vm_pageout.c revision 7427
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.43 1995/03/28 05:35:29 davidg Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/malloc.h>
81#include <sys/kernel.h>
82#include <sys/signalvar.h>
83
84#include <vm/vm.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/swap_pager.h>
88
89extern vm_map_t kmem_map;
90int vm_pages_needed;		/* Event on which pageout daemon sleeps */
91int vm_pagescanner;		/* Event on which pagescanner sleeps */
92
93int vm_pageout_pages_needed = 0;/* flag saying that the pageout daemon needs pages */
94int vm_page_pagesfreed;
95
96extern int npendingio;
97int vm_pageout_proc_limit;
98int vm_pageout_req_swapout;
99int vm_daemon_needed;
100extern int nswiodone;
101extern int swap_pager_full;
102extern int vm_swap_size;
103extern int swap_pager_ready();
104
105#define MAXSCAN 1024		/* maximum number of pages to scan in queues */
106
107#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
108
109#define VM_PAGEOUT_PAGE_COUNT 8
110int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
111int vm_pageout_req_do_stats;
112
113int vm_page_max_wired = 0;	/* XXX max # of wired pages system-wide */
114
115/*
116 * vm_pageout_clean:
117 * 	cleans a vm_page
118 */
119int
120vm_pageout_clean(m, sync)
121	register vm_page_t m;
122	int sync;
123{
124	/*
125	 * Clean the page and remove it from the laundry.
126	 *
127	 * We set the busy bit to cause potential page faults on this page to
128	 * block.
129	 *
130	 * And we set pageout-in-progress to keep the object from disappearing
131	 * during pageout.  This guarantees that the page won't move from the
132	 * inactive queue.  (However, any other page on the inactive queue may
133	 * move!)
134	 */
135
136	register vm_object_t object;
137	register vm_pager_t pager;
138	int pageout_status[VM_PAGEOUT_PAGE_COUNT];
139	vm_page_t ms[VM_PAGEOUT_PAGE_COUNT];
140	int pageout_count;
141	int anyok = 0;
142	int i;
143	vm_offset_t offset = m->offset;
144
145	object = m->object;
146	if (!object) {
147		printf("pager: object missing\n");
148		return 0;
149	}
150	if (!object->pager && (object->flags & OBJ_INTERNAL) == 0) {
151		printf("pager: non internal obj without pager\n");
152	}
153	/*
154	 * Try to collapse the object before making a pager for it.  We must
155	 * unlock the page queues first. We try to defer the creation of a
156	 * pager until all shadows are not paging.  This allows
157	 * vm_object_collapse to work better and helps control swap space
158	 * size. (J. Dyson 11 Nov 93)
159	 */
160
161	if (!object->pager &&
162	    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
163		return 0;
164
165	if ((!sync && m->bmapped != 0 && m->hold_count != 0) ||
166	    ((m->busy != 0) || (m->flags & PG_BUSY)))
167		return 0;
168
169	if (!sync && object->shadow) {
170		vm_object_collapse(object);
171	}
172	pageout_count = 1;
173	ms[0] = m;
174
175	pager = object->pager;
176	if (pager) {
177		for (i = 1; i < vm_pageout_page_count; i++) {
178			vm_page_t mt;
179
180			ms[i] = mt = vm_page_lookup(object, offset + i * NBPG);
181			if (mt) {
182				vm_page_test_dirty(mt);
183				/*
184				 * we can cluster ONLY if: ->> the page is NOT
185				 * busy, and is NOT clean the page is not
186				 * wired, busy, held, or mapped into a buffer.
187				 * and one of the following: 1) The page is
188				 * inactive, or a seldom used active page. 2)
189				 * or we force the issue.
190				 */
191				if ((mt->dirty & mt->valid) != 0
192				    && (((mt->flags & (PG_BUSY | PG_INACTIVE)) == PG_INACTIVE)
193					|| sync == VM_PAGEOUT_FORCE)
194				    && (mt->wire_count == 0)
195				    && (mt->busy == 0)
196				    && (mt->hold_count == 0)
197				    && (mt->bmapped == 0))
198					pageout_count++;
199				else
200					break;
201			} else
202				break;
203		}
204		/*
205		 * we allow reads during pageouts...
