vm_pageout.c revision 79242
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 79242 2001-07-04 19:00:13Z dillon $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout __P((void));
110static int vm_pageout_clean __P((vm_page_t));
111static void vm_pageout_scan __P((int pass));
112static int vm_pageout_free_page_calc __P((vm_size_t count));
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon __P((void));
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196#define VM_PAGEOUT_PAGE_COUNT 16
197int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200
201#if !defined(NO_SWAPPING)
202typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
203static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
204static freeer_fcn_t vm_pageout_object_deactivate_pages;
205static void vm_req_vmdaemon __P((void));
206#endif
207static void vm_pageout_page_stats(void);
208
209/*
210 * vm_pageout_clean:
211 *
212 * Clean the page and remove it from the laundry.
213 *
214 * We set the busy bit to cause potential page faults on this page to
215 * block.  Note the careful timing, however, the busy bit isn't set till
216 * late and we cannot do anything that will mess with the page.
217 */
218
219static int
220vm_pageout_clean(m)
221	vm_page_t m;
222{
223	vm_object_t object;
224	vm_page_t mc[2*vm_pageout_page_count];
225	int pageout_count;
226	int ib, is, page_base;
227	vm_pindex_t pindex = m->pindex;
228
229	GIANT_REQUIRED;
230
231	object = m->object;
232
233	/*
234	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235	 * with the new swapper, but we could have serious problems paging
236	 * out other object types if there is insufficient memory.
237	 *
238	 * Unfortunately, checking free memory here is far too late, so the
239	 * check has been moved up a procedural level.
240	 */
241
242	/*
243	 * Don't mess with the page if it's busy, held, or special
244	 */
245	if ((m->hold_count != 0) ||
246	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
247		return 0;
248	}
249
250	mc[vm_pageout_page_count] = m;
251	pageout_count = 1;
252	page_base = vm_pageout_page_count;
253	ib = 1;
254	is = 1;
255
256	/*
257	 * Scan object for clusterable pages.
258	 *
259	 * We can cluster ONLY if: ->> the page is NOT
260	 * clean, wired, busy, held, or mapped into a
261	 * buffer, and one of the following:
262	 * 1) The page is inactive, or a seldom used
263	 *    active page.
264	 * -or-
265	 * 2) we force the issue.
266	 *
267	 * During heavy mmap/modification loads the pageout
268	 * daemon can really fragment the underlying file
269	 * due to flushing pages out of order and not trying
270	 * align the clusters (which leave sporatic out-of-order
271	 * holes).  To solve this problem we do the reverse scan
272	 * first and attempt to align our cluster, then do a
273	 * forward scan if room remains.
274	 */
275
276more:
277	while (ib && pageout_count < vm_pageout_page_count) {
278		vm_page_t p;
279
280		if (ib > pindex) {
281			ib = 0;
282			break;
283		}
284
285		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
286			ib = 0;
287			break;
288		}
289		if (((p->queue - p->pc) == PQ_CACHE) ||
290		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
291			ib = 0;
292			break;
293		}
294		vm_page_test_dirty(p);
295		if ((p->dirty & p->valid) == 0 ||
296		    p->queue != PQ_INACTIVE ||
297		    p->wire_count != 0 ||
298		    p->hold_count != 0) {
299			ib = 0;
300			break;
301		}
302		mc[--page_base] = p;
303		++pageout_count;
304		++ib;
305		/*
306		 * alignment boundry, stop here and switch directions.  Do
307		 * not clear ib.
308		 */
309		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
310			break;
311	}
312
313	while (pageout_count < vm_pageout_page_count &&
314	    pindex + is < object->size) {
315		vm_page_t p;
316
317		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
318			break;
319		if (((p->queue - p->pc) == PQ_CACHE) ||
320		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
321			break;
322		}
323		vm_page_test_dirty(p);
324		if ((p->dirty & p->valid) == 0 ||
325		    p->queue != PQ_INACTIVE ||
326		    p->wire_count != 0 ||
327		    p->hold_count != 0) {
328			break;
329		}
330		mc[page_base + pageout_count] = p;
331		++pageout_count;
332		++is;
333	}
334
335	/*
336	 * If we exhausted our forward scan, continue with the reverse scan
337	 * when possible, even past a page boundry.  This catches boundry
338	 * conditions.
339	 */
340	if (ib && pageout_count < vm_pageout_page_count)
341		goto more;
342
343	/*
344	 * we allow reads during pageouts...
345	 */
346	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
347}
348
349/*
350 * vm_pageout_flush() - launder the given pages
351 *
352 *	The given pages are laundered.  Note that we setup for the start of
353 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
354 *	reference count all in here rather then in the parent.  If we want
355 *	the parent to do more sophisticated things we may have to change
356 *	the ordering.
357 */
358
359int
360vm_pageout_flush(mc, count, flags)
361	vm_page_t *mc;
362	int count;
363	int flags;
364{
365	vm_object_t object;
366	int pageout_status[count];
367	int numpagedout = 0;
368	int i;
369
370	GIANT_REQUIRED;
371	/*
372	 * Initiate I/O.  Bump the vm_page_t->busy counter and
373	 * mark the pages read-only.
