vm_pageout.c revision 69947
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: head/sys/vm/vm_pageout.c 69947 2000-12-13 00:17:05Z jake $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/proc.h>
80#include <sys/kthread.h>
81#include <sys/ktr.h>
82#include <sys/resourcevar.h>
83#include <sys/signalvar.h>
84#include <sys/vnode.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <sys/lock.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/vm_extern.h>
98
99#include <machine/mutex.h>
100
101/*
102 * System initialization
103 */
104
105/* the kernel process "vm_pageout"*/
106static void vm_pageout __P((void));
107static int vm_pageout_clean __P((vm_page_t));
108static int vm_pageout_scan __P((void));
109static int vm_pageout_free_page_calc __P((vm_size_t count));
110struct proc *pageproc;
111
112static struct kproc_desc page_kp = {
113	"pagedaemon",
114	vm_pageout,
115	&pageproc
116};
117SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
118
119#if !defined(NO_SWAPPING)
120/* the kernel process "vm_daemon"*/
121static void vm_daemon __P((void));
122static struct	proc *vmproc;
123
124static struct kproc_desc vm_kp = {
125	"vmdaemon",
126	vm_daemon,
127	&vmproc
128};
129SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
130#endif
131
132
133int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
134int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
135int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
136
137#if !defined(NO_SWAPPING)
138static int vm_pageout_req_swapout;	/* XXX */
139static int vm_daemon_needed;
140#endif
141extern int vm_swap_size;
142static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143static int vm_pageout_full_stats_interval = 0;
144static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
145static int defer_swap_pageouts=0;
146static int disable_swap_pageouts=0;
147
148static int max_page_launder=100;
149static int vm_pageout_actcmp=0;
150#if defined(NO_SWAPPING)
151static int vm_swap_enabled=0;
152static int vm_swap_idle_enabled=0;
153#else
154static int vm_swap_enabled=1;
155static int vm_swap_idle_enabled=0;
156#endif
157
158SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "LRU page mgmt");
160
161SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
162	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
163
164SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
165	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
166
167SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
168	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
171	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
172
173#if defined(NO_SWAPPING)
174SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
175	CTLFLAG_RD, &vm_swap_enabled, 0, "");
176SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
177	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
178#else
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
183#endif
184
185SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
186	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
187
188SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
189	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
190
191SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
192	CTLFLAG_RW, &max_page_launder, 0, "Maximum number of pages to clean per pass");
193SYSCTL_INT(_vm, OID_AUTO, vm_pageout_actcmp,
194	CTLFLAG_RD, &vm_pageout_actcmp, 0, "pagedaemon agressiveness");
195
196
197#define VM_PAGEOUT_PAGE_COUNT 16
198int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
199
200int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
201
202#if !defined(NO_SWAPPING)
203typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
204static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
205static freeer_fcn_t vm_pageout_object_deactivate_pages;
206static void vm_req_vmdaemon __P((void));
207#endif
208static void vm_pageout_page_stats(void);
209
210/*
211 * vm_pageout_clean:
212 *
213 * Clean the page and remove it from the laundry.
214 *
215 * We set the busy bit to cause potential page faults on this page to
216 * block.  Note the careful timing, however, the busy bit isn't set till
217 * late and we cannot do anything that will mess with the page.
218 */
219
220static int
221vm_pageout_clean(m)
222	vm_page_t m;
223{
224	register vm_object_t object;
225	vm_page_t mc[2*vm_pageout_page_count];
226	int pageout_count;
227	int ib, is, page_base;
228	vm_pindex_t pindex = m->pindex;
229
230	object = m->object;
231
232	/*
233	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
234	 * with the new swapper, but we could have serious problems paging
235	 * out other object types if there is insufficient memory.
236	 *
237	 * Unfortunately, checking free memory here is far too late, so the
238	 * check has been moved up a procedural level.
239	 */
240
241	/*
242	 * Don't mess with the page if it's busy, held, or special
243	 */
244	if ((m->hold_count != 0) ||
245	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
246		return 0;
247	}
248
249	mc[vm_pageout_page_count] = m;
250	pageout_count = 1;
251	page_base = vm_pageout_page_count;
252	ib = 1;
253	is = 1;
254
255	/*
256	 * Scan object for clusterable pages.
257	 *
258	 * We can cluster ONLY if: ->> the page is NOT
259	 * clean, wired, busy, held, or mapped into a
260	 * buffer, and one of the following:
261	 * 1) The page is inactive, or a seldom used
262	 *    active page.