206		 */
207		for (i = 0; i < pageout_count; i++) {
208			ms[i]->flags |= PG_BUSY;
209			vm_page_protect(ms[i], VM_PROT_READ);
210		}
211		object->paging_in_progress += pageout_count;
212	} else {
213
214		m->flags |= PG_BUSY;
215
216		vm_page_protect(m, VM_PROT_READ);
217
218		object->paging_in_progress++;
219
220		pager = vm_pager_allocate(PG_DFLT, (caddr_t) 0,
221		    object->size, VM_PROT_ALL, 0);
222		if (pager != NULL) {
223			object->pager = pager;
224		}
225	}
226
227	/*
228	 * If there is no pager for the page, use the default pager.  If
229	 * there's no place to put the page at the moment, leave it in the
230	 * laundry and hope that there will be paging space later.
231	 */
232
233	if ((pager && pager->pg_type == PG_SWAP) ||
234	    (cnt.v_free_count + cnt.v_cache_count) >= cnt.v_pageout_free_min) {
235		if (pageout_count == 1) {
236			pageout_status[0] = pager ?
237			    vm_pager_put(pager, m,
238			    ((sync || (object == kernel_object)) ? TRUE : FALSE)) :
239			    VM_PAGER_FAIL;
240		} else {
241			if (!pager) {
242				for (i = 0; i < pageout_count; i++)
243					pageout_status[i] = VM_PAGER_FAIL;
244			} else {
245				vm_pager_put_pages(pager, ms, pageout_count,
246				    ((sync || (object == kernel_object)) ? TRUE : FALSE),
247				    pageout_status);
248			}
249		}
250	} else {
251		for (i = 0; i < pageout_count; i++)
252			pageout_status[i] = VM_PAGER_FAIL;
253	}
254
255	for (i = 0; i < pageout_count; i++) {
256		switch (pageout_status[i]) {
257		case VM_PAGER_OK:
258			++anyok;
259			break;
260		case VM_PAGER_PEND:
261			++anyok;
262			break;
263		case VM_PAGER_BAD:
264			/*
265			 * Page outside of range of object. Right now we
266			 * essentially lose the changes by pretending it
267			 * worked.
268			 */
269			pmap_clear_modify(VM_PAGE_TO_PHYS(ms[i]));
270			ms[i]->dirty = 0;
271			break;
272		case VM_PAGER_ERROR:
273		case VM_PAGER_FAIL:
274			/*
275			 * If page couldn't be paged out, then reactivate the
276			 * page so it doesn't clog the inactive list.  (We
277			 * will try paging out it again later).
278			 */
279			if (ms[i]->flags & PG_INACTIVE)
280				vm_page_activate(ms[i]);
281			break;
282		case VM_PAGER_AGAIN:
283			break;
284		}
285
286
287		/*
288		 * If the operation is still going, leave the page busy to
289		 * block all other accesses. Also, leave the paging in
290		 * progress indicator set so that we don't attempt an object
291		 * collapse.
292		 */
293		if (pageout_status[i] != VM_PAGER_PEND) {
294			vm_object_pip_wakeup(object);
295			if ((ms[i]->flags & (PG_REFERENCED|PG_WANTED)) ||
296			    pmap_is_referenced(VM_PAGE_TO_PHYS(ms[i]))) {
297				pmap_clear_reference(VM_PAGE_TO_PHYS(ms[i]));
298				ms[i]->flags &= ~PG_REFERENCED;
299				if (ms[i]->flags & PG_INACTIVE)
300					vm_page_activate(ms[i]);
301			}
302			PAGE_WAKEUP(ms[i]);
303		}
304	}
305	return anyok;
306}
307
308/*
309 *	vm_pageout_object_deactivate_pages
310 *
311 *	deactivate enough pages to satisfy the inactive target
312 *	requirements or if vm_page_proc_limit is set, then
313 *	deactivate all of the pages in the object and its
314 *	shadows.
315 *
316 *	The object and map must be locked.
