vm_pageout.c revision 77948
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 77948 2001-06-09 18:06:58Z dillon $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>
82#include <sys/kthread.h>
83#include <sys/ktr.h>
84#include <sys/resourcevar.h>
85#include <sys/signalvar.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89#include <sys/sysctl.h>
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99#include <vm/swap_pager.h>
100#include <vm/vm_extern.h>
101
102#include <machine/mutex.h>
103
104/*
105 * System initialization
106 */
107
108/* the kernel process "vm_pageout"*/
109static void vm_pageout __P((void));
110static int vm_pageout_clean __P((vm_page_t));
111static void vm_pageout_scan __P((int pass));
112static int vm_pageout_free_page_calc __P((vm_size_t count));
113struct proc *pageproc;
114
115static struct kproc_desc page_kp = {
116	"pagedaemon",
117	vm_pageout,
118	&pageproc
119};
120SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
121
122#if !defined(NO_SWAPPING)
123/* the kernel process "vm_daemon"*/
124static void vm_daemon __P((void));
125static struct	proc *vmproc;
126
127static struct kproc_desc vm_kp = {
128	"vmdaemon",
129	vm_daemon,
130	&vmproc
131};
132SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
133#endif
134
135
136int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
137int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
138int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
139
140#if !defined(NO_SWAPPING)
141static int vm_pageout_req_swapout;	/* XXX */
142static int vm_daemon_needed;
143#endif
144extern int vm_swap_size;
145static int vm_max_launder = 32;
146static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
147static int vm_pageout_full_stats_interval = 0;
148static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
149static int defer_swap_pageouts=0;
150static int disable_swap_pageouts=0;
151
152#if defined(NO_SWAPPING)
153static int vm_swap_enabled=0;
154static int vm_swap_idle_enabled=0;
155#else
156static int vm_swap_enabled=1;
157static int vm_swap_idle_enabled=0;
158#endif
159
160SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
161	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
162
163SYSCTL_INT(_vm, OID_AUTO, max_launder,
164	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
167	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
170	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
173	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
176	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196#define VM_PAGEOUT_PAGE_COUNT 16
197int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200
201#if !defined(NO_SWAPPING)
202typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
203static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
204static freeer_fcn_t vm_pageout_object_deactivate_pages;
205static void vm_req_vmdaemon __P((void));
206#endif
207static void vm_pageout_page_stats(void);
208
209/*
210 * vm_pageout_clean:
211 *
212 * Clean the page and remove it from the laundry.
213 *
214 * We set the busy bit to cause potential page faults on this page to
215 * block.  Note the careful timing, however, the busy bit isn't set till
216 * late and we cannot do anything that will mess with the page.
217 */
218
219static int
220vm_pageout_clean(m)
221	vm_page_t m;
222{
223	register vm_object_t object;
224	vm_page_t mc[2*vm_pageout_page_count];
225	int pageout_count;
226	int ib, is, page_base;
227	vm_pindex_t pindex = m->pindex;
228
229	mtx_assert(&vm_mtx, MA_OWNED);
230	object = m->object;
231
232	/*
233	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
234	 * with the new swapper, but we could have serious problems paging
235	 * out other object types if there is insufficient memory.
236	 *
237	 * Unfortunately, checking free memory here is far too late, so the
238	 * check has been moved up a procedural level.
239	 */
240
241	/*
242	 * Don't mess with the page if it's busy, held, or special
243	 */
244	if ((m->hold_count != 0) ||
245	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
246		return 0;
247	}
248
249	mc[vm_pageout_page_count] = m;
250	pageout_count = 1;
251	page_base = vm_pageout_page_count;
252	ib = 1;
253	is = 1;
254
255	/*
256	 * Scan object for clusterable pages.
257	 *
258	 * We can cluster ONLY if: ->> the page is NOT
259	 * clean, wired, busy, held, or mapped into a
260	 * buffer, and one of the following:
261	 * 1) The page is inactive, or a seldom used
262	 *    active page.
263	 * -or-
264	 * 2) we force the issue.
265	 *
266	 * During heavy mmap/modification loads the pageout
267	 * daemon can really fragment the underlying file
268	 * due to flushing pages out of order and not trying
269	 * align the clusters (which leave sporatic out-of-order
270	 * holes).  To solve this problem we do the reverse scan
271	 * first and attempt to align our cluster, then do a
272	 * forward scan if room remains.
273	 */
274
275more:
276	while (ib && pageout_count < vm_pageout_page_count) {
277		vm_page_t p;
278
279		if (ib > pindex) {
280			ib = 0;
281			break;
282		}
283
284		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
285			ib = 0;
286			break;
287		}
288		if (((p->queue - p->pc) == PQ_CACHE) ||
289		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
290			ib = 0;
291			break;
292		}
293		vm_page_test_dirty(p);
294		if ((p->dirty & p->valid) == 0 ||
295		    p->queue != PQ_INACTIVE ||
296		    p->wire_count != 0 ||
297		    p->hold_count != 0) {
298			ib = 0;
299			break;
300		}
301		mc[--page_base] = p;
302		++pageout_count;
303		++ib;
304		/*
305		 * alignment boundry, stop here and switch directions.  Do
306		 * not clear ib.
