vm_pageout.c revision 83366
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 83366 2001-09-12 08:38:13Z julian $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout __P((void));
110static int vm_pageout_clean __P((vm_page_t));
111static void vm_pageout_scan __P((int pass));
112static int vm_pageout_free_page_calc __P((vm_size_t count));
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon __P((void));
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196#define VM_PAGEOUT_PAGE_COUNT 16
197int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200
201#if !defined(NO_SWAPPING)
202typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
203static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
204static freeer_fcn_t vm_pageout_object_deactivate_pages;
205static void vm_req_vmdaemon __P((void));
206#endif
207static void vm_pageout_page_stats(void);
208
209/*
210 * vm_pageout_clean:
211 *
212 * Clean the page and remove it from the laundry.
213 *
214 * We set the busy bit to cause potential page faults on this page to
215 * block.  Note the careful timing, however, the busy bit isn't set till
216 * late and we cannot do anything that will mess with the page.
217 */
218
219static int
220vm_pageout_clean(m)
221	vm_page_t m;
222{
223	vm_object_t object;
224	vm_page_t mc[2*vm_pageout_page_count];
225	int pageout_count;
226	int ib, is, page_base;
227	vm_pindex_t pindex = m->pindex;
228
229	GIANT_REQUIRED;
230
231	object = m->object;
232
233	/*
234	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235	 * with the new swapper, but we could have serious problems paging
236	 * out other object types if there is insufficient memory.
237	 *
238	 * Unfortunately, checking free memory here is far too late, so the
239	 * check has been moved up a procedural level.
240	 */
241
242	/*
243	 * Don't mess with the page if it's busy, held, or special
244	 */
245	if ((m->hold_count != 0) ||
246	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
247		return 0;
248	}
249
250	mc[vm_pageout_page_count] = m;
251	pageout_count = 1;
252	page_base = vm_pageout_page_count;
253	ib = 1;
254	is = 1;
255
256	/*
257	 * Scan object for clusterable pages.
258	 *
259	 * We can cluster ONLY if: ->> the page is NOT
260	 * clean, wired, busy, held, or mapped into a
261	 * buffer, and one of the following:
262	 * 1) The page is inactive, or a seldom used
263	 *    active page.
264	 * -or-
265	 * 2) we force the issue.
266	 *
267	 * During heavy mmap/modification loads the pageout
268	 * daemon can really fragment the underlying file
269	 * due to flushing pages out of order and not trying
270	 * align the clusters (which leave sporatic out-of-order
271	 * holes).  To solve this problem we do the reverse scan
272	 * first and attempt to align our cluster, then do a
273	 * forward scan if room remains.
274	 */
275
276more:
277	while (ib && pageout_count < vm_pageout_page_count) {
278		vm_page_t p;
279
280		if (ib > pindex) {
281			ib = 0;
282			break;
283		}
284
285		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
286			ib = 0;
287			break;
288		}
289		if (((p->queue - p->pc) == PQ_CACHE) ||
290		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
291			ib = 0;
292			break;
293		}
294		vm_page_test_dirty(p);
295		if ((p->dirty & p->valid) == 0 ||
296		    p->queue != PQ_INACTIVE ||
297		    p->wire_count != 0 ||
298		    p->hold_count != 0) {
299			ib = 0;
300			break;
301		}
302		mc[--page_base] = p;
303		++pageout_count;
304		++ib;
305		/*
306		 * alignment boundry, stop here and switch directions.  Do
307		 * not clear ib.
308		 */
309		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
310			break;
311	}
312
313	while (pageout_count < vm_pageout_page_count &&
314	    pindex + is < object->size) {
315		vm_page_t p;
316
317		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
318			break;
319		if (((p->queue - p->pc) == PQ_CACHE) ||
320		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
321			break;
322		}
323		vm_page_test_dirty(p);
324		if ((p->dirty & p->valid) == 0 ||
325		    p->queue != PQ_INACTIVE ||
326		    p->wire_count != 0 ||
327		    p->hold_count != 0) {
328			break;
329		}
330		mc[page_base + pageout_count] = p;
331		++pageout_count;
332		++is;
333	}
334
335	/*
336	 * If we exhausted our forward scan, continue with the reverse scan
337	 * when possible, even past a page boundry.  This catches boundry
338	 * conditions.
339	 */
340	if (ib && pageout_count < vm_pageout_page_count)
341		goto more;
342
343	/*
344	 * we allow reads during pageouts...
345	 */
346	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
347}
348
349/*
350 * vm_pageout_flush() - launder the given pages
351 *
352 *	The given pages are laundered.  Note that we setup for the start of
353 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
354 *	reference count all in here rather then in the parent.  If we want
355 *	the parent to do more sophisticated things we may have to change
356 *	the ordering.