317 */
318int
319vm_pageout_object_deactivate_pages(map, object, count, map_remove_only)
320	vm_map_t map;
321	vm_object_t object;
322	int count;
323	int map_remove_only;
324{
325	register vm_page_t p, next;
326	int rcount;
327	int dcount;
328
329	dcount = 0;
330	if (count == 0)
331		count = 1;
332
333	if (object->pager && (object->pager->pg_type == PG_DEVICE))
334		return 0;
335
336	if (object->shadow) {
337		if (object->shadow->ref_count == 1)
338			dcount += vm_pageout_object_deactivate_pages(map, object->shadow, count / 2 + 1, map_remove_only);
339		else
340			vm_pageout_object_deactivate_pages(map, object->shadow, count, 1);
341	}
342	if (object->paging_in_progress || !vm_object_lock_try(object))
343		return dcount;
344
345	/*
346	 * scan the objects entire memory queue
347	 */
348	rcount = object->resident_page_count;
349	p = object->memq.tqh_first;
350	while (p && (rcount-- > 0)) {
351		next = p->listq.tqe_next;
352		cnt.v_pdpages++;
353		vm_page_lock_queues();
354		if (p->wire_count != 0 ||
355		    p->hold_count != 0 ||
356		    p->bmapped != 0 ||
357		    p->busy != 0 ||
358		    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
359			p = next;
360			continue;
361		}
362		/*
363		 * if a page is active, not wired and is in the processes
364		 * pmap, then deactivate the page.
365		 */
366		if ((p->flags & (PG_ACTIVE | PG_BUSY)) == PG_ACTIVE) {
367			if (!pmap_is_referenced(VM_PAGE_TO_PHYS(p)) &&
368			    (p->flags & (PG_REFERENCED|PG_WANTED)) == 0) {
369				p->act_count -= min(p->act_count, ACT_DECLINE);
370				/*
371				 * if the page act_count is zero -- then we
372				 * deactivate
373				 */
374				if (!p->act_count) {
375					if (!map_remove_only)
376						vm_page_deactivate(p);
377					vm_page_protect(p, VM_PROT_NONE);
378					/*
379					 * else if on the next go-around we
380					 * will deactivate the page we need to
381					 * place the page on the end of the
382					 * queue to age the other pages in
383					 * memory.
384					 */
385				} else {
386					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
387					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
388					TAILQ_REMOVE(&object->memq, p, listq);
389					TAILQ_INSERT_TAIL(&object->memq, p, listq);
390				}
391				/*
392				 * see if we are done yet
393				 */
394				if (p->flags & PG_INACTIVE) {
395					--count;
396					++dcount;
397					if (count <= 0 &&
398					    cnt.v_inactive_count > cnt.v_inactive_target) {
399						vm_page_unlock_queues();
400						vm_object_unlock(object);
401						return dcount;
402					}
403				}
404			} else {
405				/*
406				 * Move the page to the bottom of the queue.
407				 */
408				pmap_clear_reference(VM_PAGE_TO_PHYS(p));
409				p->flags &= ~PG_REFERENCED;
410				if (p->act_count < ACT_MAX)
411					p->act_count += ACT_ADVANCE;
412
413				TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
414				TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
415				TAILQ_REMOVE(&object->memq, p, listq);
416				TAILQ_INSERT_TAIL(&object->memq, p, listq);
417			}
418		} else if ((p->flags & (PG_INACTIVE | PG_BUSY)) == PG_INACTIVE) {
419			vm_page_protect(p, VM_PROT_NONE);
420		}
421		vm_page_unlock_queues();
422		p = next;
423	}
424	vm_object_unlock(object);
425	return dcount;
426}
427
428
429/*
430 * deactivate some number of pages in a map, try to do it fairly, but
431 * that is really hard to do.
432 */
433
434void
435vm_pageout_map_deactivate_pages(map, entry, count, freeer)
436	vm_map_t map;
437	vm_map_entry_t entry;
438	int *count;
439	int (*freeer) (vm_map_t, vm_object_t, int);
440{
441	vm_map_t tmpm;
442	vm_map_entry_t tmpe;
443	vm_object_t obj;
444
445	if (*count <= 0)
446		return;
447	vm_map_reference(map);
448	if (!lock_try_read(&map->lock)) {
449		vm_map_deallocate(map);
450		return;
451	}
452	if (entry == 0) {
453		tmpe = map->header.next;
454		while (tmpe != &map->header && *count > 0) {
455			vm_pageout_map_deactivate_pages(map, tmpe, count, freeer, 0);
456			tmpe = tmpe->next;
457		};
458	} else if (entry->is_sub_map || entry->is_a_map) {
459		tmpm = entry->object.share_map;
460		tmpe = tmpm->header.next;
461		while (tmpe != &tmpm->header && *count > 0) {
462			vm_pageout_map_deactivate_pages(tmpm, tmpe, count, freeer, 0);
463			tmpe = tmpe->next;
464		};
465	} else if ((obj = entry->object.vm_object) != 0) {
466		*count -= (*freeer) (map, obj, *count);
467	}
468	lock_read_done(&map->lock);
469	vm_map_deallocate(map);
470	return;
471}
472
473void
474vm_req_vmdaemon()
475{
476	static int lastrun = 0;
477
478	if ((ticks > (lastrun + hz / 10)) || (ticks < lastrun)) {
479		wakeup((caddr_t) &vm_daemon_needed);
480		lastrun = ticks;
481	}
482}
483
484/*
485 *	vm_pageout_scan does the dirty work for the pageout daemon.