307		 */
308		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
309			break;
310	}
311
312	while (pageout_count < vm_pageout_page_count &&
313	    pindex + is < object->size) {
314		vm_page_t p;
315
316		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
317			break;
318		if (((p->queue - p->pc) == PQ_CACHE) ||
319		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
320			break;
321		}
322		vm_page_test_dirty(p);
323		if ((p->dirty & p->valid) == 0 ||
324		    p->queue != PQ_INACTIVE ||
325		    p->wire_count != 0 ||
326		    p->hold_count != 0) {
327			break;
328		}
329		mc[page_base + pageout_count] = p;
330		++pageout_count;
331		++is;
332	}
333
334	/*
335	 * If we exhausted our forward scan, continue with the reverse scan
336	 * when possible, even past a page boundry.  This catches boundry
337	 * conditions.
338	 */
339	if (ib && pageout_count < vm_pageout_page_count)
340		goto more;
341
342	/*
343	 * we allow reads during pageouts...
344	 */
345	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
346}
347
348/*
349 * vm_pageout_flush() - launder the given pages
350 *
351 *	The given pages are laundered.  Note that we setup for the start of
352 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
353 *	reference count all in here rather then in the parent.  If we want
354 *	the parent to do more sophisticated things we may have to change
355 *	the ordering.
356 */
357
358int
359vm_pageout_flush(mc, count, flags)
360	vm_page_t *mc;
361	int count;
362	int flags;
363{
364	register vm_object_t object;
365	int pageout_status[count];
366	int numpagedout = 0;
367	int i;
368
369	mtx_assert(&vm_mtx, MA_OWNED);
370	/*
371	 * Initiate I/O.  Bump the vm_page_t->busy counter and
372	 * mark the pages read-only.
373	 *
374	 * We do not have to fixup the clean/dirty bits here... we can
375	 * allow the pager to do it after the I/O completes.
376	 *
377	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
378	 * edge case with file fragments.
379	 */
380
381	for (i = 0; i < count; i++) {
382		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
383		vm_page_io_start(mc[i]);
384		vm_page_protect(mc[i], VM_PROT_READ);
385	}
386
387	object = mc[0]->object;
388	vm_object_pip_add(object, count);
389
390	vm_pager_put_pages(object, mc, count,
391	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
392	    pageout_status);
393
394	for (i = 0; i < count; i++) {
395		vm_page_t mt = mc[i];
396
397		switch (pageout_status[i]) {
398		case VM_PAGER_OK:
399			numpagedout++;
400			break;
401		case VM_PAGER_PEND:
402			numpagedout++;
403			break;
404		case VM_PAGER_BAD:
405			/*
406			 * Page outside of range of object. Right now we
407			 * essentially lose the changes by pretending it
408			 * worked.
409			 */
410			pmap_clear_modify(mt);
411			vm_page_undirty(mt);
412			break;
413		case VM_PAGER_ERROR:
414		case VM_PAGER_FAIL:
415			/*
416			 * If page couldn't be paged out, then reactivate the
417			 * page so it doesn't clog the inactive list.  (We
418			 * will try paging out it again later).
419			 */
420			vm_page_activate(mt);
421			break;
422		case VM_PAGER_AGAIN:
423			break;
424		}
425
426		/*
427		 * If the operation is still going, leave the page busy to
428		 * block all other accesses. Also, leave the paging in
429		 * progress indicator set so that we don't attempt an object
430		 * collapse.
431		 */
432		if (pageout_status[i] != VM_PAGER_PEND) {
433			vm_object_pip_wakeup(object);
434			vm_page_io_finish(mt);
435			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
436				vm_page_protect(mt, VM_PROT_READ);
437		}
438	}
439	return numpagedout;
440}
441
442#if !defined(NO_SWAPPING)
443/*
444 *	vm_pageout_object_deactivate_pages
445 *
446 *	deactivate enough pages to satisfy the inactive target
447 *	requirements or if vm_page_proc_limit is set, then
448 *	deactivate all of the pages in the object and its
449 *	backing_objects.
450 *
451 *	The object and map must be locked.
452 *
453 *	Requires the vm_mtx
454 */
455static void
456vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
457	vm_map_t map;
458	vm_object_t object;
459	vm_pindex_t desired;
460	int map_remove_only;
461{
462	register vm_page_t p, next;
463	int rcount;
464	int remove_mode;
465	int s;
466
467	mtx_assert(&vm_mtx, MA_OWNED);
468	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
469		return;
470
471	while (object) {
472		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
473			return;
474		if (object->paging_in_progress)
475			return;
476
477		remove_mode = map_remove_only;
478		if (object->shadow_count > 1)
479			remove_mode = 1;
480	/*
481	 * scan the objects entire memory queue
482	 */
483		rcount = object->resident_page_count;
484		p = TAILQ_FIRST(&object->memq);
485		while (p && (rcount-- > 0)) {
486			int actcount;
487			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
488				return;
489			next = TAILQ_NEXT(p, listq);
490			cnt.v_pdpages++;
491			if (p->wire_count != 0 ||
492			    p->hold_count != 0 ||
493			    p->busy != 0 ||
494			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
495			    !pmap_page_exists(vm_map_pmap(map), p)) {
496				p = next;
497				continue;
498			}
499
500			actcount = pmap_ts_referenced(p);
501			if (actcount) {
502				vm_page_flag_set(p, PG_REFERENCED);
503			} else if (p->flags & PG_REFERENCED) {
504				actcount = 1;
505			}
506
507			if ((p->queue != PQ_ACTIVE) &&
508				(p->flags & PG_REFERENCED)) {
509				vm_page_activate(p);
510				p->act_count += actcount;
511				vm_page_flag_clear(p, PG_REFERENCED);
512			} else if (p->queue == PQ_ACTIVE) {
513				if ((p->flags & PG_REFERENCED) == 0) {
514					p->act_count -= min(p->act_count, ACT_DECLINE);
515					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
516						vm_page_protect(p, VM_PROT_NONE);
517						vm_page_deactivate(p);
518					} else {
519						s = splvm();
520						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
521						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
522						splx(s);
523					}
524				} else {
525					vm_page_activate(p);
526					vm_page_flag_clear(p, PG_REFERENCED);
527					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
528						p->act_count += ACT_ADVANCE;
529					s = splvm();
530					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
531					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
532					splx(s);
533				}
534			} else if (p->queue == PQ_INACTIVE) {
535				vm_page_protect(p, VM_PROT_NONE);
536			}
537			p = next;
538		}
539		object = object->backing_object;
540	}
541	return;
542}
543
544/*
545 * deactivate some number of pages in a map, try to do it fairly, but
546 * that is really hard to do.