263	 * -or-
264	 * 2) we force the issue.
265	 *
266	 * During heavy mmap/modification loads the pageout
267	 * daemon can really fragment the underlying file
268	 * due to flushing pages out of order and not trying
269	 * align the clusters (which leave sporatic out-of-order
270	 * holes).  To solve this problem we do the reverse scan
271	 * first and attempt to align our cluster, then do a
272	 * forward scan if room remains.
273	 */
274
275more:
276	while (ib && pageout_count < vm_pageout_page_count) {
277		vm_page_t p;
278
279		if (ib > pindex) {
280			ib = 0;
281			break;
282		}
283
284		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
285			ib = 0;
286			break;
287		}
288		if (((p->queue - p->pc) == PQ_CACHE) ||
289		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
290			ib = 0;
291			break;
292		}
293		vm_page_test_dirty(p);
294		if ((p->dirty & p->valid) == 0 ||
295		    p->queue != PQ_INACTIVE ||
296		    p->wire_count != 0 ||
297		    p->hold_count != 0) {
298			ib = 0;
299			break;
300		}
301		mc[--page_base] = p;
302		++pageout_count;
303		++ib;
304		/*
305		 * alignment boundry, stop here and switch directions.  Do
306		 * not clear ib.
307		 */
308		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
309			break;
310	}
311
312	while (pageout_count < vm_pageout_page_count &&
313	    pindex + is < object->size) {
314		vm_page_t p;
315
316		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
317			break;
318		if (((p->queue - p->pc) == PQ_CACHE) ||
319		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
320			break;
321		}
322		vm_page_test_dirty(p);
323		if ((p->dirty & p->valid) == 0 ||
324		    p->queue != PQ_INACTIVE ||
325		    p->wire_count != 0 ||
326		    p->hold_count != 0) {
327			break;
328		}
329		mc[page_base + pageout_count] = p;
330		++pageout_count;
331		++is;
332	}
333
334	/*
335	 * If we exhausted our forward scan, continue with the reverse scan
336	 * when possible, even past a page boundry.  This catches boundry
337	 * conditions.
338	 */
339	if (ib && pageout_count < vm_pageout_page_count)
340		goto more;
341
342	/*
343	 * we allow reads during pageouts...
344	 */
345	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
346}
347
348/*
349 * vm_pageout_flush() - launder the given pages
350 *
351 *	The given pages are laundered.  Note that we setup for the start of
352 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
353 *	reference count all in here rather then in the parent.  If we want
354 *	the parent to do more sophisticated things we may have to change
355 *	the ordering.
356 */
357
358int
359vm_pageout_flush(mc, count, flags)
360	vm_page_t *mc;
361	int count;
362	int flags;
363{
364	register vm_object_t object;
365	int pageout_status[count];
366	int numpagedout = 0;
367	int i;
368
369	/*
370	 * Initiate I/O.  Bump the vm_page_t->busy counter and
371	 * mark the pages read-only.
372	 *
373	 * We do not have to fixup the clean/dirty bits here... we can
374	 * allow the pager to do it after the I/O completes.
375	 *
376	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
377	 * edge case with file fragments.
378	 */
379
380	for (i = 0; i < count; i++) {
381		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
382		vm_page_io_start(mc[i]);
383		vm_page_protect(mc[i], VM_PROT_READ);
384	}
385
386	object = mc[0]->object;
387	vm_object_pip_add(object, count);
388
389	vm_pager_put_pages(object, mc, count,
390	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
391	    pageout_status);
392
393	for (i = 0; i < count; i++) {
394		vm_page_t mt = mc[i];
395
396		switch (pageout_status[i]) {
397		case VM_PAGER_OK:
398			numpagedout++;
399			break;
400		case VM_PAGER_PEND:
401			numpagedout++;
402			break;
403		case VM_PAGER_BAD:
404			/*
405			 * Page outside of range of object. Right now we
406			 * essentially lose the changes by pretending it
407			 * worked.
408			 */
409			pmap_clear_modify(mt);
410			vm_page_undirty(mt);
411			break;
412		case VM_PAGER_ERROR:
413		case VM_PAGER_FAIL:
414			/*
415			 * If page couldn't be paged out, then reactivate the
416			 * page so it doesn't clog the inactive list.  (We
417			 * will try paging out it again later).