374	 *
375	 * We do not have to fixup the clean/dirty bits here... we can
376	 * allow the pager to do it after the I/O completes.
377	 *
378	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
379	 * edge case with file fragments.
380	 */
381
382	for (i = 0; i < count; i++) {
383		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
384		vm_page_io_start(mc[i]);
385		vm_page_protect(mc[i], VM_PROT_READ);
386	}
387
388	object = mc[0]->object;
389	vm_object_pip_add(object, count);
390
391	vm_pager_put_pages(object, mc, count,
392	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
393	    pageout_status);
394
395	for (i = 0; i < count; i++) {
396		vm_page_t mt = mc[i];
397
398		switch (pageout_status[i]) {
399		case VM_PAGER_OK:
400			numpagedout++;
401			break;
402		case VM_PAGER_PEND:
403			numpagedout++;
404			break;
405		case VM_PAGER_BAD:
406			/*
407			 * Page outside of range of object. Right now we
408			 * essentially lose the changes by pretending it
409			 * worked.
410			 */
411			pmap_clear_modify(mt);
412			vm_page_undirty(mt);
413			break;
414		case VM_PAGER_ERROR:
415		case VM_PAGER_FAIL:
416			/*
417			 * If page couldn't be paged out, then reactivate the
418			 * page so it doesn't clog the inactive list.  (We
419			 * will try paging out it again later).
420			 */
421			vm_page_activate(mt);
422			break;
423		case VM_PAGER_AGAIN:
424			break;
425		}
426
427		/*
428		 * If the operation is still going, leave the page busy to
429		 * block all other accesses. Also, leave the paging in
430		 * progress indicator set so that we don't attempt an object
431		 * collapse.
432		 */
433		if (pageout_status[i] != VM_PAGER_PEND) {
434			vm_object_pip_wakeup(object);
435			vm_page_io_finish(mt);
436			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437				vm_page_protect(mt, VM_PROT_READ);
438		}
439	}
440	return numpagedout;
441}
442
443#if !defined(NO_SWAPPING)
444/*
445 *	vm_pageout_object_deactivate_pages
446 *
447 *	deactivate enough pages to satisfy the inactive target
448 *	requirements or if vm_page_proc_limit is set, then
449 *	deactivate all of the pages in the object and its
450 *	backing_objects.
451 *
452 *	The object and map must be locked.
453 */
454static void
455vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
456	vm_map_t map;
457	vm_object_t object;
458	vm_pindex_t desired;
459	int map_remove_only;
460{
461	vm_page_t p, next;
462	int rcount;
463	int remove_mode;
464	int s;
465
466	GIANT_REQUIRED;
467	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
468		return;
469
470	while (object) {
471		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
472			return;
473		if (object->paging_in_progress)
474			return;
475
476		remove_mode = map_remove_only;
477		if (object->shadow_count > 1)
478			remove_mode = 1;
479	/*
480	 * scan the objects entire memory queue
481	 */
482		rcount = object->resident_page_count;
483		p = TAILQ_FIRST(&object->memq);
484		while (p && (rcount-- > 0)) {
485			int actcount;
486			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487				return;
488			next = TAILQ_NEXT(p, listq);
489			cnt.v_pdpages++;
490			if (p->wire_count != 0 ||
491			    p->hold_count != 0 ||
492			    p->busy != 0 ||
493			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
494			    !pmap_page_exists(vm_map_pmap(map), p)) {
495				p = next;
496				continue;
497			}
498
499			actcount = pmap_ts_referenced(p);
500			if (actcount) {
501				vm_page_flag_set(p, PG_REFERENCED);
502			} else if (p->flags & PG_REFERENCED) {
503				actcount = 1;
504			}
505
506			if ((p->queue != PQ_ACTIVE) &&
507				(p->flags & PG_REFERENCED)) {
508				vm_page_activate(p);
509				p->act_count += actcount;
510				vm_page_flag_clear(p, PG_REFERENCED);
511			} else if (p->queue == PQ_ACTIVE) {
512				if ((p->flags & PG_REFERENCED) == 0) {
513					p->act_count -= min(p->act_count, ACT_DECLINE);
514					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
515						vm_page_protect(p, VM_PROT_NONE);
516						vm_page_deactivate(p);
517					} else {
518						s = splvm();
519						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
520						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
521						splx(s);
522					}
523				} else {
524					vm_page_activate(p);
525					vm_page_flag_clear(p, PG_REFERENCED);
526					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
527						p->act_count += ACT_ADVANCE;
528					s = splvm();
529					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
530					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
531					splx(s);
532				}
533			} else if (p->queue == PQ_INACTIVE) {
534				vm_page_protect(p, VM_PROT_NONE);
535			}
536			p = next;
537		}
538		object = object->backing_object;
539	}
540	return;
541}
542
543/*
544 * deactivate some number of pages in a map, try to do it fairly, but
545 * that is really hard to do.