547 */
548static void
549vm_pageout_map_deactivate_pages(map, desired)
550	vm_map_t map;
551	vm_pindex_t desired;
552{
553	vm_map_entry_t tmpe;
554	vm_object_t obj, bigobj;
555
556	mtx_assert(&vm_mtx, MA_OWNED);
557	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
558		return;
559	}
560
561	bigobj = NULL;
562
563	/*
564	 * first, search out the biggest object, and try to free pages from
565	 * that.
566	 */
567	tmpe = map->header.next;
568	while (tmpe != &map->header) {
569		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
570			obj = tmpe->object.vm_object;
571			if ((obj != NULL) && (obj->shadow_count <= 1) &&
572				((bigobj == NULL) ||
573				 (bigobj->resident_page_count < obj->resident_page_count))) {
574				bigobj = obj;
575			}
576		}
577		tmpe = tmpe->next;
578	}
579
580	if (bigobj)
581		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
582
583	/*
584	 * Next, hunt around for other pages to deactivate.  We actually
585	 * do this search sort of wrong -- .text first is not the best idea.
586	 */
587	tmpe = map->header.next;
588	while (tmpe != &map->header) {
589		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
590			break;
591		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
592			obj = tmpe->object.vm_object;
593			if (obj)
594				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
595		}
596		tmpe = tmpe->next;
597	};
598
599	/*
600	 * Remove all mappings if a process is swapped out, this will free page
601	 * table pages.
602	 */
603	if (desired == 0)
604		pmap_remove(vm_map_pmap(map),
605			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
606	vm_map_unlock(map);
607	return;
608}
609#endif
610
611/*
612 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
613 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
614 * which we know can be trivially freed.
615 */
616
617void
618vm_pageout_page_free(vm_page_t m) {
619	vm_object_t object = m->object;
620	int type = object->type;
621
622	mtx_assert(&vm_mtx, MA_OWNED);
623	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
624		vm_object_reference(object);
625	vm_page_busy(m);
626	vm_page_protect(m, VM_PROT_NONE);
627	vm_page_free(m);
628	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
629		vm_object_deallocate(object);
630}
631
632/*
633 *	vm_pageout_scan does the dirty work for the pageout daemon.
634 */
635static void
636vm_pageout_scan(int pass)
637{
638	vm_page_t m, next;
639	struct vm_page marker;
640	int save_page_shortage;
641	int save_inactive_count;
642	int page_shortage, maxscan, pcount;
643	int addl_page_shortage, addl_page_shortage_init;
644	struct proc *p, *bigproc;
645	vm_offset_t size, bigsize;
646	vm_object_t object;
647	int actcount;
648	int vnodes_skipped = 0;
649	int maxlaunder;
650	int s;
651
652	mtx_assert(&Giant, MA_OWNED);
653	mtx_assert(&vm_mtx, MA_OWNED);
654	/*
655	 * Do whatever cleanup that the pmap code can.
656	 */
657	pmap_collect();
658
659	addl_page_shortage_init = vm_pageout_deficit;
660	vm_pageout_deficit = 0;
661
662	/*
663	 * Calculate the number of pages we want to either free or move
664	 * to the cache.
665	 */
666	page_shortage = vm_paging_target() + addl_page_shortage_init;
667	save_page_shortage = page_shortage;
668	save_inactive_count = cnt.v_inactive_count;
669
670	/*
671	 * Initialize our marker
672	 */
673	bzero(&marker, sizeof(marker));
674	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
675	marker.queue = PQ_INACTIVE;
676	marker.wire_count = 1;
677
678	/*
679	 * Start scanning the inactive queue for pages we can move to the
680	 * cache or free.  The scan will stop when the target is reached or
681	 * we have scanned the entire inactive queue.  Note that m->act_count
682	 * is not used to form decisions for the inactive queue, only for the
683	 * active queue.
684	 *
685	 * maxlaunder limits the number of dirty pages we flush per scan.
686	 * For most systems a smaller value (16 or 32) is more robust under
687	 * extreme memory and disk pressure because any unnecessary writes
688	 * to disk can result in extreme performance degredation.  However,
689	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
690	 * used) will die horribly with limited laundering.  If the pageout
691	 * daemon cannot clean enough pages in the first pass, we let it go
692	 * all out in succeeding passes.