357 */
358
359int
360vm_pageout_flush(mc, count, flags)
361	vm_page_t *mc;
362	int count;
363	int flags;
364{
365	vm_object_t object;
366	int pageout_status[count];
367	int numpagedout = 0;
368	int i;
369
370	GIANT_REQUIRED;
371	/*
372	 * Initiate I/O.  Bump the vm_page_t->busy counter and
373	 * mark the pages read-only.
374	 *
375	 * We do not have to fixup the clean/dirty bits here... we can
376	 * allow the pager to do it after the I/O completes.
377	 *
378	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
379	 * edge case with file fragments.
380	 */
381
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387
388	object = mc[0]->object;
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	for (i = 0; i < count; i++) {
396		vm_page_t mt = mc[i];
397
398		switch (pageout_status[i]) {
399		case VM_PAGER_OK:
400			numpagedout++;
401			break;
402		case VM_PAGER_PEND:
403			numpagedout++;
404			break;
405		case VM_PAGER_BAD:
406			/*
407			 * Page outside of range of object. Right now we
408			 * essentially lose the changes by pretending it
409			 * worked.
410			 */
411			pmap_clear_modify(mt);
412			vm_page_undirty(mt);
413			break;
414		case VM_PAGER_ERROR:
415		case VM_PAGER_FAIL:
416			/*
417			 * If page couldn't be paged out, then reactivate the
418			 * page so it doesn't clog the inactive list.  (We
419			 * will try paging out it again later).
420			 */
421			vm_page_activate(mt);
422			break;
423		case VM_PAGER_AGAIN:
424			break;
425		}
426
427		/*
428		 * If the operation is still going, leave the page busy to
429		 * block all other accesses. Also, leave the paging in
430		 * progress indicator set so that we don't attempt an object
431		 * collapse.
432		 */
433		if (pageout_status[i] != VM_PAGER_PEND) {
434			vm_object_pip_wakeup(object);
435			vm_page_io_finish(mt);
436			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437				vm_page_protect(mt, VM_PROT_READ);
438		}
439	}
440	return numpagedout;
441}
442
443#if !defined(NO_SWAPPING)
444/*
445 *	vm_pageout_object_deactivate_pages
446 *
447 *	deactivate enough pages to satisfy the inactive target
448 *	requirements or if vm_page_proc_limit is set, then
449 *	deactivate all of the pages in the object and its
450 *	backing_objects.
451 *
452 *	The object and map must be locked.
453 */
454static void
455vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
456	vm_map_t map;
457	vm_object_t object;
458	vm_pindex_t desired;
459	int map_remove_only;
460{
461	vm_page_t p, next;
462	int rcount;
463	int remove_mode;
464
465	GIANT_REQUIRED;
466	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
467		return;
468
469	while (object) {
470		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
471			return;
472		if (object->paging_in_progress)
473			return;
474
475		remove_mode = map_remove_only;
476		if (object->shadow_count > 1)
477			remove_mode = 1;
478	/*
479	 * scan the objects entire memory queue
480	 */
481		rcount = object->resident_page_count;
482		p = TAILQ_FIRST(&object->memq);
483		while (p && (rcount-- > 0)) {
484			int actcount;
485			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
486				return;
487			next = TAILQ_NEXT(p, listq);
488			cnt.v_pdpages++;
489			if (p->wire_count != 0 ||
490			    p->hold_count != 0 ||
491			    p->busy != 0 ||
492			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
493			    !pmap_page_exists(vm_map_pmap(map), p)) {
494				p = next;
495				continue;
496			}
497
498			actcount = pmap_ts_referenced(p);
499			if (actcount) {
500				vm_page_flag_set(p, PG_REFERENCED);
501			} else if (p->flags & PG_REFERENCED) {
502				actcount = 1;
503			}
504
505			if ((p->queue != PQ_ACTIVE) &&
506				(p->flags & PG_REFERENCED)) {
507				vm_page_activate(p);
508				p->act_count += actcount;
509				vm_page_flag_clear(p, PG_REFERENCED);
510			} else if (p->queue == PQ_ACTIVE) {
511				if ((p->flags & PG_REFERENCED) == 0) {
512					p->act_count -= min(p->act_count, ACT_DECLINE);
513					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
514						vm_page_protect(p, VM_PROT_NONE);
515						vm_page_deactivate(p);
516					} else {
517						vm_pageq_requeue(p);
518					}
519				} else {
520					vm_page_activate(p);
521					vm_page_flag_clear(p, PG_REFERENCED);
522					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
523						p->act_count += ACT_ADVANCE;
524					vm_pageq_requeue(p);
525				}
526			} else if (p->queue == PQ_INACTIVE) {
527				vm_page_protect(p, VM_PROT_NONE);
528			}
529			p = next;
530		}
531		object = object->backing_object;
532	}
533	return;
534}
535
536/*
537 * deactivate some number of pages in a map, try to do it fairly, but
538 * that is really hard to do.