546 */
547static void
548vm_pageout_map_deactivate_pages(map, desired)
549	vm_map_t map;
550	vm_pindex_t desired;
551{
552	vm_map_entry_t tmpe;
553	vm_object_t obj, bigobj;
554
555	GIANT_REQUIRED;
556	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
557		return;
558	}
559
560	bigobj = NULL;
561
562	/*
563	 * first, search out the biggest object, and try to free pages from
564	 * that.
565	 */
566	tmpe = map->header.next;
567	while (tmpe != &map->header) {
568		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
569			obj = tmpe->object.vm_object;
570			if ((obj != NULL) && (obj->shadow_count <= 1) &&
571				((bigobj == NULL) ||
572				 (bigobj->resident_page_count < obj->resident_page_count))) {
573				bigobj = obj;
574			}
575		}
576		tmpe = tmpe->next;
577	}
578
579	if (bigobj)
580		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
581
582	/*
583	 * Next, hunt around for other pages to deactivate.  We actually
584	 * do this search sort of wrong -- .text first is not the best idea.
585	 */
586	tmpe = map->header.next;
587	while (tmpe != &map->header) {
588		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
589			break;
590		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
591			obj = tmpe->object.vm_object;
592			if (obj)
593				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
594		}
595		tmpe = tmpe->next;
596	};
597
598	/*
599	 * Remove all mappings if a process is swapped out, this will free page
600	 * table pages.
601	 */
602	if (desired == 0)
603		pmap_remove(vm_map_pmap(map),
604			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
605	vm_map_unlock(map);
606	return;
607}
608#endif
609
610/*
611 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
612 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
613 * which we know can be trivially freed.
614 */
615
616void
617vm_pageout_page_free(vm_page_t m) {
618	vm_object_t object = m->object;
619	int type = object->type;
620
621	GIANT_REQUIRED;
622	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
623		vm_object_reference(object);
624	vm_page_busy(m);
625	vm_page_protect(m, VM_PROT_NONE);
626	vm_page_free(m);
627	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
628		vm_object_deallocate(object);
629}
630
631/*
632 *	vm_pageout_scan does the dirty work for the pageout daemon.
633 */
634static void
635vm_pageout_scan(int pass)
636{
637	vm_page_t m, next;
638	struct vm_page marker;
639	int save_page_shortage;
640	int save_inactive_count;
641	int page_shortage, maxscan, pcount;
642	int addl_page_shortage, addl_page_shortage_init;
643	struct proc *p, *bigproc;
644	vm_offset_t size, bigsize;
645	vm_object_t object;
646	int actcount;
647	int vnodes_skipped = 0;
648	int maxlaunder;
649	int s;
650
651	GIANT_REQUIRED;
652	/*
653	 * Do whatever cleanup that the pmap code can.
654	 */
655	pmap_collect();
656
657	addl_page_shortage_init = vm_pageout_deficit;
658	vm_pageout_deficit = 0;
659
660	/*
661	 * Calculate the number of pages we want to either free or move
662	 * to the cache.
663	 */
664	page_shortage = vm_paging_target() + addl_page_shortage_init;
665	save_page_shortage = page_shortage;
666	save_inactive_count = cnt.v_inactive_count;
667
668	/*
669	 * Initialize our marker
670	 */
671	bzero(&marker, sizeof(marker));
672	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
673	marker.queue = PQ_INACTIVE;
674	marker.wire_count = 1;
675
676	/*
677	 * Start scanning the inactive queue for pages we can move to the
678	 * cache or free.  The scan will stop when the target is reached or
679	 * we have scanned the entire inactive queue.  Note that m->act_count
680	 * is not used to form decisions for the inactive queue, only for the
681	 * active queue.
682	 *
683	 * maxlaunder limits the number of dirty pages we flush per scan.
684	 * For most systems a smaller value (16 or 32) is more robust under
685	 * extreme memory and disk pressure because any unnecessary writes
686	 * to disk can result in extreme performance degredation.  However,
687	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
688	 * used) will die horribly with limited laundering.  If the pageout
689	 * daemon cannot clean enough pages in the first pass, we let it go
690	 * all out in succeeding passes.
691	 */
692
693	if ((maxlaunder = vm_max_launder) <= 1)
694		maxlaunder = 1;
695	if (pass)
696		maxlaunder = 10000;
697
698rescan0:
699	addl_page_shortage = addl_page_shortage_init;
700	maxscan = cnt.v_inactive_count;
701	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
702	     m != NULL && maxscan-- > 0 && page_shortage > 0;
703	     m = next) {
704
705		cnt.v_pdpages++;
706
707		if (m->queue != PQ_INACTIVE) {
708			goto rescan0;
709		}
710
711		next = TAILQ_NEXT(m, pageq);
712
713		/*
714		 * skip marker pages
715		 */
716		if (m->flags & PG_MARKER)
717			continue;
718
719		if (m->hold_count) {
720			s = splvm();
721			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
722			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
723			splx(s);
724			addl_page_shortage++;
725			continue;
726		}
727		/*
728		 * Dont mess with busy pages, keep in the front of the
729		 * queue, most likely are being paged out.