693	 */
694
695	if ((maxlaunder = vm_max_launder) <= 1)
696		maxlaunder = 1;
697	if (pass)
698		maxlaunder = 10000;
699
700rescan0:
701	addl_page_shortage = addl_page_shortage_init;
702	maxscan = cnt.v_inactive_count;
703	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
704	     m != NULL && maxscan-- > 0 && page_shortage > 0;
705	     m = next) {
706
707		cnt.v_pdpages++;
708
709		if (m->queue != PQ_INACTIVE) {
710			goto rescan0;
711		}
712
713		next = TAILQ_NEXT(m, pageq);
714
715		/*
716		 * skip marker pages
717		 */
718		if (m->flags & PG_MARKER)
719			continue;
720
721		if (m->hold_count) {
722			s = splvm();
723			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
724			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
725			splx(s);
726			addl_page_shortage++;
727			continue;
728		}
729		/*
730		 * Dont mess with busy pages, keep in the front of the
731		 * queue, most likely are being paged out.
732		 */
733		if (m->busy || (m->flags & PG_BUSY)) {
734			addl_page_shortage++;
735			continue;
736		}
737
738		/*
739		 * If the object is not being used, we ignore previous
740		 * references.
741		 */
742		if (m->object->ref_count == 0) {
743			vm_page_flag_clear(m, PG_REFERENCED);
744			pmap_clear_reference(m);
745
746		/*
747		 * Otherwise, if the page has been referenced while in the
748		 * inactive queue, we bump the "activation count" upwards,
749		 * making it less likely that the page will be added back to
750		 * the inactive queue prematurely again.  Here we check the
751		 * page tables (or emulated bits, if any), given the upper
752		 * level VM system not knowing anything about existing
753		 * references.
754		 */
755		} else if (((m->flags & PG_REFERENCED) == 0) &&
756			(actcount = pmap_ts_referenced(m))) {
757			vm_page_activate(m);
758			m->act_count += (actcount + ACT_ADVANCE);
759			continue;
760		}
761
762		/*
763		 * If the upper level VM system knows about any page
764		 * references, we activate the page.  We also set the
765		 * "activation count" higher than normal so that we will less
766		 * likely place pages back onto the inactive queue again.
767		 */
768		if ((m->flags & PG_REFERENCED) != 0) {
769			vm_page_flag_clear(m, PG_REFERENCED);
770			actcount = pmap_ts_referenced(m);
771			vm_page_activate(m);
772			m->act_count += (actcount + ACT_ADVANCE + 1);
773			continue;
774		}
775
776		/*
777		 * If the upper level VM system doesn't know anything about
778		 * the page being dirty, we have to check for it again.  As
779		 * far as the VM code knows, any partially dirty pages are
780		 * fully dirty.
781		 */
782		if (m->dirty == 0) {
783			vm_page_test_dirty(m);
784		} else {
785			vm_page_dirty(m);
786		}
787
788		/*
789		 * Invalid pages can be easily freed
790		 */
791		if (m->valid == 0) {
792			vm_pageout_page_free(m);
793			cnt.v_dfree++;
794			--page_shortage;
795
796		/*
797		 * Clean pages can be placed onto the cache queue.  This
798		 * effectively frees them.
799		 */
800		} else if (m->dirty == 0) {
801			vm_page_cache(m);
802			--page_shortage;
803		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
804			/*
805			 * Dirty pages need to be paged out, but flushing
806			 * a page is extremely expensive verses freeing
807			 * a clean page.  Rather then artificially limiting
808			 * the number of pages we can flush, we instead give
809			 * dirty pages extra priority on the inactive queue
810			 * by forcing them to be cycled through the queue
811			 * twice before being flushed, after which the
812			 * (now clean) page will cycle through once more
813			 * before being freed.  This significantly extends
814			 * the thrash point for a heavily loaded machine.
815			 */
816			s = splvm();
817			vm_page_flag_set(m, PG_WINATCFLS);
818			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
819			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
820			splx(s);
821		} else if (maxlaunder > 0) {
822			/*
823			 * We always want to try to flush some dirty pages if
824			 * we encounter them, to keep the system stable.
825			 * Normally this number is small, but under extreme
826			 * pressure where there are insufficient clean pages
827			 * on the inactive queue, we may have to go all out.
828			 */
829			int swap_pageouts_ok;
830			struct vnode *vp = NULL;
831			struct mount *mp;
832
833			object = m->object;
834
835			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
836				swap_pageouts_ok = 1;
837			} else {
838				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
839				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
840				vm_page_count_min());
841
842			}
843
844			/*
845			 * We don't bother paging objects that are "dead".
846			 * Those objects are in a "rundown" state.
847			 */
848			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
849				s = splvm();
850				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
851				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
852				splx(s);
853				continue;
854			}
855
856			/*
857			 * The object is already known NOT to be dead.   It
858			 * is possible for the vget() to block the whole
859			 * pageout daemon, but the new low-memory handling
860			 * code should prevent it.
861			 *
862			 * The previous code skipped locked vnodes and, worse,
863			 * reordered pages in the queue.  This results in
864			 * completely non-deterministic operation and, on a
865			 * busy system, can lead to extremely non-optimal
866			 * pageouts.  For example, it can cause clean pages
867			 * to be freed and dirty pages to be moved to the end
868			 * of the queue.  Since dirty pages are also moved to
869			 * the end of the queue once-cleaned, this gives
870			 * way too large a weighting to defering the freeing
871			 * of dirty pages.
872			 *
873			 * XXX we need to be able to apply a timeout to the
874			 * vget() lock attempt.