539 */
540static void
541vm_pageout_map_deactivate_pages(map, desired)
542	vm_map_t map;
543	vm_pindex_t desired;
544{
545	vm_map_entry_t tmpe;
546	vm_object_t obj, bigobj;
547
548	GIANT_REQUIRED;
549	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curthread)) {
550		return;
551	}
552
553	bigobj = NULL;
554
555	/*
556	 * first, search out the biggest object, and try to free pages from
557	 * that.
558	 */
559	tmpe = map->header.next;
560	while (tmpe != &map->header) {
561		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
562			obj = tmpe->object.vm_object;
563			if ((obj != NULL) && (obj->shadow_count <= 1) &&
564				((bigobj == NULL) ||
565				 (bigobj->resident_page_count < obj->resident_page_count))) {
566				bigobj = obj;
567			}
568		}
569		tmpe = tmpe->next;
570	}
571
572	if (bigobj)
573		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
574
575	/*
576	 * Next, hunt around for other pages to deactivate.  We actually
577	 * do this search sort of wrong -- .text first is not the best idea.
578	 */
579	tmpe = map->header.next;
580	while (tmpe != &map->header) {
581		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
582			break;
583		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
584			obj = tmpe->object.vm_object;
585			if (obj)
586				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
587		}
588		tmpe = tmpe->next;
589	};
590
591	/*
592	 * Remove all mappings if a process is swapped out, this will free page
593	 * table pages.
594	 */
595	if (desired == 0)
596		pmap_remove(vm_map_pmap(map),
597			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
598	vm_map_unlock(map);
599	return;
600}
601#endif
602
603/*
604 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
605 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
606 * which we know can be trivially freed.
607 */
608
609void
610vm_pageout_page_free(vm_page_t m) {
611	vm_object_t object = m->object;
612	int type = object->type;
613
614	GIANT_REQUIRED;
615	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
616		vm_object_reference(object);
617	vm_page_busy(m);
618	vm_page_protect(m, VM_PROT_NONE);
619	vm_page_free(m);
620	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
621		vm_object_deallocate(object);
622}
623
624/*
625 *	vm_pageout_scan does the dirty work for the pageout daemon.
626 */
627static void
628vm_pageout_scan(int pass)
629{
630	vm_page_t m, next;
631	struct vm_page marker;
632	int save_page_shortage;
633	int save_inactive_count;
634	int page_shortage, maxscan, pcount;
635	int addl_page_shortage, addl_page_shortage_init;
636	struct proc *p, *bigproc;
637	vm_offset_t size, bigsize;
638	vm_object_t object;
639	int actcount;
640	int vnodes_skipped = 0;
641	int maxlaunder;
642	int s;
643
644	GIANT_REQUIRED;
645	/*
646	 * Do whatever cleanup that the pmap code can.
647	 */
648	pmap_collect();
649
650	addl_page_shortage_init = vm_pageout_deficit;
651	vm_pageout_deficit = 0;
652
653	/*
654	 * Calculate the number of pages we want to either free or move
655	 * to the cache.
656	 */
657	page_shortage = vm_paging_target() + addl_page_shortage_init;
658	save_page_shortage = page_shortage;
659	save_inactive_count = cnt.v_inactive_count;
660
661	/*
662	 * Initialize our marker
663	 */
664	bzero(&marker, sizeof(marker));
665	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
666	marker.queue = PQ_INACTIVE;
667	marker.wire_count = 1;
668
669	/*
670	 * Start scanning the inactive queue for pages we can move to the
671	 * cache or free.  The scan will stop when the target is reached or
672	 * we have scanned the entire inactive queue.  Note that m->act_count
673	 * is not used to form decisions for the inactive queue, only for the
674	 * active queue.
675	 *
676	 * maxlaunder limits the number of dirty pages we flush per scan.
677	 * For most systems a smaller value (16 or 32) is more robust under
678	 * extreme memory and disk pressure because any unnecessary writes
679	 * to disk can result in extreme performance degredation.  However,
680	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
681	 * used) will die horribly with limited laundering.  If the pageout
682	 * daemon cannot clean enough pages in the first pass, we let it go
683	 * all out in succeeding passes.
684	 */
685
686	if ((maxlaunder = vm_max_launder) <= 1)
687		maxlaunder = 1;
688	if (pass)
689		maxlaunder = 10000;
690
691rescan0:
692	addl_page_shortage = addl_page_shortage_init;
693	maxscan = cnt.v_inactive_count;
694
695	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
696	     m != NULL && maxscan-- > 0 && page_shortage > 0;
697	     m = next) {
698
699		cnt.v_pdpages++;
700
701		if (m->queue != PQ_INACTIVE) {
702			goto rescan0;
703		}
704
705		next = TAILQ_NEXT(m, pageq);
706
707		/*
708		 * skip marker pages
709		 */
710		if (m->flags & PG_MARKER)
711			continue;
712
713		if (m->hold_count) {
714			vm_pageq_requeue(m);
715			addl_page_shortage++;
716			continue;
717		}
718		/*
719		 * Dont mess with busy pages, keep in the front of the
720		 * queue, most likely are being paged out.
