			continue;
732		}
733
734		/*
735		 * If the object is not being used, we ignore previous
736		 * references.
737		 */
738		if (m->object->ref_count == 0) {
739			vm_page_flag_clear(m, PG_REFERENCED);
740			pmap_clear_reference(m);
741
742		/*
743		 * Otherwise, if the page has been referenced while in the
744		 * inactive queue, we bump the "activation count" upwards,
745		 * making it less likely that the page will be added back to
746		 * the inactive queue prematurely again.  Here we check the
747		 * page tables (or emulated bits, if any), given the upper
748		 * level VM system not knowing anything about existing
749		 * references.
750		 */
751		} else if (((m->flags & PG_REFERENCED) == 0) &&
752			(actcount = pmap_ts_referenced(m))) {
753			vm_page_activate(m);
754			m->act_count += (actcount + ACT_ADVANCE);
755			continue;
756		}
757
758		/*
759		 * If the upper level VM system knows about any page
760		 * references, we activate the page.  We also set the
761		 * "activation count" higher than normal so that we will less
762		 * likely place pages back onto the inactive queue again.
763		 */
764		if ((m->flags & PG_REFERENCED) != 0) {
765			vm_page_flag_clear(m, PG_REFERENCED);
766			actcount = pmap_ts_referenced(m);
767			vm_page_activate(m);
768			m->act_count += (actcount + ACT_ADVANCE + 1);
769			continue;
770		}
771
772		/*
773		 * If the upper level VM system doesn't know anything about
774		 * the page being dirty, we have to check for it again.  As
775		 * far as the VM code knows, any partially dirty pages are
776		 * fully dirty.
777		 */
778		if (m->dirty == 0) {
779			vm_page_test_dirty(m);
780		} else {
781			vm_page_dirty(m);
782		}
783
784		/*
785		 * Invalid pages can be easily freed
786		 */
787		if (m->valid == 0) {
788			vm_pageout_page_free(m);
789			cnt.v_dfree++;
790			--page_shortage;
791
792		/*
793		 * Clean pages can be placed onto the cache queue.  This
794		 * effectively frees them.
795		 */
796		} else if (m->dirty == 0) {
797			vm_page_cache(m);
798			--page_shortage;
799		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
800			/*
801			 * Dirty pages need to be paged out, but flushing
802			 * a page is extremely expensive verses freeing
803			 * a clean page.  Rather then artificially limiting
804			 * the number of pages we can flush, we instead give
805			 * dirty pages extra priority on the inactive queue
806			 * by forcing them to be cycled through the queue
807			 * twice before being flushed, after which the
808			 * (now clean) page will cycle through once more
809			 * before being freed.  This significantly extends
810			 * the thrash point for a heavily loaded machine.
811			 */
812			vm_page_flag_set(m, PG_WINATCFLS);
813			vm_pageq_requeue(m);
814		} else if (maxlaunder > 0) {
815			/*
816			 * We always want to try to flush some dirty pages if
817			 * we encounter them, to keep the system stable.
818			 * Normally this number is small, but under extreme
819			 * pressure where there are insufficient clean pages
820			 * on the inactive queue, we may have to go all out.
821			 */
822			int swap_pageouts_ok;
823			struct vnode *vp = NULL;
824			struct mount *mp;
825
826			object = m->object;
827
828			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
829				swap_pageouts_ok = 1;
830			} else {
831				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
832				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
833				vm_page_count_min());
834
835			}
836
837			/*
838			 * We don't bother paging objects that are "dead".
839			 * Those objects are in a "rundown" state.
840			 */
841			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
842				vm_pageq_requeue(m);
843				continue;
844			}
845
846			/*
847			 * The object is already known NOT to be dead.   It
848			 * is possible for the vget() to block the whole
849			 * pageout daemon, but the new low-memory handling
850			 * code should prevent it.
851			 *
852			 * The previous code skipped locked vnodes and, worse,
853			 * reordered pages in the queue.  This results in
854			 * completely non-deterministic operation and, on a
855			 * busy system, can lead to extremely non-optimal
856			 * pageouts.  For example, it can cause clean pages
857			 * to be freed and dirty pages to be moved to the end
858			 * of the queue.  Since dirty pages are also moved to
859			 * the end of the queue once-cleaned, this gives
860			 * way too large a weighting to defering the freeing
861			 * of dirty pages.