418			 */
419			vm_page_activate(mt);
420			break;
421		case VM_PAGER_AGAIN:
422			break;
423		}
424
425		/*
426		 * If the operation is still going, leave the page busy to
427		 * block all other accesses. Also, leave the paging in
428		 * progress indicator set so that we don't attempt an object
429		 * collapse.
430		 */
431		if (pageout_status[i] != VM_PAGER_PEND) {
432			vm_object_pip_wakeup(object);
433			vm_page_io_finish(mt);
434			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
435				vm_page_protect(mt, VM_PROT_READ);
436		}
437	}
438	return numpagedout;
439}
440
441#if !defined(NO_SWAPPING)
442/*
443 *	vm_pageout_object_deactivate_pages
444 *
445 *	deactivate enough pages to satisfy the inactive target
446 *	requirements or if vm_page_proc_limit is set, then
447 *	deactivate all of the pages in the object and its
448 *	backing_objects.
449 *
450 *	The object and map must be locked.
451 */
452static void
453vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
454	vm_map_t map;
455	vm_object_t object;
456	vm_pindex_t desired;
457	int map_remove_only;
458{
459	register vm_page_t p, next;
460	int rcount;
461	int remove_mode;
462	int s;
463
464	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
465		return;
466
467	while (object) {
468		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
469			return;
470		if (object->paging_in_progress)
471			return;
472
473		remove_mode = map_remove_only;
474		if (object->shadow_count > 1)
475			remove_mode = 1;
476	/*
477	 * scan the objects entire memory queue
478	 */
479		rcount = object->resident_page_count;
480		p = TAILQ_FIRST(&object->memq);
481		while (p && (rcount-- > 0)) {
482			int actcount;
483			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
484				return;
485			next = TAILQ_NEXT(p, listq);
486			cnt.v_pdpages++;
487			if (p->wire_count != 0 ||
488			    p->hold_count != 0 ||
489			    p->busy != 0 ||
490			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
491			    !pmap_page_exists(vm_map_pmap(map), p)) {
492				p = next;
493				continue;
494			}
495
496			actcount = pmap_ts_referenced(p);
497			if (actcount) {
498				vm_page_flag_set(p, PG_REFERENCED);
499			} else if (p->flags & PG_REFERENCED) {
500				actcount = 1;
501			}
502
503			if ((p->queue != PQ_ACTIVE) &&
504				(p->flags & PG_REFERENCED)) {
505				vm_page_activate(p);
506				p->act_count += actcount;
507				vm_page_flag_clear(p, PG_REFERENCED);
508			} else if (p->queue == PQ_ACTIVE) {
509				if ((p->flags & PG_REFERENCED) == 0) {
510					p->act_count -= min(p->act_count, ACT_DECLINE);
511					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
512						vm_page_protect(p, VM_PROT_NONE);
513						vm_page_deactivate(p);
514					} else {
515						s = splvm();
516						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
517						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
518						splx(s);
519					}
520				} else {
521					vm_page_activate(p);
522					vm_page_flag_clear(p, PG_REFERENCED);
523					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
524						p->act_count += ACT_ADVANCE;
525					s = splvm();
526					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
527					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
528					splx(s);
529				}
530			} else if (p->queue == PQ_INACTIVE) {
531				vm_page_protect(p, VM_PROT_NONE);
532			}
533			p = next;
534		}
535		object = object->backing_object;
536	}
537	return;
538}
539
540/*
541 * deactivate some number of pages in a map, try to do it fairly, but
542 * that is really hard to do.
543 */
544static void
545vm_pageout_map_deactivate_pages(map, desired)
546	vm_map_t map;
547	vm_pindex_t desired;
548{
549	vm_map_entry_t tmpe;
550	vm_object_t obj, bigobj;
551
552	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
553		return;
554	}
555
556	bigobj = NULL;
557
558	/*
559	 * first, search out the biggest object, and try to free pages from
560	 * that.
561	 */
562	tmpe = map->header.next;
563	while (tmpe != &map->header) {
564		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
565			obj = tmpe->object.vm_object;
566			if ((obj != NULL) && (obj->shadow_count <= 1) &&
567				((bigobj == NULL) ||
568				 (bigobj->resident_page_count < obj->resident_page_count))) {
569				bigobj = obj;
570			}
571		}
572		tmpe = tmpe->next;
573	}
574
575	if (bigobj)
576		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
577
578	/*
579	 * Next, hunt around for other pages to deactivate.  We actually
580	 * do this search sort of wrong -- .text first is not the best idea.