730		 */
731		if (m->busy || (m->flags & PG_BUSY)) {
732			addl_page_shortage++;
733			continue;
734		}
735
736		/*
737		 * If the object is not being used, we ignore previous
738		 * references.
739		 */
740		if (m->object->ref_count == 0) {
741			vm_page_flag_clear(m, PG_REFERENCED);
742			pmap_clear_reference(m);
743
744		/*
745		 * Otherwise, if the page has been referenced while in the
746		 * inactive queue, we bump the "activation count" upwards,
747		 * making it less likely that the page will be added back to
748		 * the inactive queue prematurely again.  Here we check the
749		 * page tables (or emulated bits, if any), given the upper
750		 * level VM system not knowing anything about existing
751		 * references.
752		 */
753		} else if (((m->flags & PG_REFERENCED) == 0) &&
754			(actcount = pmap_ts_referenced(m))) {
755			vm_page_activate(m);
756			m->act_count += (actcount + ACT_ADVANCE);
757			continue;
758		}
759
760		/*
761		 * If the upper level VM system knows about any page
762		 * references, we activate the page.  We also set the
763		 * "activation count" higher than normal so that we will less
764		 * likely place pages back onto the inactive queue again.
765		 */
766		if ((m->flags & PG_REFERENCED) != 0) {
767			vm_page_flag_clear(m, PG_REFERENCED);
768			actcount = pmap_ts_referenced(m);
769			vm_page_activate(m);
770			m->act_count += (actcount + ACT_ADVANCE + 1);
771			continue;
772		}
773
774		/*
775		 * If the upper level VM system doesn't know anything about
776		 * the page being dirty, we have to check for it again.  As
777		 * far as the VM code knows, any partially dirty pages are
778		 * fully dirty.
779		 */
780		if (m->dirty == 0) {
781			vm_page_test_dirty(m);
782		} else {
783			vm_page_dirty(m);
784		}
785
786		/*
787		 * Invalid pages can be easily freed
788		 */
789		if (m->valid == 0) {
790			vm_pageout_page_free(m);
791			cnt.v_dfree++;
792			--page_shortage;
793
794		/*
795		 * Clean pages can be placed onto the cache queue.  This
796		 * effectively frees them.
797		 */
798		} else if (m->dirty == 0) {
799			vm_page_cache(m);
800			--page_shortage;
801		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
802			/*
803			 * Dirty pages need to be paged out, but flushing
804			 * a page is extremely expensive verses freeing
805			 * a clean page.  Rather then artificially limiting
806			 * the number of pages we can flush, we instead give
807			 * dirty pages extra priority on the inactive queue
808			 * by forcing them to be cycled through the queue
809			 * twice before being flushed, after which the
810			 * (now clean) page will cycle through once more
811			 * before being freed.  This significantly extends
812			 * the thrash point for a heavily loaded machine.
813			 */
814			s = splvm();
815			vm_page_flag_set(m, PG_WINATCFLS);
816			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
817			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
818			splx(s);
819		} else if (maxlaunder > 0) {
820			/*
821			 * We always want to try to flush some dirty pages if
822			 * we encounter them, to keep the system stable.
823			 * Normally this number is small, but under extreme
824			 * pressure where there are insufficient clean pages
825			 * on the inactive queue, we may have to go all out.
826			 */
827			int swap_pageouts_ok;
828			struct vnode *vp = NULL;
829			struct mount *mp;
830
831			object = m->object;
832
833			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
834				swap_pageouts_ok = 1;
835			} else {
836				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
837				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
838				vm_page_count_min());
839
840			}
841
842			/*
843			 * We don't bother paging objects that are "dead".
844			 * Those objects are in a "rundown" state.
845			 */
846			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
847				s = splvm();
848				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
849				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
850				splx(s);
851				continue;
852			}
853
854			/*
855			 * The object is already known NOT to be dead.   It
856			 * is possible for the vget() to block the whole
857			 * pageout daemon, but the new low-memory handling
858			 * code should prevent it.
859			 *
860			 * The previous code skipped locked vnodes and, worse,
861			 * reordered pages in the queue.  This results in
862			 * completely non-deterministic operation and, on a
863			 * busy system, can lead to extremely non-optimal
864			 * pageouts.  For example, it can cause clean pages
865			 * to be freed and dirty pages to be moved to the end
866			 * of the queue.  Since dirty pages are also moved to
867			 * the end of the queue once-cleaned, this gives
868			 * way too large a weighting to defering the freeing
869			 * of dirty pages.
870			 *
871			 * XXX we need to be able to apply a timeout to the
872			 * vget() lock attempt.