862			 *
863			 * XXX we need to be able to apply a timeout to the
864			 * vget() lock attempt.
865			 */
866
867			if (object->type == OBJT_VNODE) {
868				vp = object->handle;
869
870				mp = NULL;
871				if (vp->v_type == VREG)
872					vn_start_write(vp, &mp, V_NOWAIT);
873				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curthread)) {
874					vn_finished_write(mp);
875					if (object->flags & OBJ_MIGHTBEDIRTY)
876						vnodes_skipped++;
877					continue;
878				}
879
880				/*
881				 * The page might have been moved to another
882				 * queue during potential blocking in vget()
883				 * above.  The page might have been freed and
884				 * reused for another vnode.  The object might
885				 * have been reused for another vnode.
886				 */
887				if (m->queue != PQ_INACTIVE ||
888				    m->object != object ||
889				    object->handle != vp) {
890					if (object->flags & OBJ_MIGHTBEDIRTY)
891						vnodes_skipped++;
892					vput(vp);
893					vn_finished_write(mp);
894					continue;
895				}
896
897				/*
898				 * The page may have been busied during the
899				 * blocking in vput();  We don't move the
900				 * page back onto the end of the queue so that
901				 * statistics are more correct if we don't.
902				 */
903				if (m->busy || (m->flags & PG_BUSY)) {
904					vput(vp);
905					vn_finished_write(mp);
906					continue;
907				}
908
909				/*
910				 * If the page has become held it might
911				 * be undergoing I/O, so skip it
912				 */
913				if (m->hold_count) {
914					vm_pageq_requeue(m);
915					if (object->flags & OBJ_MIGHTBEDIRTY)
916						vnodes_skipped++;
917					vput(vp);
918					vn_finished_write(mp);
919					continue;
920				}
921			}
922
923			/*
924			 * If a page is dirty, then it is either being washed
925			 * (but not yet cleaned) or it is still in the
926			 * laundry.  If it is still in the laundry, then we
927			 * start the cleaning operation.
928			 *
929			 * This operation may cluster, invalidating the 'next'
930			 * pointer.  To prevent an inordinate number of
931			 * restarts we use our marker to remember our place.
932			 *
933			 * decrement page_shortage on success to account for
934			 * the (future) cleaned page.  Otherwise we could wind
935			 * up laundering or cleaning too many pages.
936			 */
937			s = splvm();
938			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
939			splx(s);
940			if (vm_pageout_clean(m) != 0) {
941				--page_shortage;
942				--maxlaunder;
943			}
944			s = splvm();
945			next = TAILQ_NEXT(&marker, pageq);
946			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
947			splx(s);
948			if (vp) {
949				vput(vp);
950				vn_finished_write(mp);
951			}
952		}
953	}
954
955	/*
956	 * Compute the number of pages we want to try to move from the
957	 * active queue to the inactive queue.
958	 */
959	page_shortage = vm_paging_target() +
960		cnt.v_inactive_target - cnt.v_inactive_count;
961	page_shortage += addl_page_shortage;
962
963	/*
964	 * Scan the active queue for things we can deactivate. We nominally
965	 * track the per-page activity counter and use it to locate
966	 * deactivation candidates.
967	 */
968
969	pcount = cnt.v_active_count;
970	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
971
972	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
973
974		/*
975		 * This is a consistency check, and should likely be a panic
976		 * or warning.
977		 */
978		if (m->queue != PQ_ACTIVE) {
979			break;
980		}
981
982		next = TAILQ_NEXT(m, pageq);
983		/*
984		 * Don't deactivate pages that are busy.
985		 */
986		if ((m->busy != 0) ||
987		    (m->flags & PG_BUSY) ||
988		    (m->hold_count != 0)) {
989			vm_pageq_requeue(m);
990			m = next;
991			continue;
992		}
993
994		/*
995		 * The count for pagedaemon pages is done after checking the
996		 * page for eligibility...