486 */
487int
488vm_pageout_scan()
489{
490	vm_page_t m;
491	int page_shortage, maxscan, maxlaunder;
492	int pages_freed;
493	vm_page_t next;
494	struct proc *p, *bigproc;
495	vm_offset_t size, bigsize;
496	vm_object_t object;
497	int force_wakeup = 0;
498
499	/* calculate the total cached size */
500
501	if ((cnt.v_inactive_count + cnt.v_free_count + cnt.v_cache_count) <
502	    (cnt.v_inactive_target + cnt.v_free_min)) {
503		vm_req_vmdaemon();
504	}
505	/*
506	 * now swap processes out if we are in low memory conditions
507	 */
508	if ((cnt.v_free_count <= cnt.v_free_min) &&
509	    !swap_pager_full && vm_swap_size && vm_pageout_req_swapout == 0) {
510		vm_pageout_req_swapout = 1;
511		vm_req_vmdaemon();
512	}
513	pages_freed = 0;
514
515	/*
516	 * Start scanning the inactive queue for pages we can free. We keep
517	 * scanning until we have enough free pages or we have scanned through
518	 * the entire queue.  If we encounter dirty pages, we start cleaning
519	 * them.
520	 */
521
522	maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
523	    MAXLAUNDER : cnt.v_inactive_target;
524
525rescan1:
526	maxscan = min(cnt.v_inactive_count, MAXSCAN);
527	m = vm_page_queue_inactive.tqh_first;
528	while (m && (maxscan-- > 0) &&
529	    (cnt.v_cache_count < (cnt.v_cache_min + cnt.v_free_target))) {
530		vm_page_t next;
531
532		cnt.v_pdpages++;
533		next = m->pageq.tqe_next;
534
535#if defined(VM_DIAGNOSE)
536		if ((m->flags & PG_INACTIVE) == 0) {
537			printf("vm_pageout_scan: page not inactive?\n");
538			break;
539		}
540#endif
541
542		/*
543		 * dont mess with busy pages
544		 */
545		if (m->hold_count || m->busy || (m->flags & PG_BUSY) ||
546		    m->bmapped != 0) {
547			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
548			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
549			m = next;
550			continue;
551		}
552		if (((m->flags & PG_REFERENCED) == 0) &&
553		    pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
554			m->flags |= PG_REFERENCED;
555		}
556		if (m->object->ref_count == 0) {
557			m->flags &= ~PG_REFERENCED;
558			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
559		}
560		if ((m->flags & (PG_REFERENCED|PG_WANTED)) != 0) {
561			m->flags &= ~PG_REFERENCED;
562			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
563			vm_page_activate(m);
564			if (m->act_count < ACT_MAX)
565				m->act_count += ACT_ADVANCE;
566			m = next;
567			continue;
568		}
569		vm_page_test_dirty(m);
570
571		if ((m->dirty & m->valid) == 0) {
572			if (m->valid == 0) {
573				pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
574				vm_page_free(m);
575				cnt.v_dfree++;
576			} else {
577				vm_page_cache(m);
578			}
579		} else if (maxlaunder > 0) {
580			int written;
581
582			object = m->object;
583			if ((object->flags & OBJ_DEAD) || !vm_object_lock_try(object)) {
584				m = next;
585				continue;
586			}
587			/*
588			 * If a page is dirty, then it is either being washed
589			 * (but not yet cleaned) or it is still in the
590			 * laundry.  If it is still in the laundry, then we
591			 * start the cleaning operation.