875			 */
876
877			if (object->type == OBJT_VNODE) {
878				vp = object->handle;
879
880				mp = NULL;
881				mtx_unlock(&vm_mtx);
882				if (vp->v_type == VREG)
883					vn_start_write(vp, &mp, V_NOWAIT);
884				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
885					vn_finished_write(mp);
886					mtx_lock(&vm_mtx);
887					if (object->flags & OBJ_MIGHTBEDIRTY)
888						vnodes_skipped++;
889					continue;
890				}
891				mtx_lock(&vm_mtx);
892
893				/*
894				 * The page might have been moved to another
895				 * queue during potential blocking in vget()
896				 * above.  The page might have been freed and
897				 * reused for another vnode.  The object might
898				 * have been reused for another vnode.
899				 */
900				if (m->queue != PQ_INACTIVE ||
901				    m->object != object ||
902				    object->handle != vp) {
903					if (object->flags & OBJ_MIGHTBEDIRTY)
904						vnodes_skipped++;
905					mtx_unlock(&vm_mtx);
906					vput(vp);
907					vn_finished_write(mp);
908					mtx_lock(&vm_mtx);
909					continue;
910				}
911
912				/*
913				 * The page may have been busied during the
914				 * blocking in vput();  We don't move the
915				 * page back onto the end of the queue so that
916				 * statistics are more correct if we don't.
917				 */
918				if (m->busy || (m->flags & PG_BUSY)) {
919					mtx_unlock(&vm_mtx);
920					vput(vp);
921					vn_finished_write(mp);
922					mtx_lock(&vm_mtx);
923					continue;
924				}
925
926				/*
927				 * If the page has become held, then skip it
928				 */
929				if (m->hold_count) {
930					s = splvm();
931					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
932					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
933					splx(s);
934					if (object->flags & OBJ_MIGHTBEDIRTY)
935						vnodes_skipped++;
936					mtx_unlock(&vm_mtx);
937					vput(vp);
938					vn_finished_write(mp);
939					mtx_lock(&vm_mtx);
940					continue;
941				}
942			}
943
944			/*
945			 * If a page is dirty, then it is either being washed
946			 * (but not yet cleaned) or it is still in the
947			 * laundry.  If it is still in the laundry, then we
948			 * start the cleaning operation.
949			 *
950			 * This operation may cluster, invalidating the 'next'
951			 * pointer.  To prevent an inordinate number of
952			 * restarts we use our marker to remember our place.
953			 *
954			 * decrement page_shortage on success to account for
955			 * the (future) cleaned page.  Otherwise we could wind
956			 * up laundering or cleaning too many pages.
957			 */
958			s = splvm();
959			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
960			splx(s);
961			if (vm_pageout_clean(m) != 0) {
962				--page_shortage;
963				--maxlaunder;
964			}
965			s = splvm();
966			next = TAILQ_NEXT(&marker, pageq);
967			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
968			splx(s);
969			if (vp) {
970				mtx_unlock(&vm_mtx);
971				vput(vp);
972				vn_finished_write(mp);
973				mtx_lock(&vm_mtx);
974			}
975		}
976	}
977
978	/*
979	 * Compute the number of pages we want to try to move from the
980	 * active queue to the inactive queue.
981	 */
982	page_shortage = vm_paging_target() +
983		cnt.v_inactive_target - cnt.v_inactive_count;
984	page_shortage += addl_page_shortage;
985
986	/*
987	 * Scan the active queue for things we can deactivate. We nominally
988	 * track the per-page activity counter and use it to locate
989	 * deactivation candidates.
990	 */
991
992	pcount = cnt.v_active_count;
993	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
994
995	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
996
997		/*
998		 * This is a consistency check, and should likely be a panic
999		 * or warning.
1000		 */
1001		if (m->queue != PQ_ACTIVE) {
1002			break;
1003		}
1004
1005		next = TAILQ_NEXT(m, pageq);
1006		/*
1007		 * Don't deactivate pages that are busy.
1008		 */
1009		if ((m->busy != 0) ||
1010		    (m->flags & PG_BUSY) ||
1011		    (m->hold_count != 0)) {
1012			s = splvm();
1013			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1014			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1015			splx(s);
1016			m = next;
1017			continue;
1018		}
1019
1020		/*
1021		 * The count for pagedaemon pages is done after checking the
1022		 * page for eligibility...
1023		 */
1024		cnt.v_pdpages++;
1025
1026		/*
1027		 * Check to see "how much" the page has been used.
1028		 */
1029		actcount = 0;
1030		if (m->object->ref_count != 0) {
1031			if (m->flags & PG_REFERENCED) {
1032				actcount += 1;
1033			}
1034			actcount += pmap_ts_referenced(m);
1035			if (actcount) {
1036				m->act_count += ACT_ADVANCE + actcount;
1037				if (m->act_count > ACT_MAX)
1038					m->act_count = ACT_MAX;
1039			}
1040		}
1041
1042		/*
1043		 * Since we have "tested" this bit, we need to clear it now.
1044		 */
1045		vm_page_flag_clear(m, PG_REFERENCED);
1046
1047		/*
1048		 * Only if an object is currently being used, do we use the
1049		 * page activation count stats.