997		 */
998		cnt.v_pdpages++;
999
1000		/*
1001		 * Check to see "how much" the page has been used.
1002		 */
1003		actcount = 0;
1004		if (m->object->ref_count != 0) {
1005			if (m->flags & PG_REFERENCED) {
1006				actcount += 1;
1007			}
1008			actcount += pmap_ts_referenced(m);
1009			if (actcount) {
1010				m->act_count += ACT_ADVANCE + actcount;
1011				if (m->act_count > ACT_MAX)
1012					m->act_count = ACT_MAX;
1013			}
1014		}
1015
1016		/*
1017		 * Since we have "tested" this bit, we need to clear it now.
1018		 */
1019		vm_page_flag_clear(m, PG_REFERENCED);
1020
1021		/*
1022		 * Only if an object is currently being used, do we use the
1023		 * page activation count stats.
1024		 */
1025		if (actcount && (m->object->ref_count != 0)) {
1026			vm_pageq_requeue(m);
1027		} else {
1028			m->act_count -= min(m->act_count, ACT_DECLINE);
1029			if (vm_pageout_algorithm ||
1030			    m->object->ref_count == 0 ||
1031			    m->act_count == 0) {
1032				page_shortage--;
1033				if (m->object->ref_count == 0) {
1034					vm_page_protect(m, VM_PROT_NONE);
1035					if (m->dirty == 0)
1036						vm_page_cache(m);
1037					else
1038						vm_page_deactivate(m);
1039				} else {
1040					vm_page_deactivate(m);
1041				}
1042			} else {
1043				vm_pageq_requeue(m);
1044			}
1045		}
1046		m = next;
1047	}
1048
1049	s = splvm();
1050
1051	/*
1052	 * We try to maintain some *really* free pages, this allows interrupt
1053	 * code to be guaranteed space.  Since both cache and free queues
1054	 * are considered basically 'free', moving pages from cache to free
1055	 * does not effect other calculations.
1056	 */
1057
1058	while (cnt.v_free_count < cnt.v_free_reserved) {
1059		static int cache_rover = 0;
1060		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1061		if (!m)
1062			break;
1063		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1064		    m->busy ||
1065		    m->hold_count ||
1066		    m->wire_count) {
1067#ifdef INVARIANTS
1068			printf("Warning: busy page %p found in cache\n", m);
1069#endif
1070			vm_page_deactivate(m);
1071			continue;
1072		}
1073		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1074		vm_pageout_page_free(m);
1075		cnt.v_dfree++;
1076	}
1077	splx(s);
1078
1079#if !defined(NO_SWAPPING)
1080	/*
1081	 * Idle process swapout -- run once per second.
1082	 */
1083	if (vm_swap_idle_enabled) {
1084		static long lsec;
1085		if (time_second != lsec) {
1086			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1087			vm_req_vmdaemon();
1088			lsec = time_second;
1089		}
1090	}
1091#endif
1092
1093	/*
1094	 * If we didn't get enough free pages, and we have skipped a vnode
1095	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1096	 * if we did not get enough free pages.
1097	 */
1098	if (vm_paging_target() > 0) {
1099		if (vnodes_skipped && vm_page_count_min())
1100			(void) speedup_syncer();
1101#if !defined(NO_SWAPPING)
1102		if (vm_swap_enabled && vm_page_count_target()) {
1103			vm_req_vmdaemon();
1104			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1105		}
1106#endif
1107	}
1108
1109	/*
1110	 * If we are out of swap and were not able to reach our paging
1111	 * target, kill the largest process.
1112	 *
1113	 * We keep the process bigproc locked once we find it to keep anyone
1114	 * from messing with it; however, there is a possibility of
1115	 * deadlock if process B is bigproc and one of it's child processes
1116	 * attempts to propagate a signal to B while we are waiting for A's
1117	 * lock while walking this list.  To avoid this, we don't block on
1118	 * the process lock but just skip a process if it is already locked.