873			 */
874
875			if (object->type == OBJT_VNODE) {
876				vp = object->handle;
877
878				mp = NULL;
879				if (vp->v_type == VREG)
880					vn_start_write(vp, &mp, V_NOWAIT);
881				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
882					vn_finished_write(mp);
883					if (object->flags & OBJ_MIGHTBEDIRTY)
884						vnodes_skipped++;
885					continue;
886				}
887
888				/*
889				 * The page might have been moved to another
890				 * queue during potential blocking in vget()
891				 * above.  The page might have been freed and
892				 * reused for another vnode.  The object might
893				 * have been reused for another vnode.
894				 */
895				if (m->queue != PQ_INACTIVE ||
896				    m->object != object ||
897				    object->handle != vp) {
898					if (object->flags & OBJ_MIGHTBEDIRTY)
899						vnodes_skipped++;
900					vput(vp);
901					vn_finished_write(mp);
902					continue;
903				}
904
905				/*
906				 * The page may have been busied during the
907				 * blocking in vput();  We don't move the
908				 * page back onto the end of the queue so that
909				 * statistics are more correct if we don't.
910				 */
911				if (m->busy || (m->flags & PG_BUSY)) {
912					vput(vp);
913					vn_finished_write(mp);
914					continue;
915				}
916
917				/*
918				 * If the page has become held, then skip it
919				 */
920				if (m->hold_count) {
921					s = splvm();
922					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
923					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924					splx(s);
925					if (object->flags & OBJ_MIGHTBEDIRTY)
926						vnodes_skipped++;
927					vput(vp);
928					vn_finished_write(mp);
929					continue;
930				}
931			}
932
933			/*
934			 * If a page is dirty, then it is either being washed
935			 * (but not yet cleaned) or it is still in the
936			 * laundry.  If it is still in the laundry, then we
937			 * start the cleaning operation.
938			 *
939			 * This operation may cluster, invalidating the 'next'
940			 * pointer.  To prevent an inordinate number of
941			 * restarts we use our marker to remember our place.
942			 *
943			 * decrement page_shortage on success to account for
944			 * the (future) cleaned page.  Otherwise we could wind
945			 * up laundering or cleaning too many pages.
946			 */
947			s = splvm();
948			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
949			splx(s);
950			if (vm_pageout_clean(m) != 0) {
951				--page_shortage;
952				--maxlaunder;
953			}
954			s = splvm();
955			next = TAILQ_NEXT(&marker, pageq);
956			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
957			splx(s);
958			if (vp) {
959				vput(vp);
960				vn_finished_write(mp);
961			}
962		}
963	}
964
965	/*
966	 * Compute the number of pages we want to try to move from the
967	 * active queue to the inactive queue.
968	 */
969	page_shortage = vm_paging_target() +
970		cnt.v_inactive_target - cnt.v_inactive_count;
971	page_shortage += addl_page_shortage;
972
973	/*
974	 * Scan the active queue for things we can deactivate. We nominally
975	 * track the per-page activity counter and use it to locate
976	 * deactivation candidates.
977	 */
978
979	pcount = cnt.v_active_count;
980	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
981
982	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
983
984		/*
985		 * This is a consistency check, and should likely be a panic
986		 * or warning.
987		 */
988		if (m->queue != PQ_ACTIVE) {
989			break;
990		}
991
992		next = TAILQ_NEXT(m, pageq);
993		/*
994		 * Don't deactivate pages that are busy.
995		 */
996		if ((m->busy != 0) ||
997		    (m->flags & PG_BUSY) ||
998		    (m->hold_count != 0)) {
999			s = splvm();
1000			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1001			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1002			splx(s);
1003			m = next;
1004			continue;
1005		}
1006
1007		/*
1008		 * The count for pagedaemon pages is done after checking the
1009		 * page for eligibility...
1010		 */
1011		cnt.v_pdpages++;
1012
1013		/*
1014		 * Check to see "how much" the page has been used.
1015		 */
1016		actcount = 0;
1017		if (m->object->ref_count != 0) {
1018			if (m->flags & PG_REFERENCED) {
1019				actcount += 1;
1020			}
1021			actcount += pmap_ts_referenced(m);
1022			if (actcount) {
1023				m->act_count += ACT_ADVANCE + actcount;
1024				if (m->act_count > ACT_MAX)
1025					m->act_count = ACT_MAX;
1026			}
1027		}
1028
1029		/*
1030		 * Since we have "tested" this bit, we need to clear it now.
1031		 */
1032		vm_page_flag_clear(m, PG_REFERENCED);
1033
1034		/*
1035		 * Only if an object is currently being used, do we use the
1036		 * page activation count stats.
1037		 */
1038		if (actcount && (m->object->ref_count != 0)) {
1039			s = splvm();
1040			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1041			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1042			splx(s);
1043		} else {
1044			m->act_count -= min(m->act_count, ACT_DECLINE);
1045			if (vm_pageout_algorithm ||
1046			    m->object->ref_count == 0 ||
1047			    m->act_count == 0) {
1048				page_shortage--;
1049				if (m->object->ref_count == 0) {
1050					vm_page_protect(m, VM_PROT_NONE);
1051					if (m->dirty == 0)
1052						vm_page_cache(m);
1053					else
1054						vm_page_deactivate(m);
1055				} else {
1056					vm_page_deactivate(m);
1057				}
1058			} else {
1059				s = splvm();
1060				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1061				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1062				splx(s);
1063			}
1064		}
1065		m = next;
1066	}
1067
1068	s = splvm();
1069
1070	/*
1071	 * We try to maintain some *really* free pages, this allows interrupt
1072	 * code to be guaranteed space.  Since both cache and free queues
1073	 * are considered basically 'free', moving pages from cache to free
1074	 * does not effect other calculations.