721		 */
722		if (m->busy || (m->flags & PG_BUSY)) {
723			addl_page_shortage++;
724			continue;
725		}
726
727		/*
728		 * If the object is not being used, we ignore previous
729		 * references.
730		 */
731		if (m->object->ref_count == 0) {
732			vm_page_flag_clear(m, PG_REFERENCED);
733			pmap_clear_reference(m);
734
735		/*
736		 * Otherwise, if the page has been referenced while in the
737		 * inactive queue, we bump the "activation count" upwards,
738		 * making it less likely that the page will be added back to
739		 * the inactive queue prematurely again.  Here we check the
740		 * page tables (or emulated bits, if any), given the upper
741		 * level VM system not knowing anything about existing
742		 * references.
743		 */
744		} else if (((m->flags & PG_REFERENCED) == 0) &&
745			(actcount = pmap_ts_referenced(m))) {
746			vm_page_activate(m);
747			m->act_count += (actcount + ACT_ADVANCE);
748			continue;
749		}
750
751		/*
752		 * If the upper level VM system knows about any page
753		 * references, we activate the page.  We also set the
754		 * "activation count" higher than normal so that we will less
755		 * likely place pages back onto the inactive queue again.
756		 */
757		if ((m->flags & PG_REFERENCED) != 0) {
758			vm_page_flag_clear(m, PG_REFERENCED);
759			actcount = pmap_ts_referenced(m);
760			vm_page_activate(m);
761			m->act_count += (actcount + ACT_ADVANCE + 1);
762			continue;
763		}
764
765		/*
766		 * If the upper level VM system doesn't know anything about
767		 * the page being dirty, we have to check for it again.  As
768		 * far as the VM code knows, any partially dirty pages are
769		 * fully dirty.
770		 */
771		if (m->dirty == 0) {
772			vm_page_test_dirty(m);
773		} else {
774			vm_page_dirty(m);
775		}
776
777		/*
778		 * Invalid pages can be easily freed
779		 */
780		if (m->valid == 0) {
781			vm_pageout_page_free(m);
782			cnt.v_dfree++;
783			--page_shortage;
784
785		/*
786		 * Clean pages can be placed onto the cache queue.  This
787		 * effectively frees them.
788		 */
789		} else if (m->dirty == 0) {
790			vm_page_cache(m);
791			--page_shortage;
792		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
793			/*
794			 * Dirty pages need to be paged out, but flushing
795			 * a page is extremely expensive verses freeing
796			 * a clean page.  Rather then artificially limiting
797			 * the number of pages we can flush, we instead give
798			 * dirty pages extra priority on the inactive queue
799			 * by forcing them to be cycled through the queue
800			 * twice before being flushed, after which the
801			 * (now clean) page will cycle through once more
802			 * before being freed.  This significantly extends
803			 * the thrash point for a heavily loaded machine.
804			 */
805			vm_page_flag_set(m, PG_WINATCFLS);
806			vm_pageq_requeue(m);
807		} else if (maxlaunder > 0) {
808			/*
809			 * We always want to try to flush some dirty pages if
810			 * we encounter them, to keep the system stable.
811			 * Normally this number is small, but under extreme
812			 * pressure where there are insufficient clean pages
813			 * on the inactive queue, we may have to go all out.
814			 */
815			int swap_pageouts_ok;
816			struct vnode *vp = NULL;
817			struct mount *mp;
818
819			object = m->object;
820
821			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
822				swap_pageouts_ok = 1;
823			} else {
824				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
825				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
826				vm_page_count_min());
827
828			}
829
830			/*
831			 * We don't bother paging objects that are "dead".
832			 * Those objects are in a "rundown" state.
833			 */
834			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
835				vm_pageq_requeue(m);
836				continue;
837			}
838
839			/*
840			 * The object is already known NOT to be dead.   It
841			 * is possible for the vget() to block the whole
842			 * pageout daemon, but the new low-memory handling
843			 * code should prevent it.
844			 *
845			 * The previous code skipped locked vnodes and, worse,
846			 * reordered pages in the queue.  This results in
847			 * completely non-deterministic operation and, on a
848			 * busy system, can lead to extremely non-optimal
849			 * pageouts.  For example, it can cause clean pages
850			 * to be freed and dirty pages to be moved to the end
851			 * of the queue.  Since dirty pages are also moved to
852			 * the end of the queue once-cleaned, this gives
853			 * way too large a weighting to defering the freeing
854			 * of dirty pages.
855			 *
856			 * XXX we need to be able to apply a timeout to the
857			 * vget() lock attempt.
858			 */
859
860			if (object->type == OBJT_VNODE) {
861				vp = object->handle;
862
863				mp = NULL;
864				if (vp->v_type == VREG)
865					vn_start_write(vp, &mp, V_NOWAIT);
866				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curthread)) {
867					vn_finished_write(mp);
868					if (object->flags & OBJ_MIGHTBEDIRTY)
869						vnodes_skipped++;
870					continue;
871				}
872
873				/*
874				 * The page might have been moved to another
875				 * queue during potential blocking in vget()
876				 * above.  The page might have been freed and
877				 * reused for another vnode.  The object might
878				 * have been reused for another vnode.