1119	 */
1120	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1121	    (swap_pager_full && vm_paging_target() > 0)) {
1122#if 0
1123	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1124#endif
1125		bigproc = NULL;
1126		bigsize = 0;
1127		sx_slock(&allproc_lock);
1128		LIST_FOREACH(p, &allproc, p_list) {
1129			/*
1130			 * If this process is already locked, skip it.
1131			 */
1132			if (PROC_TRYLOCK(p) == 0)
1133				continue;
1134			/*
1135			 * if this is a system process, skip it
1136			 */
1137			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1138			    (p->p_pid == 1) ||
1139			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1140				PROC_UNLOCK(p);
1141				continue;
1142			}
1143			/*
1144			 * if the process is in a non-running type state,
1145			 * don't touch it.
1146			 */
1147			mtx_lock_spin(&sched_lock);
1148			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1149				mtx_unlock_spin(&sched_lock);
1150				PROC_UNLOCK(p);
1151				continue;
1152			}
1153			mtx_unlock_spin(&sched_lock);
1154			/*
1155			 * get the process size
1156			 */
1157			size = vmspace_resident_count(p->p_vmspace) +
1158				vmspace_swap_count(p->p_vmspace);
1159			/*
1160			 * if the this process is bigger than the biggest one
1161			 * remember it.
1162			 */
1163			if (size > bigsize) {
1164				if (bigproc != NULL)
1165					PROC_UNLOCK(bigproc);
1166				bigproc = p;
1167				bigsize = size;
1168			} else
1169				PROC_UNLOCK(p);
1170		}
1171		sx_sunlock(&allproc_lock);
1172		if (bigproc != NULL) {
1173			struct ksegrp *kg;
1174			killproc(bigproc, "out of swap space");
1175			mtx_lock_spin(&sched_lock);
1176			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1177				kg->kg_estcpu = 0;
1178				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1179				resetpriority(kg);
1180			}
1181			mtx_unlock_spin(&sched_lock);
1182			PROC_UNLOCK(bigproc);
1183			wakeup(&cnt.v_free_count);
1184		}
1185	}
1186}
1187
1188/*
1189 * This routine tries to maintain the pseudo LRU active queue,
1190 * so that during long periods of time where there is no paging,
1191 * that some statistic accumulation still occurs.  This code
1192 * helps the situation where paging just starts to occur.
1193 */
1194static void
1195vm_pageout_page_stats()
1196{
1197	vm_page_t m,next;
1198	int pcount,tpcount;		/* Number of pages to check */
1199	static int fullintervalcount = 0;
1200	int page_shortage;
1201	int s0;
1202
1203	page_shortage =
1204	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1205	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1206
1207	if (page_shortage <= 0)
1208		return;
1209
1210	s0 = splvm();
1211
1212	pcount = cnt.v_active_count;
1213	fullintervalcount += vm_pageout_stats_interval;
1214	if (fullintervalcount < vm_pageout_full_stats_interval) {
1215		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1216		if (pcount > tpcount)
1217			pcount = tpcount;
1218	} else {
1219		fullintervalcount = 0;
1220	}
1221
1222	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1223	while ((m != NULL) && (pcount-- > 0)) {
1224		int actcount;
1225
1226		if (m->queue != PQ_ACTIVE) {
1227			break;
1228		}
1229
1230		next = TAILQ_NEXT(m, pageq);
1231		/*
1232		 * Don't deactivate pages that are busy.
1233		 */
1234		if ((m->busy != 0) ||
1235		    (m->flags & PG_BUSY) ||
1236		    (m->hold_count != 0)) {
1237			vm_pageq_requeue(m);
1238			m = next;
1239			continue;
1240		}
1241
1242		actcount = 0;
1243		if (m->flags & PG_REFERENCED) {
1244			vm_page_flag_clear(m, PG_REFERENCED);
1245			actcount += 1;
1246		}
1247
1248		actcount += pmap_ts_referenced(m);
1249		if (actcount) {
1250			m->act_count += ACT_ADVANCE + actcount;
1251			if (m->act_count > ACT_MAX)
1252				m->act_count = ACT_MAX;
1253			vm_pageq_requeue(m);
1254		} else {
1255			if (m->act_count == 0) {
1256				/*
1257				 * We turn off page access, so that we have
1258				 * more accurate RSS stats.  We don't do this
1259				 * in the normal page deactivation when the
1260				 * system is loaded VM wise, because the
1261				 * cost of the large number of page protect
1262				 * operations would be higher than the value
1263				 * of doing the operation.