1050		 */
1051		if (actcount && (m->object->ref_count != 0)) {
1052			s = splvm();
1053			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1054			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1055			splx(s);
1056		} else {
1057			m->act_count -= min(m->act_count, ACT_DECLINE);
1058			if (vm_pageout_algorithm ||
1059			    m->object->ref_count == 0 ||
1060			    m->act_count == 0) {
1061				page_shortage--;
1062				if (m->object->ref_count == 0) {
1063					vm_page_protect(m, VM_PROT_NONE);
1064					if (m->dirty == 0)
1065						vm_page_cache(m);
1066					else
1067						vm_page_deactivate(m);
1068				} else {
1069					vm_page_deactivate(m);
1070				}
1071			} else {
1072				s = splvm();
1073				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1074				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1075				splx(s);
1076			}
1077		}
1078		m = next;
1079	}
1080
1081	s = splvm();
1082
1083	/*
1084	 * We try to maintain some *really* free pages, this allows interrupt
1085	 * code to be guaranteed space.  Since both cache and free queues
1086	 * are considered basically 'free', moving pages from cache to free
1087	 * does not effect other calculations.
1088	 */
1089
1090	while (cnt.v_free_count < cnt.v_free_reserved) {
1091		static int cache_rover = 0;
1092		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1093		if (!m)
1094			break;
1095		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1096		    m->busy ||
1097		    m->hold_count ||
1098		    m->wire_count) {
1099#ifdef INVARIANTS
1100			printf("Warning: busy page %p found in cache\n", m);
1101#endif
1102			vm_page_deactivate(m);
1103			continue;
1104		}
1105		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1106		vm_pageout_page_free(m);
1107		cnt.v_dfree++;
1108	}
1109	splx(s);
1110
1111#if !defined(NO_SWAPPING)
1112	/*
1113	 * Idle process swapout -- run once per second.
1114	 */
1115	if (vm_swap_idle_enabled) {
1116		static long lsec;
1117		if (time_second != lsec) {
1118			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1119			vm_req_vmdaemon();
1120			lsec = time_second;
1121		}
1122	}
1123#endif
1124
1125	/*
1126	 * If we didn't get enough free pages, and we have skipped a vnode
1127	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1128	 * if we did not get enough free pages.
1129	 */
1130	if (vm_paging_target() > 0) {
1131		if (vnodes_skipped && vm_page_count_min())
1132			(void) speedup_syncer();
1133#if !defined(NO_SWAPPING)
1134		if (vm_swap_enabled && vm_page_count_target()) {
1135			vm_req_vmdaemon();
1136			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1137		}
1138#endif
1139	}
1140
1141	/*
1142	 * If we are out of swap and were not able to reach our paging
1143	 * target, kill the largest process.
1144	 *
1145	 * We keep the process bigproc locked once we find it to keep anyone
1146	 * from messing with it; however, there is a possibility of
1147	 * deadlock if process B is bigproc and one of it's child processes
1148	 * attempts to propagate a signal to B while we are waiting for A's
1149	 * lock while walking this list.  To avoid this, we don't block on
1150	 * the process lock but just skip a process if it is already locked.
1151	 */
1152	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1153	    (swap_pager_full && vm_paging_target() > 0)) {
1154#if 0
1155	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1156#endif
1157		mtx_unlock(&vm_mtx);
1158		bigproc = NULL;
1159		bigsize = 0;
1160		sx_slock(&allproc_lock);
1161		mtx_lock(&vm_mtx);
1162		LIST_FOREACH(p, &allproc, p_list) {
1163			/*
1164			 * If this process is already locked, skip it.
1165			 */
1166			if (PROC_TRYLOCK(p) == 0)
1167				continue;
1168			/*
1169			 * if this is a system process, skip it
1170			 */
1171			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1172			    (p->p_pid == 1) ||
1173			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1174				PROC_UNLOCK(p);
1175				continue;
1176			}
1177			/*
1178			 * if the process is in a non-running type state,
1179			 * don't touch it.
1180			 */
1181			mtx_lock_spin(&sched_lock);
1182			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1183				mtx_unlock_spin(&sched_lock);
1184				PROC_UNLOCK(p);
1185				continue;
1186			}
1187			mtx_unlock_spin(&sched_lock);
1188			/*
1189			 * get the process size
1190			 */
1191			size = vmspace_resident_count(p->p_vmspace) +
1192				vmspace_swap_count(p->p_vmspace);
1193			/*
1194			 * if the this process is bigger than the biggest one
1195			 * remember it.
1196			 */
1197			if (size > bigsize) {
1198				if (bigproc != NULL)
1199					PROC_UNLOCK(bigproc);
1200				bigproc = p;
1201				bigsize = size;
1202			} else
1203				PROC_UNLOCK(p);
1204		}
1205		sx_sunlock(&allproc_lock);
1206		if (bigproc != NULL) {
1207			killproc(bigproc, "out of swap space");
1208			mtx_lock_spin(&sched_lock);
1209			bigproc->p_estcpu = 0;
1210			bigproc->p_nice = PRIO_MIN;
1211			resetpriority(bigproc);
1212			mtx_unlock_spin(&sched_lock);
1213			PROC_UNLOCK(bigproc);
1214			wakeup(&cnt.v_free_count);
1215		}
1216	}
1217}
1218
1219/*
1220 * This routine tries to maintain the pseudo LRU active queue,
1221 * so that during long periods of time where there is no paging,
1222 * that some statistic accumulation still occurs.  This code
1223 * helps the situation where paging just starts to occur.