879				 */
880				if (m->queue != PQ_INACTIVE ||
881				    m->object != object ||
882				    object->handle != vp) {
883					if (object->flags & OBJ_MIGHTBEDIRTY)
884						vnodes_skipped++;
885					vput(vp);
886					vn_finished_write(mp);
887					continue;
888				}
889
890				/*
891				 * The page may have been busied during the
892				 * blocking in vput();  We don't move the
893				 * page back onto the end of the queue so that
894				 * statistics are more correct if we don't.
895				 */
896				if (m->busy || (m->flags & PG_BUSY)) {
897					vput(vp);
898					vn_finished_write(mp);
899					continue;
900				}
901
902				/*
903				 * If the page has become held, then skip it
904				 */
905				if (m->hold_count) {
906					vm_pageq_requeue(m);
907					if (object->flags & OBJ_MIGHTBEDIRTY)
908						vnodes_skipped++;
909					vput(vp);
910					vn_finished_write(mp);
911					continue;
912				}
913			}
914
915			/*
916			 * If a page is dirty, then it is either being washed
917			 * (but not yet cleaned) or it is still in the
918			 * laundry.  If it is still in the laundry, then we
919			 * start the cleaning operation.
920			 *
921			 * This operation may cluster, invalidating the 'next'
922			 * pointer.  To prevent an inordinate number of
923			 * restarts we use our marker to remember our place.
924			 *
925			 * decrement page_shortage on success to account for
926			 * the (future) cleaned page.  Otherwise we could wind
927			 * up laundering or cleaning too many pages.
928			 */
929			s = splvm();
930			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
931			splx(s);
932			if (vm_pageout_clean(m) != 0) {
933				--page_shortage;
934				--maxlaunder;
935			}
936			s = splvm();
937			next = TAILQ_NEXT(&marker, pageq);
938			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
939			splx(s);
940			if (vp) {
941				vput(vp);
942				vn_finished_write(mp);
943			}
944		}
945	}
946
947	/*
948	 * Compute the number of pages we want to try to move from the
949	 * active queue to the inactive queue.
950	 */
951	page_shortage = vm_paging_target() +
952		cnt.v_inactive_target - cnt.v_inactive_count;
953	page_shortage += addl_page_shortage;
954
955	/*
956	 * Scan the active queue for things we can deactivate. We nominally
957	 * track the per-page activity counter and use it to locate
958	 * deactivation candidates.
959	 */
960
961	pcount = cnt.v_active_count;
962	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
963
964	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
965
966		/*
967		 * This is a consistency check, and should likely be a panic
968		 * or warning.
969		 */
970		if (m->queue != PQ_ACTIVE) {
971			break;
972		}
973
974		next = TAILQ_NEXT(m, pageq);
975		/*
976		 * Don't deactivate pages that are busy.
977		 */
978		if ((m->busy != 0) ||
979		    (m->flags & PG_BUSY) ||
980		    (m->hold_count != 0)) {
981			vm_pageq_requeue(m);
982			m = next;
983			continue;
984		}
985
986		/*
987		 * The count for pagedaemon pages is done after checking the
988		 * page for eligibility...
989		 */
990		cnt.v_pdpages++;
991
992		/*
993		 * Check to see "how much" the page has been used.
994		 */
995		actcount = 0;
996		if (m->object->ref_count != 0) {
997			if (m->flags & PG_REFERENCED) {
998				actcount += 1;
999			}
1000			actcount += pmap_ts_referenced(m);
1001			if (actcount) {
1002				m->act_count += ACT_ADVANCE + actcount;
1003				if (m->act_count > ACT_MAX)
1004					m->act_count = ACT_MAX;
1005			}
1006		}
1007
1008		/*
1009		 * Since we have "tested" this bit, we need to clear it now.
1010		 */
1011		vm_page_flag_clear(m, PG_REFERENCED);
1012
1013		/*
1014		 * Only if an object is currently being used, do we use the
1015		 * page activation count stats.
1016		 */
1017		if (actcount && (m->object->ref_count != 0)) {
1018			vm_pageq_requeue(m);
1019		} else {
1020			m->act_count -= min(m->act_count, ACT_DECLINE);
1021			if (vm_pageout_algorithm ||
1022			    m->object->ref_count == 0 ||
1023			    m->act_count == 0) {
1024				page_shortage--;
1025				if (m->object->ref_count == 0) {
1026					vm_page_protect(m, VM_PROT_NONE);
1027					if (m->dirty == 0)
1028						vm_page_cache(m);
1029					else
1030						vm_page_deactivate(m);
1031				} else {
1032					vm_page_deactivate(m);
1033				}
1034			} else {
1035				vm_pageq_requeue(m);
1036			}
1037		}
1038		m = next;
1039	}
1040
1041	s = splvm();
1042
1043	/*
1044	 * We try to maintain some *really* free pages, this allows interrupt
1045	 * code to be guaranteed space.  Since both cache and free queues
1046	 * are considered basically 'free', moving pages from cache to free
1047	 * does not effect other calculations.