1264				 */
1265				vm_page_protect(m, VM_PROT_NONE);
1266				vm_page_deactivate(m);
1267			} else {
1268				m->act_count -= min(m->act_count, ACT_DECLINE);
1269				vm_pageq_requeue(m);
1270			}
1271		}
1272
1273		m = next;
1274	}
1275	splx(s0);
1276}
1277
1278static int
1279vm_pageout_free_page_calc(count)
1280vm_size_t count;
1281{
1282	if (count < cnt.v_page_count)
1283		 return 0;
1284	/*
1285	 * free_reserved needs to include enough for the largest swap pager
1286	 * structures plus enough for any pv_entry structs when paging.
1287	 */
1288	if (cnt.v_page_count > 1024)
1289		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1290	else
1291		cnt.v_free_min = 4;
1292	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1293		cnt.v_interrupt_free_min;
1294	cnt.v_free_reserved = vm_pageout_page_count +
1295		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1296	cnt.v_free_severe = cnt.v_free_min / 2;
1297	cnt.v_free_min += cnt.v_free_reserved;
1298	cnt.v_free_severe += cnt.v_free_reserved;
1299	return 1;
1300}
1301
1302
1303/*
1304 *	vm_pageout is the high level pageout daemon.
1305 */
1306static void
1307vm_pageout()
1308{
1309	int pass;
1310
1311	mtx_lock(&Giant);
1312
1313	/*
1314	 * Initialize some paging parameters.
1315	 */
1316
1317	cnt.v_interrupt_free_min = 2;
1318	if (cnt.v_page_count < 2000)
1319		vm_pageout_page_count = 8;
1320
1321	vm_pageout_free_page_calc(cnt.v_page_count);
1322	/*
1323	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1324	 * that these are more a measure of the VM cache queue hysteresis
1325	 * then the VM free queue.  Specifically, v_free_target is the
1326	 * high water mark (free+cache pages).
1327	 *
1328	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1329	 * low water mark, while v_free_min is the stop.  v_cache_min must
1330	 * be big enough to handle memory needs while the pageout daemon
1331	 * is signalled and run to free more pages.
1332	 */
1333	if (cnt.v_free_count > 6144)
1334		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1335	else
1336		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1337
1338	if (cnt.v_free_count > 2048) {
1339		cnt.v_cache_min = cnt.v_free_target;
1340		cnt.v_cache_max = 2 * cnt.v_cache_min;
1341		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1342	} else {
1343		cnt.v_cache_min = 0;
1344		cnt.v_cache_max = 0;
1345		cnt.v_inactive_target = cnt.v_free_count / 4;
1346	}
1347	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1348		cnt.v_inactive_target = cnt.v_free_count / 3;
1349
1350	/* XXX does not really belong here */
1351	if (vm_page_max_wired == 0)
1352		vm_page_max_wired = cnt.v_free_count / 3;
1353
1354	if (vm_pageout_stats_max == 0)
1355		vm_pageout_stats_max = cnt.v_free_target;
1356
1357	/*
1358	 * Set interval in seconds for stats scan.
1359	 */
1360	if (vm_pageout_stats_interval == 0)
1361		vm_pageout_stats_interval = 5;
1362	if (vm_pageout_full_stats_interval == 0)
1363		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1364
1365
1366	/*
1367	 * Set maximum free per pass
1368	 */
1369	if (vm_pageout_stats_free_max == 0)
1370		vm_pageout_stats_free_max = 5;
1371
1372	PROC_LOCK(curthread->td_proc);
1373	curthread->td_proc->p_flag |= P_BUFEXHAUST;
1374	PROC_UNLOCK(curthread->td_proc);
1375	swap_pager_swap_init();
1376	pass = 0;
1377	/*
1378	 * The pageout daemon is never done, so loop forever.