1075	 */
1076
1077	while (cnt.v_free_count < cnt.v_free_reserved) {
1078		static int cache_rover = 0;
1079		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1080		if (!m)
1081			break;
1082		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1083		    m->busy ||
1084		    m->hold_count ||
1085		    m->wire_count) {
1086#ifdef INVARIANTS
1087			printf("Warning: busy page %p found in cache\n", m);
1088#endif
1089			vm_page_deactivate(m);
1090			continue;
1091		}
1092		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1093		vm_pageout_page_free(m);
1094		cnt.v_dfree++;
1095	}
1096	splx(s);
1097
1098#if !defined(NO_SWAPPING)
1099	/*
1100	 * Idle process swapout -- run once per second.
1101	 */
1102	if (vm_swap_idle_enabled) {
1103		static long lsec;
1104		if (time_second != lsec) {
1105			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1106			vm_req_vmdaemon();
1107			lsec = time_second;
1108		}
1109	}
1110#endif
1111
1112	/*
1113	 * If we didn't get enough free pages, and we have skipped a vnode
1114	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1115	 * if we did not get enough free pages.
1116	 */
1117	if (vm_paging_target() > 0) {
1118		if (vnodes_skipped && vm_page_count_min())
1119			(void) speedup_syncer();
1120#if !defined(NO_SWAPPING)
1121		if (vm_swap_enabled && vm_page_count_target()) {
1122			vm_req_vmdaemon();
1123			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1124		}
1125#endif
1126	}
1127
1128	/*
1129	 * If we are out of swap and were not able to reach our paging
1130	 * target, kill the largest process.
1131	 *
1132	 * We keep the process bigproc locked once we find it to keep anyone
1133	 * from messing with it; however, there is a possibility of
1134	 * deadlock if process B is bigproc and one of it's child processes
1135	 * attempts to propagate a signal to B while we are waiting for A's
1136	 * lock while walking this list.  To avoid this, we don't block on
1137	 * the process lock but just skip a process if it is already locked.
1138	 */
1139	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1140	    (swap_pager_full && vm_paging_target() > 0)) {
1141#if 0
1142	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1143#endif
1144		bigproc = NULL;
1145		bigsize = 0;
1146		sx_slock(&allproc_lock);
1147		LIST_FOREACH(p, &allproc, p_list) {
1148			/*
1149			 * If this process is already locked, skip it.
1150			 */
1151			if (PROC_TRYLOCK(p) == 0)
1152				continue;
1153			/*
1154			 * if this is a system process, skip it
1155			 */
1156			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1157			    (p->p_pid == 1) ||
1158			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1159				PROC_UNLOCK(p);
1160				continue;
1161			}
1162			/*
1163			 * if the process is in a non-running type state,
1164			 * don't touch it.
1165			 */
1166			mtx_lock_spin(&sched_lock);
1167			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1168				mtx_unlock_spin(&sched_lock);
1169				PROC_UNLOCK(p);
1170				continue;
1171			}
1172			mtx_unlock_spin(&sched_lock);
1173			/*
1174			 * get the process size
1175			 */
1176			size = vmspace_resident_count(p->p_vmspace) +
1177				vmspace_swap_count(p->p_vmspace);
1178			/*
1179			 * if the this process is bigger than the biggest one
1180			 * remember it.
1181			 */
1182			if (size > bigsize) {
1183				if (bigproc != NULL)
1184					PROC_UNLOCK(bigproc);
1185				bigproc = p;
1186				bigsize = size;
1187			} else
1188				PROC_UNLOCK(p);
1189		}
1190		sx_sunlock(&allproc_lock);
1191		if (bigproc != NULL) {
1192			killproc(bigproc, "out of swap space");
1193			mtx_lock_spin(&sched_lock);
1194			bigproc->p_estcpu = 0;
1195			bigproc->p_nice = PRIO_MIN;
1196			resetpriority(bigproc);
1197			mtx_unlock_spin(&sched_lock);
1198			PROC_UNLOCK(bigproc);
1199			wakeup(&cnt.v_free_count);
1200		}
1201	}
1202}
1203
1204/*
1205 * This routine tries to maintain the pseudo LRU active queue,
1206 * so that during long periods of time where there is no paging,
1207 * that some statistic accumulation still occurs.  This code
1208 * helps the situation where paging just starts to occur.