1048	 */
1049
1050	while (cnt.v_free_count < cnt.v_free_reserved) {
1051		static int cache_rover = 0;
1052		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1053		if (!m)
1054			break;
1055		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1056		    m->busy ||
1057		    m->hold_count ||
1058		    m->wire_count) {
1059#ifdef INVARIANTS
1060			printf("Warning: busy page %p found in cache\n", m);
1061#endif
1062			vm_page_deactivate(m);
1063			continue;
1064		}
1065		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1066		vm_pageout_page_free(m);
1067		cnt.v_dfree++;
1068	}
1069	splx(s);
1070
1071#if !defined(NO_SWAPPING)
1072	/*
1073	 * Idle process swapout -- run once per second.
1074	 */
1075	if (vm_swap_idle_enabled) {
1076		static long lsec;
1077		if (time_second != lsec) {
1078			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1079			vm_req_vmdaemon();
1080			lsec = time_second;
1081		}
1082	}
1083#endif
1084
1085	/*
1086	 * If we didn't get enough free pages, and we have skipped a vnode
1087	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1088	 * if we did not get enough free pages.
1089	 */
1090	if (vm_paging_target() > 0) {
1091		if (vnodes_skipped && vm_page_count_min())
1092			(void) speedup_syncer();
1093#if !defined(NO_SWAPPING)
1094		if (vm_swap_enabled && vm_page_count_target()) {
1095			vm_req_vmdaemon();
1096			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1097		}
1098#endif
1099	}
1100
1101	/*
1102	 * If we are out of swap and were not able to reach our paging
1103	 * target, kill the largest process.
1104	 *
1105	 * We keep the process bigproc locked once we find it to keep anyone
1106	 * from messing with it; however, there is a possibility of
1107	 * deadlock if process B is bigproc and one of it's child processes
1108	 * attempts to propagate a signal to B while we are waiting for A's
1109	 * lock while walking this list.  To avoid this, we don't block on
1110	 * the process lock but just skip a process if it is already locked.
1111	 */
1112	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1113	    (swap_pager_full && vm_paging_target() > 0)) {
1114#if 0
1115	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1116#endif
1117		bigproc = NULL;
1118		bigsize = 0;
1119		sx_slock(&allproc_lock);
1120		LIST_FOREACH(p, &allproc, p_list) {
1121			/*
1122			 * If this process is already locked, skip it.
1123			 */
1124			if (PROC_TRYLOCK(p) == 0)
1125				continue;
1126			/*
1127			 * if this is a system process, skip it
1128			 */
1129			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1130			    (p->p_pid == 1) ||
1131			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1132				PROC_UNLOCK(p);
1133				continue;
1134			}
1135			/*
1136			 * if the process is in a non-running type state,
1137			 * don't touch it.
1138			 */
1139			mtx_lock_spin(&sched_lock);
1140			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1141				mtx_unlock_spin(&sched_lock);
1142				PROC_UNLOCK(p);
1143				continue;
1144			}
1145			mtx_unlock_spin(&sched_lock);
1146			/*
1147			 * get the process size
1148			 */
1149			size = vmspace_resident_count(p->p_vmspace) +
1150				vmspace_swap_count(p->p_vmspace);
1151			/*
1152			 * if the this process is bigger than the biggest one
1153			 * remember it.
1154			 */
1155			if (size > bigsize) {
1156				if (bigproc != NULL)
1157					PROC_UNLOCK(bigproc);
1158				bigproc = p;
1159				bigsize = size;
1160			} else
1161				PROC_UNLOCK(p);
1162		}
1163		sx_sunlock(&allproc_lock);
1164		if (bigproc != NULL) {
1165			struct ksegrp *kg;
1166			killproc(bigproc, "out of swap space");
1167			mtx_lock_spin(&sched_lock);
1168			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1169				kg->kg_estcpu = 0;
1170				kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
1171				resetpriority(kg);
1172			}
1173			mtx_unlock_spin(&sched_lock);
1174			PROC_UNLOCK(bigproc);
1175			wakeup(&cnt.v_free_count);
1176		}
1177	}
1178}
1179
1180/*
1181 * This routine tries to maintain the pseudo LRU active queue,
1182 * so that during long periods of time where there is no paging,
1183 * that some statistic accumulation still occurs.  This code
1184 * helps the situation where paging just starts to occur.