581	 */
582	tmpe = map->header.next;
583	while (tmpe != &map->header) {
584		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
585			break;
586		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
587			obj = tmpe->object.vm_object;
588			if (obj)
589				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
590		}
591		tmpe = tmpe->next;
592	};
593
594	/*
595	 * Remove all mappings if a process is swapped out, this will free page
596	 * table pages.
597	 */
598	if (desired == 0)
599		pmap_remove(vm_map_pmap(map),
600			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
601	vm_map_unlock(map);
602	return;
603}
604#endif
605
606/*
607 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
608 * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
609 * which we know can be trivially freed.
610 */
611
612void
613vm_pageout_page_free(vm_page_t m) {
614	vm_object_t object = m->object;
615	int type = object->type;
616
617	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618		vm_object_reference(object);
619	vm_page_busy(m);
620	vm_page_protect(m, VM_PROT_NONE);
621	vm_page_free(m);
622	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
623		vm_object_deallocate(object);
624}
625
626/*
627 *	vm_pageout_scan does the dirty work for the pageout daemon.
628 */
629static int
630vm_pageout_scan()
631{
632	vm_page_t m, next;
633	struct vm_page marker;
634	int page_shortage, maxscan, pcount;
635	int addl_page_shortage, addl_page_shortage_init;
636	int maxlaunder;
637	struct proc *p, *bigproc;
638	vm_offset_t size, bigsize;
639	vm_object_t object;
640	int force_wakeup = 0;
641	int actcount;
642	int vnodes_skipped = 0;
643	int s;
644
645	/*
646	 * Do whatever cleanup that the pmap code can.
647	 */
648	pmap_collect();
649
650	addl_page_shortage_init = vm_pageout_deficit;
651	vm_pageout_deficit = 0;
652
653	if (max_page_launder == 0)
654		max_page_launder = 1;
655
656	/*
657	 * Calculate the number of pages we want to either free or move
658	 * to the cache.  Be more agressive if we aren't making our target.
659	 */
660
661	page_shortage = vm_paging_target() +
662		addl_page_shortage_init + vm_pageout_actcmp;
663
664	/*
665	 * Figure out how agressively we should flush dirty pages.
666	 */
667	{
668		int factor = vm_pageout_actcmp;
669
670		maxlaunder = cnt.v_inactive_target / 3 + factor;
671		if (maxlaunder > max_page_launder + factor)
672			maxlaunder = max_page_launder + factor;
673	}
674
675	/*
676	 * Initialize our marker
677	 */
678	bzero(&marker, sizeof(marker));
679	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
680	marker.queue = PQ_INACTIVE;
681	marker.wire_count = 1;
682
683	/*
684	 * Start scanning the inactive queue for pages we can move to the
685	 * cache or free.  The scan will stop when the target is reached or
686	 * we have scanned the entire inactive queue.  Note that m->act_count
687	 * is not used to form decisions for the inactive queue, only for the
688	 * active queue.
689	 */
690
691rescan0:
692	addl_page_shortage = addl_page_shortage_init;
693	maxscan = cnt.v_inactive_count;
694	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
695	     m != NULL && maxscan-- > 0 && page_shortage > 0;
696	     m = next) {
697
698		cnt.v_pdpages++;
699
700		if (m->queue != PQ_INACTIVE) {
701			goto rescan0;
702		}
703
704		next = TAILQ_NEXT(m, pageq);
705
706		/*
707		 * skip marker pages
708		 */
709		if (m->flags & PG_MARKER)
710			continue;
711
712		if (m->hold_count) {
713			s = splvm();
714			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
715			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
716			splx(s);
717			addl_page_shortage++;
718			continue;
719		}
720		/*
721		 * Dont mess with busy pages, keep in the front of the
722		 * queue, most likely are being paged out.
723		 */
724		if (m->busy || (m->flags & PG_BUSY)) {
725			addl_page_shortage++;
726			continue;
727		}
728
729		/*
730		 * If the object is not being used, we ignore previous
731		 * references.
732		 */
733		if (m->object->ref_count == 0) {
734			vm_page_flag_clear(m, PG_REFERENCED);
735			pmap_clear_reference(m);
736
737		/*
738		 * Otherwise, if the page has been referenced while in the
739		 * inactive queue, we bump the "activation count" upwards,
740		 * making it less likely that the page will be added back to
741		 * the inactive queue prematurely again.  Here we check the
742		 * page tables (or emulated bits, if any), given the upper
743		 * level VM system not knowing anything about existing
744		 * references.