1224 */
1225static void
1226vm_pageout_page_stats()
1227{
1228	int s;
1229	vm_page_t m,next;
1230	int pcount,tpcount;		/* Number of pages to check */
1231	static int fullintervalcount = 0;
1232	int page_shortage;
1233	int s0;
1234
1235	page_shortage =
1236	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1237	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1238
1239	if (page_shortage <= 0)
1240		return;
1241
1242	s0 = splvm();
1243
1244	pcount = cnt.v_active_count;
1245	fullintervalcount += vm_pageout_stats_interval;
1246	if (fullintervalcount < vm_pageout_full_stats_interval) {
1247		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1248		if (pcount > tpcount)
1249			pcount = tpcount;
1250	} else {
1251		fullintervalcount = 0;
1252	}
1253
1254	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1255	while ((m != NULL) && (pcount-- > 0)) {
1256		int actcount;
1257
1258		if (m->queue != PQ_ACTIVE) {
1259			break;
1260		}
1261
1262		next = TAILQ_NEXT(m, pageq);
1263		/*
1264		 * Don't deactivate pages that are busy.
1265		 */
1266		if ((m->busy != 0) ||
1267		    (m->flags & PG_BUSY) ||
1268		    (m->hold_count != 0)) {
1269			s = splvm();
1270			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1271			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1272			splx(s);
1273			m = next;
1274			continue;
1275		}
1276
1277		actcount = 0;
1278		if (m->flags & PG_REFERENCED) {
1279			vm_page_flag_clear(m, PG_REFERENCED);
1280			actcount += 1;
1281		}
1282
1283		actcount += pmap_ts_referenced(m);
1284		if (actcount) {
1285			m->act_count += ACT_ADVANCE + actcount;
1286			if (m->act_count > ACT_MAX)
1287				m->act_count = ACT_MAX;
1288			s = splvm();
1289			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1290			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1291			splx(s);
1292		} else {
1293			if (m->act_count == 0) {
1294				/*
1295				 * We turn off page access, so that we have
1296				 * more accurate RSS stats.  We don't do this
1297				 * in the normal page deactivation when the
1298				 * system is loaded VM wise, because the
1299				 * cost of the large number of page protect
1300				 * operations would be higher than the value
1301				 * of doing the operation.
1302				 */
1303				vm_page_protect(m, VM_PROT_NONE);
1304				vm_page_deactivate(m);
1305			} else {
1306				m->act_count -= min(m->act_count, ACT_DECLINE);
1307				s = splvm();
1308				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1309				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1310				splx(s);
1311			}
1312		}
1313
1314		m = next;
1315	}
1316	splx(s0);
1317}
1318
1319static int
1320vm_pageout_free_page_calc(count)
1321vm_size_t count;
1322{
1323	if (count < cnt.v_page_count)
1324		 return 0;
1325	/*
1326	 * free_reserved needs to include enough for the largest swap pager
1327	 * structures plus enough for any pv_entry structs when paging.
1328	 */
1329	if (cnt.v_page_count > 1024)
1330		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1331	else
1332		cnt.v_free_min = 4;
1333	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1334		cnt.v_interrupt_free_min;
1335	cnt.v_free_reserved = vm_pageout_page_count +
1336		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1337	cnt.v_free_severe = cnt.v_free_min / 2;
1338	cnt.v_free_min += cnt.v_free_reserved;
1339	cnt.v_free_severe += cnt.v_free_reserved;
1340	return 1;
1341}
1342
1343
1344/*
1345 *	vm_pageout is the high level pageout daemon.
1346 */
1347static void
1348vm_pageout()
1349{
1350	int pass;
1351
1352	mtx_lock(&vm_mtx);
1353
1354	/*
1355	 * Initialize some paging parameters.
1356	 */
1357
1358	cnt.v_interrupt_free_min = 2;
1359	if (cnt.v_page_count < 2000)
1360		vm_pageout_page_count = 8;
1361
1362	vm_pageout_free_page_calc(cnt.v_page_count);
1363	/*
1364	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1365	 * that these are more a measure of the VM cache queue hysteresis
1366	 * then the VM free queue.  Specifically, v_free_target is the
1367	 * high water mark (free+cache pages).
1368	 *
1369	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1370	 * low water mark, while v_free_min is the stop.  v_cache_min must
1371	 * be big enough to handle memory needs while the pageout daemon
1372	 * is signalled and run to free more pages.
1373	 */
1374	if (cnt.v_free_count > 6144)
1375		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1376	else
1377		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1378
1379	if (cnt.v_free_count > 2048) {
1380		cnt.v_cache_min = cnt.v_free_target;
1381		cnt.v_cache_max = 2 * cnt.v_cache_min;
1382		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1383	} else {
1384		cnt.v_cache_min = 0;
1385		cnt.v_cache_max = 0;
1386		cnt.v_inactive_target = cnt.v_free_count / 4;
1387	}
1388	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1389		cnt.v_inactive_target = cnt.v_free_count / 3;
1390
1391	/* XXX does not really belong here */
1392	if (vm_page_max_wired == 0)
1393		vm_page_max_wired = cnt.v_free_count / 3;
1394
1395	if (vm_pageout_stats_max == 0)
1396		vm_pageout_stats_max = cnt.v_free_target;
1397
1398	/*
1399	 * Set interval in seconds for stats scan.
1400	 */
1401	if (vm_pageout_stats_interval == 0)
1402		vm_pageout_stats_interval = 5;
1403	if (vm_pageout_full_stats_interval == 0)
1404		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1405
1406
1407	/*
1408	 * Set maximum free per pass
1409	 */
1410	if (vm_pageout_stats_free_max == 0)
1411		vm_pageout_stats_free_max = 5;
1412
1413	PROC_LOCK(curproc);
1414	curproc->p_flag |= P_BUFEXHAUST;
1415	PROC_UNLOCK(curproc);
1416	swap_pager_swap_init();
1417	pass = 0;
1418	/*
1419	 * The pageout daemon is never done, so loop forever.