1185 */
1186static void
1187vm_pageout_page_stats()
1188{
1189	vm_page_t m,next;
1190	int pcount,tpcount;		/* Number of pages to check */
1191	static int fullintervalcount = 0;
1192	int page_shortage;
1193	int s0;
1194
1195	page_shortage =
1196	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1197	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1198
1199	if (page_shortage <= 0)
1200		return;
1201
1202	s0 = splvm();
1203
1204	pcount = cnt.v_active_count;
1205	fullintervalcount += vm_pageout_stats_interval;
1206	if (fullintervalcount < vm_pageout_full_stats_interval) {
1207		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1208		if (pcount > tpcount)
1209			pcount = tpcount;
1210	} else {
1211		fullintervalcount = 0;
1212	}
1213
1214	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1215	while ((m != NULL) && (pcount-- > 0)) {
1216		int actcount;
1217
1218		if (m->queue != PQ_ACTIVE) {
1219			break;
1220		}
1221
1222		next = TAILQ_NEXT(m, pageq);
1223		/*
1224		 * Don't deactivate pages that are busy.
1225		 */
1226		if ((m->busy != 0) ||
1227		    (m->flags & PG_BUSY) ||
1228		    (m->hold_count != 0)) {
1229			vm_pageq_requeue(m);
1230			m = next;
1231			continue;
1232		}
1233
1234		actcount = 0;
1235		if (m->flags & PG_REFERENCED) {
1236			vm_page_flag_clear(m, PG_REFERENCED);
1237			actcount += 1;
1238		}
1239
1240		actcount += pmap_ts_referenced(m);
1241		if (actcount) {
1242			m->act_count += ACT_ADVANCE + actcount;
1243			if (m->act_count > ACT_MAX)
1244				m->act_count = ACT_MAX;
1245			vm_pageq_requeue(m);
1246		} else {
1247			if (m->act_count == 0) {
1248				/*
1249				 * We turn off page access, so that we have
1250				 * more accurate RSS stats.  We don't do this
1251				 * in the normal page deactivation when the
1252				 * system is loaded VM wise, because the
1253				 * cost of the large number of page protect
1254				 * operations would be higher than the value
1255				 * of doing the operation.
1256				 */
1257				vm_page_protect(m, VM_PROT_NONE);
1258				vm_page_deactivate(m);
1259			} else {
1260				m->act_count -= min(m->act_count, ACT_DECLINE);
1261				vm_pageq_requeue(m);
1262			}
1263		}
1264
1265		m = next;
1266	}
1267	splx(s0);
1268}
1269
1270static int
1271vm_pageout_free_page_calc(count)
1272vm_size_t count;
1273{
1274	if (count < cnt.v_page_count)
1275		 return 0;
1276	/*
1277	 * free_reserved needs to include enough for the largest swap pager
1278	 * structures plus enough for any pv_entry structs when paging.
1279	 */
1280	if (cnt.v_page_count > 1024)
1281		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1282	else
1283		cnt.v_free_min = 4;
1284	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1285		cnt.v_interrupt_free_min;
1286	cnt.v_free_reserved = vm_pageout_page_count +
1287		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1288	cnt.v_free_severe = cnt.v_free_min / 2;
1289	cnt.v_free_min += cnt.v_free_reserved;
1290	cnt.v_free_severe += cnt.v_free_reserved;
1291	return 1;
1292}
1293
1294
1295/*
1296 *	vm_pageout is the high level pageout daemon.
1297 */
1298static void
1299vm_pageout()
1300{
1301	int pass;
1302
1303	mtx_lock(&Giant);
1304
1305	/*
1306	 * Initialize some paging parameters.
1307	 */
1308
1309	cnt.v_interrupt_free_min = 2;
1310	if (cnt.v_page_count < 2000)
1311		vm_pageout_page_count = 8;
1312
1313	vm_pageout_free_page_calc(cnt.v_page_count);
1314	/*
1315	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1316	 * that these are more a measure of the VM cache queue hysteresis
1317	 * then the VM free queue.  Specifically, v_free_target is the
1318	 * high water mark (free+cache pages).
1319	 *
1320	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1321	 * low water mark, while v_free_min is the stop.  v_cache_min must
1322	 * be big enough to handle memory needs while the pageout daemon
1323	 * is signalled and run to free more pages.
1324	 */
1325	if (cnt.v_free_count > 6144)
1326		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1327	else
1328		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1329
1330	if (cnt.v_free_count > 2048) {
1331		cnt.v_cache_min = cnt.v_free_target;
1332		cnt.v_cache_max = 2 * cnt.v_cache_min;
1333		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1334	} else {
1335		cnt.v_cache_min = 0;
1336		cnt.v_cache_max = 0;
1337		cnt.v_inactive_target = cnt.v_free_count / 4;
1338	}
1339	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1340		cnt.v_inactive_target = cnt.v_free_count / 3;
1341
1342	/* XXX does not really belong here */
1343	if (vm_page_max_wired == 0)
1344		vm_page_max_wired = cnt.v_free_count / 3;
1345
1346	if (vm_pageout_stats_max == 0)
1347		vm_pageout_stats_max = cnt.v_free_target;
1348
1349	/*
1350	 * Set interval in seconds for stats scan.