1209 */
1210static void
1211vm_pageout_page_stats()
1212{
1213	int s;
1214	vm_page_t m,next;
1215	int pcount,tpcount;		/* Number of pages to check */
1216	static int fullintervalcount = 0;
1217	int page_shortage;
1218	int s0;
1219
1220	page_shortage =
1221	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1222	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1223
1224	if (page_shortage <= 0)
1225		return;
1226
1227	s0 = splvm();
1228
1229	pcount = cnt.v_active_count;
1230	fullintervalcount += vm_pageout_stats_interval;
1231	if (fullintervalcount < vm_pageout_full_stats_interval) {
1232		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1233		if (pcount > tpcount)
1234			pcount = tpcount;
1235	} else {
1236		fullintervalcount = 0;
1237	}
1238
1239	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1240	while ((m != NULL) && (pcount-- > 0)) {
1241		int actcount;
1242
1243		if (m->queue != PQ_ACTIVE) {
1244			break;
1245		}
1246
1247		next = TAILQ_NEXT(m, pageq);
1248		/*
1249		 * Don't deactivate pages that are busy.
1250		 */
1251		if ((m->busy != 0) ||
1252		    (m->flags & PG_BUSY) ||
1253		    (m->hold_count != 0)) {
1254			s = splvm();
1255			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1256			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1257			splx(s);
1258			m = next;
1259			continue;
1260		}
1261
1262		actcount = 0;
1263		if (m->flags & PG_REFERENCED) {
1264			vm_page_flag_clear(m, PG_REFERENCED);
1265			actcount += 1;
1266		}
1267
1268		actcount += pmap_ts_referenced(m);
1269		if (actcount) {
1270			m->act_count += ACT_ADVANCE + actcount;
1271			if (m->act_count > ACT_MAX)
1272				m->act_count = ACT_MAX;
1273			s = splvm();
1274			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1275			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1276			splx(s);
1277		} else {
1278			if (m->act_count == 0) {
1279				/*
1280				 * We turn off page access, so that we have
1281				 * more accurate RSS stats.  We don't do this
1282				 * in the normal page deactivation when the
1283				 * system is loaded VM wise, because the
1284				 * cost of the large number of page protect
1285				 * operations would be higher than the value
1286				 * of doing the operation.
1287				 */
1288				vm_page_protect(m, VM_PROT_NONE);
1289				vm_page_deactivate(m);
1290			} else {
1291				m->act_count -= min(m->act_count, ACT_DECLINE);
1292				s = splvm();
1293				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1294				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1295				splx(s);
1296			}
1297		}
1298
1299		m = next;
1300	}
1301	splx(s0);
1302}
1303
1304static int
1305vm_pageout_free_page_calc(count)
1306vm_size_t count;
1307{
1308	if (count < cnt.v_page_count)
1309		 return 0;
1310	/*
1311	 * free_reserved needs to include enough for the largest swap pager
1312	 * structures plus enough for any pv_entry structs when paging.
1313	 */
1314	if (cnt.v_page_count > 1024)
1315		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1316	else
1317		cnt.v_free_min = 4;
1318	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1319		cnt.v_interrupt_free_min;
1320	cnt.v_free_reserved = vm_pageout_page_count +
1321		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1322	cnt.v_free_severe = cnt.v_free_min / 2;
1323	cnt.v_free_min += cnt.v_free_reserved;
1324	cnt.v_free_severe += cnt.v_free_reserved;
1325	return 1;
1326}
1327
1328
1329/*
1330 *	vm_pageout is the high level pageout daemon.
1331 */
1332static void
1333vm_pageout()
1334{
1335	int pass;
1336
1337	mtx_lock(&Giant);
1338
1339	/*
1340	 * Initialize some paging parameters.
1341	 */
1342
1343	cnt.v_interrupt_free_min = 2;
1344	if (cnt.v_page_count < 2000)
1345		vm_pageout_page_count = 8;
1346
1347	vm_pageout_free_page_calc(cnt.v_page_count);
1348	/*
1349	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1350	 * that these are more a measure of the VM cache queue hysteresis
1351	 * then the VM free queue.  Specifically, v_free_target is the
1352	 * high water mark (free+cache pages).
1353	 *
1354	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1355	 * low water mark, while v_free_min is the stop.  v_cache_min must
1356	 * be big enough to handle memory needs while the pageout daemon
1357	 * is signalled and run to free more pages.
1358	 */
1359	if (cnt.v_free_count > 6144)
1360		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1361	else
1362		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1363
1364	if (cnt.v_free_count > 2048) {
1365		cnt.v_cache_min = cnt.v_free_target;
1366		cnt.v_cache_max = 2 * cnt.v_cache_min;
1367		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1368	} else {
1369		cnt.v_cache_min = 0;
1370		cnt.v_cache_max = 0;
1371		cnt.v_inactive_target = cnt.v_free_count / 4;
1372	}
1373	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1374		cnt.v_inactive_target = cnt.v_free_count / 3;
1375
1376	/* XXX does not really belong here */
1377	if (vm_page_max_wired == 0)
1378		vm_page_max_wired = cnt.v_free_count / 3;
1379
1380	if (vm_pageout_stats_max == 0)
1381		vm_pageout_stats_max = cnt.v_free_target;
1382
1383	/*
1384	 * Set interval in seconds for stats scan.