1420	 */
1421	while (TRUE) {
1422		int error;
1423		int s = splvm();
1424
1425		/*
1426		 * If we have enough free memory, wakeup waiters.  Do
1427		 * not clear vm_pages_needed until we reach our target,
1428		 * otherwise we may be woken up over and over again and
1429		 * waste a lot of cpu.
1430		 */
1431		if (vm_pages_needed && !vm_page_count_min()) {
1432			if (vm_paging_needed() <= 0)
1433				vm_pages_needed = 0;
1434			wakeup(&cnt.v_free_count);
1435		}
1436		if (vm_pages_needed) {
1437			/*
1438			 * Still not done, take a second pass without waiting
1439			 * (unlimited dirty cleaning), otherwise sleep a bit
1440			 * and try again.
1441			 */
1442			++pass;
1443			if (pass > 1)
1444				msleep(&vm_pages_needed, &vm_mtx, PVM,
1445				       "psleep", hz/2);
1446		} else {
1447			/*
1448			 * Good enough, sleep & handle stats.  Prime the pass
1449			 * for the next run.
1450			 */
1451			if (pass > 1)
1452				pass = 1;
1453			else
1454				pass = 0;
1455			error = msleep(&vm_pages_needed, &vm_mtx,
1456				PVM, "psleep", vm_pageout_stats_interval * hz);
1457			if (error && !vm_pages_needed) {
1458				splx(s);
1459				pass = 0;
1460				vm_pageout_page_stats();
1461				continue;
1462			}
1463		}
1464
1465		if (vm_pages_needed)
1466			cnt.v_pdwakeups++;
1467		splx(s);
1468		mtx_unlock(&vm_mtx);
1469		mtx_lock(&Giant);
1470		mtx_lock(&vm_mtx);
1471		vm_pageout_scan(pass);
1472		mtx_unlock(&Giant);
1473		vm_pageout_deficit = 0;
1474	}
1475}
1476
1477void
1478pagedaemon_wakeup()
1479{
1480	if (!vm_pages_needed && curproc != pageproc) {
1481		vm_pages_needed++;
1482		wakeup(&vm_pages_needed);
1483	}
1484}
1485
1486#if !defined(NO_SWAPPING)
1487static void
1488vm_req_vmdaemon()
1489{
1490	static int lastrun = 0;
1491
1492	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1493		wakeup(&vm_daemon_needed);
1494		lastrun = ticks;
1495	}
1496}
1497
1498static void
1499vm_daemon()
1500{
1501	struct proc *p;
1502
1503#ifndef rlimlocked
1504	mtx_lock(&Giant);
1505#endif
1506	while (TRUE) {
1507#ifdef rlimlocked
1508		mtx_lock(&Giant);
1509#endif
1510		mtx_lock(&vm_mtx);
1511		msleep(&vm_daemon_needed, &vm_mtx, PPAUSE, "psleep", 0);
1512		if (vm_pageout_req_swapout) {
1513			swapout_procs(vm_pageout_req_swapout);
1514			mtx_assert(&vm_mtx, MA_OWNED);
1515			vm_pageout_req_swapout = 0;
1516		}
1517		mtx_unlock(&vm_mtx);
1518#ifdef rlimlocked
1519		/*
1520		 * XXX: we can't do this yet because Giant still protects
1521		 * the per-process resource limits that we check below.
1522		 */
1523		mtx_unlock(&Giant);
1524#endif
1525		/*
1526		 * scan the processes for exceeding their rlimits or if
1527		 * process is swapped out -- deactivate pages
1528		 */
1529
1530		sx_slock(&allproc_lock);
1531		LIST_FOREACH(p, &allproc, p_list) {
1532			vm_pindex_t limit, size;
1533
1534			/*
1535			 * if this is a system process or if we have already
1536			 * looked at this process, skip it.
1537			 */
1538			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1539				continue;
1540			}
1541			mtx_lock(&vm_mtx);
1542			/*
1543			 * if the process is in a non-running type state,
1544			 * don't touch it.
1545			 */
1546			mtx_lock_spin(&sched_lock);
1547			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1548				mtx_unlock_spin(&sched_lock);
1549				mtx_unlock(&vm_mtx);
1550				continue;
1551			}
1552			/*
1553			 * get a limit
1554			 */
1555			limit = OFF_TO_IDX(
1556			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1557				p->p_rlimit[RLIMIT_RSS].rlim_max));
1558
1559			/*
1560			 * let processes that are swapped out really be
1561			 * swapped out set the limit to nothing (will force a
1562			 * swap-out.)
1563			 */
1564			if ((p->p_sflag & PS_INMEM) == 0)
1565				limit = 0;	/* XXX */
1566			mtx_unlock_spin(&sched_lock);
1567
1568			size = vmspace_resident_count(p->p_vmspace);
1569			if (limit >= 0 && size >= limit) {
1570				vm_pageout_map_deactivate_pages(
1571				    &p->p_vmspace->vm_map, limit);
1572			}
1573			mtx_unlock(&vm_mtx);
1574		}
1575		sx_sunlock(&allproc_lock);
1576	}
1577}
1578#endif
1579