1351	 */
1352	if (vm_pageout_stats_interval == 0)
1353		vm_pageout_stats_interval = 5;
1354	if (vm_pageout_full_stats_interval == 0)
1355		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1356
1357
1358	/*
1359	 * Set maximum free per pass
1360	 */
1361	if (vm_pageout_stats_free_max == 0)
1362		vm_pageout_stats_free_max = 5;
1363
1364	PROC_LOCK(curthread->td_proc);
1365	curthread->td_proc->p_flag |= P_BUFEXHAUST;
1366	PROC_UNLOCK(curthread->td_proc);
1367	swap_pager_swap_init();
1368	pass = 0;
1369	/*
1370	 * The pageout daemon is never done, so loop forever.
1371	 */
1372	while (TRUE) {
1373		int error;
1374		int s = splvm();
1375
1376		/*
1377		 * If we have enough free memory, wakeup waiters.  Do
1378		 * not clear vm_pages_needed until we reach our target,
1379		 * otherwise we may be woken up over and over again and
1380		 * waste a lot of cpu.
1381		 */
1382		if (vm_pages_needed && !vm_page_count_min()) {
1383			if (vm_paging_needed() <= 0)
1384				vm_pages_needed = 0;
1385			wakeup(&cnt.v_free_count);
1386		}
1387		if (vm_pages_needed) {
1388			/*
1389			 * Still not done, take a second pass without waiting
1390			 * (unlimited dirty cleaning), otherwise sleep a bit
1391			 * and try again.
1392			 */
1393			++pass;
1394			if (pass > 1)
1395				tsleep(&vm_pages_needed, PVM,
1396				       "psleep", hz/2);
1397		} else {
1398			/*
1399			 * Good enough, sleep & handle stats.  Prime the pass
1400			 * for the next run.
1401			 */
1402			if (pass > 1)
1403				pass = 1;
1404			else
1405				pass = 0;
1406			error = tsleep(&vm_pages_needed, PVM,
1407				    "psleep", vm_pageout_stats_interval * hz);
1408			if (error && !vm_pages_needed) {
1409				splx(s);
1410				pass = 0;
1411				vm_pageout_page_stats();
1412				continue;
1413			}
1414		}
1415
1416		if (vm_pages_needed)
1417			cnt.v_pdwakeups++;
1418		splx(s);
1419		vm_pageout_scan(pass);
1420		vm_pageout_deficit = 0;
1421	}
1422}
1423
1424void
1425pagedaemon_wakeup()
1426{
1427	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1428		vm_pages_needed++;
1429		wakeup(&vm_pages_needed);
1430	}
1431}
1432
1433#if !defined(NO_SWAPPING)
1434static void
1435vm_req_vmdaemon()
1436{
1437	static int lastrun = 0;
1438
1439	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1440		wakeup(&vm_daemon_needed);
1441		lastrun = ticks;
1442	}
1443}
1444
1445static void
1446vm_daemon()
1447{
1448	struct proc *p;
1449
1450	mtx_lock(&Giant);
1451	while (TRUE) {
1452		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1453		if (vm_pageout_req_swapout) {
1454			swapout_procs(vm_pageout_req_swapout);
1455			vm_pageout_req_swapout = 0;
1456		}
1457		/*
1458		 * scan the processes for exceeding their rlimits or if
1459		 * process is swapped out -- deactivate pages
1460		 */
1461
1462		sx_slock(&allproc_lock);
1463		LIST_FOREACH(p, &allproc, p_list) {
1464			vm_pindex_t limit, size;
1465
1466			/*
1467			 * if this is a system process or if we have already
1468			 * looked at this process, skip it.
1469			 */
1470			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1471				continue;
1472			}
1473			/*
1474			 * if the process is in a non-running type state,
1475			 * don't touch it.
1476			 */
1477			mtx_lock_spin(&sched_lock);
1478			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1479				mtx_unlock_spin(&sched_lock);
1480				continue;
1481			}
1482			/*
1483			 * get a limit
1484			 */
1485			limit = OFF_TO_IDX(
1486			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1487				p->p_rlimit[RLIMIT_RSS].rlim_max));
1488
1489			/*
1490			 * let processes that are swapped out really be
1491			 * swapped out set the limit to nothing (will force a
1492			 * swap-out.)
1493			 */
1494			if ((p->p_sflag & PS_INMEM) == 0)
1495				limit = 0;	/* XXX */
1496			mtx_unlock_spin(&sched_lock);
1497
1498			size = vmspace_resident_count(p->p_vmspace);
1499			if (limit >= 0 && size >= limit) {
1500				vm_pageout_map_deactivate_pages(
1501				    &p->p_vmspace->vm_map, limit);
1502			}
1503		}
1504		sx_sunlock(&allproc_lock);
1505	}
1506}
1507#endif
1508