745		 */
746		} else if (((m->flags & PG_REFERENCED) == 0) &&
747			(actcount = pmap_ts_referenced(m))) {
748			vm_page_activate(m);
749			m->act_count += (actcount + ACT_ADVANCE);
750			continue;
751		}
752
753		/*
754		 * If the upper level VM system knows about any page
755		 * references, we activate the page.  We also set the
756		 * "activation count" higher than normal so that we will less
757		 * likely place pages back onto the inactive queue again.
758		 */
759		if ((m->flags & PG_REFERENCED) != 0) {
760			vm_page_flag_clear(m, PG_REFERENCED);
761			actcount = pmap_ts_referenced(m);
762			vm_page_activate(m);
763			m->act_count += (actcount + ACT_ADVANCE + 1);
764			continue;
765		}
766
767		/*
768		 * If the upper level VM system doesn't know anything about
769		 * the page being dirty, we have to check for it again.  As
770		 * far as the VM code knows, any partially dirty pages are
771		 * fully dirty.
772		 */
773		if (m->dirty == 0) {
774			vm_page_test_dirty(m);
775		} else {
776			vm_page_dirty(m);
777		}
778
779		/*
780		 * Invalid pages can be easily freed
781		 */
782		if (m->valid == 0) {
783			vm_pageout_page_free(m);
784			cnt.v_dfree++;
785			--page_shortage;
786
787		/*
788		 * Clean pages can be placed onto the cache queue.  This
789		 * effectively frees them.
790		 */
791		} else if (m->dirty == 0) {
792			vm_page_cache(m);
793			--page_shortage;
794
795		/*
796		 * Dirty pages need to be paged out.  Note that we clean
797		 * only a limited number of pages per pagedaemon pass.
798		 */
799		} else if (maxlaunder > 0) {
800			int swap_pageouts_ok;
801			struct vnode *vp = NULL;
802			struct mount *mp;
803
804			object = m->object;
805
806			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
807				swap_pageouts_ok = 1;
808			} else {
809				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
810				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
811				vm_page_count_min());
812
813			}
814
815			/*
816			 * We don't bother paging objects that are "dead".
817			 * Those objects are in a "rundown" state.
818			 */
819			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
820				s = splvm();
821				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
822				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
823				splx(s);
824				continue;
825			}
826
827			/*
828			 * Presumably we have sufficient free memory to do
829			 * the more sophisticated checks and locking required
830			 * for vnodes.
831			 *
832			 * The object is already known NOT to be dead.  The
833			 * vget() may still block, though, because
834			 * VOP_ISLOCKED() doesn't check to see if an inode
835			 * (v_data) is associated with the vnode.  If it isn't,
836			 * vget() will load in it from disk.  Worse, vget()
837			 * may actually get stuck waiting on "inode" if another
838			 * process is in the process of bringing the inode in.
839			 * This is bad news for us either way.
840			 *
841			 * So for the moment we check v_data == NULL as a
842			 * workaround.  This means that vnodes which do not
843			 * use v_data in the way we expect probably will not
844			 * wind up being paged out by the pager and it will be
845			 * up to the syncer to get them.  That's better then
846			 * us blocking here.
847			 *
848			 * This whole code section is bogus - we need to fix
849			 * the vnode pager to handle vm_page_t's without us
850			 * having to do any sophisticated VOP tests.
851			 */
852
853			if (object->type == OBJT_VNODE) {
854				vp = object->handle;
855
856				mp = NULL;
857				if (vp->v_type == VREG)
858					vn_start_write(vp, &mp, V_NOWAIT);
859				if (VOP_ISLOCKED(vp, NULL) ||
860				    vp->v_data == NULL ||
861				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
862					vn_finished_write(mp);
863					if ((m->queue == PQ_INACTIVE) &&
864						(m->hold_count == 0) &&
865						(m->busy == 0) &&
866						(m->flags & PG_BUSY) == 0) {
867						s = splvm();
868						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
869						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
870						splx(s);
871					}
872					if (object->flags & OBJ_MIGHTBEDIRTY)
873						vnodes_skipped++;
874					continue;
875				}
876
877				/*
878				 * The page might have been moved to another
879				 * queue during potential blocking in vget()
880				 * above.  The page might have been freed and
881				 * reused for another vnode.  The object might
882				 * have been reused for another vnode.