592			 */
593			written = vm_pageout_clean(m, 0);
594			vm_object_unlock(object);
595
596			if (!next) {
597				break;
598			}
599			maxlaunder -= written;
600			/*
601			 * if the next page has been re-activated, start
602			 * scanning again
603			 */
604			if ((next->flags & PG_INACTIVE) == 0) {
605				goto rescan1;
606			}
607		}
608		m = next;
609	}
610
611	/*
612	 * Compute the page shortage.  If we are still very low on memory be
613	 * sure that we will move a minimal amount of pages from active to
614	 * inactive.
615	 */
616
617	page_shortage = cnt.v_inactive_target -
618	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
619	if (page_shortage <= 0) {
620		if (pages_freed == 0) {
621			page_shortage = cnt.v_free_min - cnt.v_free_count;
622		}
623	}
624	maxscan = min(cnt.v_active_count, MAXSCAN);
625	m = vm_page_queue_active.tqh_first;
626	while (m && (maxscan-- > 0) && (page_shortage > 0)) {
627
628		cnt.v_pdpages++;
629		next = m->pageq.tqe_next;
630
631		/*
632		 * Don't deactivate pages that are busy.
633		 */
634		if ((m->busy != 0) ||
635		    (m->flags & PG_BUSY) ||
636		    (m->hold_count != 0) ||
637		    (m->bmapped != 0)) {
638			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
639			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
640			m = next;
641			continue;
642		}
643		if (m->object->ref_count && ((m->flags & (PG_REFERENCED|PG_WANTED)) ||
644			pmap_is_referenced(VM_PAGE_TO_PHYS(m)))) {
645			int s;
646
647			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
648			m->flags &= ~PG_REFERENCED;
649			if (m->act_count < ACT_MAX) {
650				m->act_count += ACT_ADVANCE;
651			}
652			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
653			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
654			s = splhigh();
655			TAILQ_REMOVE(&m->object->memq, m, listq);
656			TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
657			splx(s);
658		} else {
659			m->flags &= ~PG_REFERENCED;
660			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
661			m->act_count -= min(m->act_count, ACT_DECLINE);
662
663			/*
664			 * if the page act_count is zero -- then we deactivate
665			 */
666			if (!m->act_count && (page_shortage > 0)) {
667				if (m->object->ref_count == 0) {
668					vm_page_test_dirty(m);
669					--page_shortage;
670					if ((m->dirty & m->valid) == 0) {
671						m->act_count = 0;
672						vm_page_cache(m);
673					} else {
674						vm_page_deactivate(m);
675					}
676				} else {
677					vm_page_deactivate(m);
678					--page_shortage;
679				}
680			} else if (m->act_count) {
681				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
682				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
683			}
684		}
685		m = next;
686	}
687
688	/*
689	 * We try to maintain some *really* free pages, this allows interrupt
690	 * code to be guaranteed space.
691	 */
692	while (cnt.v_free_count < cnt.v_free_reserved) {
693		m = vm_page_queue_cache.tqh_first;
694		if (!m)
695			break;
696		vm_page_free(m);
697		cnt.v_dfree++;
698	}
699
700	/*
701	 * make sure that we have swap space -- if we are low on memory and
702	 * swap -- then kill the biggest process.
703	 */
704	if ((vm_swap_size == 0 || swap_pager_full) &&
705	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
706		bigproc = NULL;
707		bigsize = 0;
708		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
709			/*
710			 * if this is a system process, skip it
711			 */
712			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
713			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
714				continue;
715			}
716			/*
717			 * if the process is in a non-running type state,
718			 * don't touch it.
719			 */
720			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
721				continue;
722			}
723			/*
724			 * get the process size
725			 */
726			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
727			/*
728			 * if the this process is bigger than the biggest one
729			 * remember it.
730			 */
731			if (size > bigsize) {
732				bigproc = p;
733				bigsize = size;
734			}
735		}
736		if (bigproc != NULL) {
737			printf("Process %lu killed by vm_pageout -- out of swap\n", (u_long) bigproc->p_pid);
738			psignal(bigproc, SIGKILL);
739			bigproc->p_estcpu = 0;
740			bigproc->p_nice = PRIO_MIN;
741			resetpriority(bigproc);
742			wakeup((caddr_t) &cnt.v_free_count);
743		}
744	}
745	vm_page_pagesfreed += pages_freed;
746	return force_wakeup;
747}
748
749/*
750 *	vm_pageout is the high level pageout daemon.