1379	 */
1380	while (TRUE) {
1381		int error;
1382		int s = splvm();
1383
1384		/*
1385		 * If we have enough free memory, wakeup waiters.  Do
1386		 * not clear vm_pages_needed until we reach our target,
1387		 * otherwise we may be woken up over and over again and
1388		 * waste a lot of cpu.
1389		 */
1390		if (vm_pages_needed && !vm_page_count_min()) {
1391			if (vm_paging_needed() <= 0)
1392				vm_pages_needed = 0;
1393			wakeup(&cnt.v_free_count);
1394		}
1395		if (vm_pages_needed) {
1396			/*
1397			 * Still not done, take a second pass without waiting
1398			 * (unlimited dirty cleaning), otherwise sleep a bit
1399			 * and try again.
1400			 */
1401			++pass;
1402			if (pass > 1)
1403				tsleep(&vm_pages_needed, PVM,
1404				       "psleep", hz/2);
1405		} else {
1406			/*
1407			 * Good enough, sleep & handle stats.  Prime the pass
1408			 * for the next run.
1409			 */
1410			if (pass > 1)
1411				pass = 1;
1412			else
1413				pass = 0;
1414			error = tsleep(&vm_pages_needed, PVM,
1415				    "psleep", vm_pageout_stats_interval * hz);
1416			if (error && !vm_pages_needed) {
1417				splx(s);
1418				pass = 0;
1419				vm_pageout_page_stats();
1420				continue;
1421			}
1422		}
1423
1424		if (vm_pages_needed)
1425			cnt.v_pdwakeups++;
1426		splx(s);
1427		vm_pageout_scan(pass);
1428		vm_pageout_deficit = 0;
1429	}
1430}
1431
1432void
1433pagedaemon_wakeup()
1434{
1435	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1436		vm_pages_needed++;
1437		wakeup(&vm_pages_needed);
1438	}
1439}
1440
1441#if !defined(NO_SWAPPING)
1442static void
1443vm_req_vmdaemon()
1444{
1445	static int lastrun = 0;
1446
1447	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1448		wakeup(&vm_daemon_needed);
1449		lastrun = ticks;
1450	}
1451}
1452
1453static void
1454vm_daemon()
1455{
1456	struct proc *p;
1457
1458	mtx_lock(&Giant);
1459	while (TRUE) {
1460		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1461		if (vm_pageout_req_swapout) {
1462			swapout_procs(vm_pageout_req_swapout);
1463			vm_pageout_req_swapout = 0;
1464		}
1465		/*
1466		 * scan the processes for exceeding their rlimits or if
1467		 * process is swapped out -- deactivate pages
1468		 */
1469
1470		sx_slock(&allproc_lock);
1471		LIST_FOREACH(p, &allproc, p_list) {
1472			vm_pindex_t limit, size;
1473
1474			/*
1475			 * if this is a system process or if we have already
1476			 * looked at this process, skip it.
1477			 */
1478			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1479				continue;
1480			}
1481			/*
1482			 * if the process is in a non-running type state,
1483			 * don't touch it.
1484			 */
1485			mtx_lock_spin(&sched_lock);
1486			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1487				mtx_unlock_spin(&sched_lock);
1488				continue;
1489			}
1490			/*
1491			 * get a limit
1492			 */
1493			limit = OFF_TO_IDX(
1494			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1495				p->p_rlimit[RLIMIT_RSS].rlim_max));
1496
1497			/*
1498			 * let processes that are swapped out really be
1499			 * swapped out set the limit to nothing (will force a
1500			 * swap-out.)
1501			 */
1502			if ((p->p_sflag & PS_INMEM) == 0)
1503				limit = 0;	/* XXX */
1504			mtx_unlock_spin(&sched_lock);
1505
1506			size = vmspace_resident_count(p->p_vmspace);
1507			if (limit >= 0 && size >= limit) {
1508				vm_pageout_map_deactivate_pages(
1509				    &p->p_vmspace->vm_map, limit);
1510			}
1511		}
1512		sx_sunlock(&allproc_lock);
1513	}
1514}
1515#endif
1516