1385	 */
1386	if (vm_pageout_stats_interval == 0)
1387		vm_pageout_stats_interval = 5;
1388	if (vm_pageout_full_stats_interval == 0)
1389		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1390
1391
1392	/*
1393	 * Set maximum free per pass
1394	 */
1395	if (vm_pageout_stats_free_max == 0)
1396		vm_pageout_stats_free_max = 5;
1397
1398	PROC_LOCK(curproc);
1399	curproc->p_flag |= P_BUFEXHAUST;
1400	PROC_UNLOCK(curproc);
1401	swap_pager_swap_init();
1402	pass = 0;
1403	/*
1404	 * The pageout daemon is never done, so loop forever.
1405	 */
1406	while (TRUE) {
1407		int error;
1408		int s = splvm();
1409
1410		/*
1411		 * If we have enough free memory, wakeup waiters.  Do
1412		 * not clear vm_pages_needed until we reach our target,
1413		 * otherwise we may be woken up over and over again and
1414		 * waste a lot of cpu.
1415		 */
1416		if (vm_pages_needed && !vm_page_count_min()) {
1417			if (vm_paging_needed() <= 0)
1418				vm_pages_needed = 0;
1419			wakeup(&cnt.v_free_count);
1420		}
1421		if (vm_pages_needed) {
1422			/*
1423			 * Still not done, take a second pass without waiting
1424			 * (unlimited dirty cleaning), otherwise sleep a bit
1425			 * and try again.
1426			 */
1427			++pass;
1428			if (pass > 1)
1429				tsleep(&vm_pages_needed, PVM,
1430				       "psleep", hz/2);
1431		} else {
1432			/*
1433			 * Good enough, sleep & handle stats.  Prime the pass
1434			 * for the next run.
1435			 */
1436			if (pass > 1)
1437				pass = 1;
1438			else
1439				pass = 0;
1440			error = tsleep(&vm_pages_needed, PVM,
1441				    "psleep", vm_pageout_stats_interval * hz);
1442			if (error && !vm_pages_needed) {
1443				splx(s);
1444				pass = 0;
1445				vm_pageout_page_stats();
1446				continue;
1447			}
1448		}
1449
1450		if (vm_pages_needed)
1451			cnt.v_pdwakeups++;
1452		splx(s);
1453		vm_pageout_scan(pass);
1454		vm_pageout_deficit = 0;
1455	}
1456}
1457
1458void
1459pagedaemon_wakeup()
1460{
1461	if (!vm_pages_needed && curproc != pageproc) {
1462		vm_pages_needed++;
1463		wakeup(&vm_pages_needed);
1464	}
1465}
1466
1467#if !defined(NO_SWAPPING)
1468static void
1469vm_req_vmdaemon()
1470{
1471	static int lastrun = 0;
1472
1473	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1474		wakeup(&vm_daemon_needed);
1475		lastrun = ticks;
1476	}
1477}
1478
1479static void
1480vm_daemon()
1481{
1482	struct proc *p;
1483
1484	mtx_lock(&Giant);
1485	while (TRUE) {
1486		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1487		if (vm_pageout_req_swapout) {
1488			swapout_procs(vm_pageout_req_swapout);
1489			vm_pageout_req_swapout = 0;
1490		}
1491		/*
1492		 * scan the processes for exceeding their rlimits or if
1493		 * process is swapped out -- deactivate pages
1494		 */
1495
1496		sx_slock(&allproc_lock);
1497		LIST_FOREACH(p, &allproc, p_list) {
1498			vm_pindex_t limit, size;
1499
1500			/*
1501			 * if this is a system process or if we have already
1502			 * looked at this process, skip it.
1503			 */
1504			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1505				continue;
1506			}
1507			/*
1508			 * if the process is in a non-running type state,
1509			 * don't touch it.
1510			 */
1511			mtx_lock_spin(&sched_lock);
1512			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1513				mtx_unlock_spin(&sched_lock);
1514				continue;
1515			}
1516			/*
1517			 * get a limit
1518			 */
1519			limit = OFF_TO_IDX(
1520			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1521				p->p_rlimit[RLIMIT_RSS].rlim_max));
1522
1523			/*
1524			 * let processes that are swapped out really be
1525			 * swapped out set the limit to nothing (will force a
1526			 * swap-out.)
1527			 */
1528			if ((p->p_sflag & PS_INMEM) == 0)
1529				limit = 0;	/* XXX */
1530			mtx_unlock_spin(&sched_lock);
1531
1532			size = vmspace_resident_count(p->p_vmspace);
1533			if (limit >= 0 && size >= limit) {
1534				vm_pageout_map_deactivate_pages(
1535				    &p->p_vmspace->vm_map, limit);
1536			}
1537		}
1538		sx_sunlock(&allproc_lock);
1539	}
1540}
1541#endif
1542