751 */
752void
753vm_pageout()
754{
755	(void) spl0();
756
757	/*
758	 * Initialize some paging parameters.
759	 */
760
761	if (cnt.v_page_count > 1024)
762		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
763	else
764		cnt.v_free_min = 4;
765	/*
766	 * free_reserved needs to include enough for the largest swap pager
767	 * structures plus enough for any pv_entry structs when paging.
768	 */
769	cnt.v_pageout_free_min = 6 + cnt.v_page_count / 1024;
770	cnt.v_free_reserved = cnt.v_pageout_free_min + 2;
771	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
772	cnt.v_free_min += cnt.v_free_reserved;
773
774	if (cnt.v_page_count > 1024) {
775		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
776		cnt.v_cache_min = (cnt.v_free_count - 1024) / 8;
777		cnt.v_inactive_target = 2*cnt.v_cache_min + 192;
778	} else {
779		cnt.v_cache_min = 0;
780		cnt.v_cache_max = 0;
781		cnt.v_inactive_target = cnt.v_free_count / 4;
782	}
783
784	/* XXX does not really belong here */
785	if (vm_page_max_wired == 0)
786		vm_page_max_wired = cnt.v_free_count / 3;
787
788	cnt.v_interrupt_free_min = 2;
789
790
791	(void) swap_pager_alloc(0, 0, 0, 0);
792	/*
793	 * The pageout daemon is never done, so loop forever.
794	 */
795	while (TRUE) {
796		int s = splhigh();
797
798		if (!vm_pages_needed ||
799			((cnt.v_free_count >= cnt.v_free_reserved) &&
800			 (cnt.v_free_count + cnt.v_cache_count >= cnt.v_free_min))) {
801			vm_pages_needed = 0;
802			tsleep((caddr_t) &vm_pages_needed, PVM, "psleep", 0);
803		}
804		vm_pages_needed = 0;
805		splx(s);
806		cnt.v_pdwakeups++;
807		vm_pager_sync();
808		vm_pageout_scan();
809		vm_pager_sync();
810		wakeup((caddr_t) &cnt.v_free_count);
811		wakeup((caddr_t) kmem_map);
812	}
813}
814
815void
816vm_daemon()
817{
818	vm_object_t object;
819	struct proc *p;
820
821	while (TRUE) {
822		tsleep((caddr_t) &vm_daemon_needed, PUSER, "psleep", 0);
823		swapout_threads();
824		/*
825		 * scan the processes for exceeding their rlimits or if
826		 * process is swapped out -- deactivate pages
827		 */
828
829		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
830			int overage;
831			quad_t limit;
832			vm_offset_t size;
833
834			/*
835			 * if this is a system process or if we have already
836			 * looked at this process, skip it.
837			 */
838			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
839				continue;
840			}
841			/*
842			 * if the process is in a non-running type state,
843			 * don't touch it.
844			 */
845			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
846				continue;
847			}
848			/*
849			 * get a limit
850			 */
851			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
852			    p->p_rlimit[RLIMIT_RSS].rlim_max);
853
854			/*
855			 * let processes that are swapped out really be
856			 * swapped out set the limit to nothing (will force a
857			 * swap-out.)
858			 */
859			if ((p->p_flag & P_INMEM) == 0)
860				limit = 0;	/* XXX */
861
862			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * NBPG;
863			if (limit >= 0 && size >= limit) {
864				overage = (size - limit) / NBPG;
865				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
866				    (vm_map_entry_t) 0, &overage, vm_pageout_object_deactivate_pages);
867			}
868		}
869	}
870
871	/*
872	 * we remove cached objects that have no RSS...
873	 */
874restart:
875	vm_object_cache_lock();
876	object = vm_object_cached_list.tqh_first;
877	while (object) {
878		vm_object_cache_unlock();
879		/*
880		 * if there are no resident pages -- get rid of the object
881		 */
882		if (object->resident_page_count == 0) {
883			if (object != vm_object_lookup(object->pager))
884				panic("vm_object_cache_trim: I'm sooo confused.");
885			pager_cache(object, FALSE);
886			goto restart;
887		}
888		object = object->cached_list.tqe_next;
889		vm_object_cache_lock();
890	}
891	vm_object_cache_unlock();
892}
893