883				 */
884				if (m->queue != PQ_INACTIVE ||
885				    m->object != object ||
886				    object->handle != vp) {
887					if (object->flags & OBJ_MIGHTBEDIRTY)
888						vnodes_skipped++;
889					vput(vp);
890					vn_finished_write(mp);
891					continue;
892				}
893
894				/*
895				 * The page may have been busied during the
896				 * blocking in vput();  We don't move the
897				 * page back onto the end of the queue so that
898				 * statistics are more correct if we don't.
899				 */
900				if (m->busy || (m->flags & PG_BUSY)) {
901					vput(vp);
902					vn_finished_write(mp);
903					continue;
904				}
905
906				/*
907				 * If the page has become held, then skip it
908				 */
909				if (m->hold_count) {
910					s = splvm();
911					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
913					splx(s);
914					if (object->flags & OBJ_MIGHTBEDIRTY)
915						vnodes_skipped++;
916					vput(vp);
917					vn_finished_write(mp);
918					continue;
919				}
920			}
921
922			/*
923			 * If a page is dirty, then it is either being washed
924			 * (but not yet cleaned) or it is still in the
925			 * laundry.  If it is still in the laundry, then we
926			 * start the cleaning operation.  maxlaunder nominally
927			 * counts I/O cost (seeks) rather then bytes.
928			 *
929			 * This operation may cluster, invalidating the 'next'
930			 * pointer.  To prevent an inordinate number of
931			 * restarts we use our marker to remember our place.
932			 */
933			s = splvm();
934			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
935			splx(s);
936			if (vm_pageout_clean(m) != 0)
937				--maxlaunder;
938			s = splvm();
939			next = TAILQ_NEXT(&marker, pageq);
940			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
941			splx(s);
942			if (vp) {
943				vput(vp);
944				vn_finished_write(mp);
945			}
946		}
947	}
948
949	/*
950	 * If we were not able to meet our target, increase actcmp
951	 */
952
953	if (vm_page_count_min()) {
954		if (vm_pageout_actcmp < ACT_MAX / 2)
955			vm_pageout_actcmp += ACT_ADVANCE;
956	} else {
957		if (vm_pageout_actcmp < ACT_DECLINE)
958			vm_pageout_actcmp = 0;
959		else
960			vm_pageout_actcmp -= ACT_DECLINE;
961	}
962
963	/*
964	 * Compute the number of pages we want to try to move from the
965	 * active queue to the inactive queue.
966	 */
967
968	page_shortage = vm_paging_target() +
969		cnt.v_inactive_target - cnt.v_inactive_count;
970	page_shortage += addl_page_shortage;
971	page_shortage += vm_pageout_actcmp;
972
973	/*
974	 * Scan the active queue for things we can deactivate. We nominally
975	 * track the per-page activity counter and use it to locate
976	 * deactivation candidates.
977	 */
978
979	pcount = cnt.v_active_count;
980	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
981
982	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
983
984		/*
985		 * This is a consistency check, and should likely be a panic
986		 * or warning.
987		 */
988		if (m->queue != PQ_ACTIVE) {
989			break;
990		}
991
992		next = TAILQ_NEXT(m, pageq);
993		/*
994		 * Don't deactivate pages that are busy.
995		 */
996		if ((m->busy != 0) ||
997		    (m->flags & PG_BUSY) ||
998		    (m->hold_count != 0)) {
999			s = splvm();
1000			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1001			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1002			splx(s);
1003			m = next;
1004			continue;
1005		}
1006
1007		/*
1008		 * The count for pagedaemon pages is done after checking the
1009		 * page for eligibility...
1010		 */
1011		cnt.v_pdpages++;
1012
1013		/*
1014		 * Check to see "how much" the page has been used.
1015		 */
1016		actcount = 0;
1017		if (m->object->ref_count != 0) {
1018			if (m->flags & PG_REFERENCED) {
1019				actcount += 1;
1020			}
1021			actcount += pmap_ts_referenced(m);
1022			if (actcount) {
1023				m->act_count += ACT_ADVANCE + actcount;
1024				if (m->act_count > ACT_MAX)
1025					m->act_count = ACT_MAX;
1026			}
1027		}
1028
1029		/*
1030		 * Since we have "tested" this bit, we need to clear it now.
1031		 */
1032		vm_page_flag_clear(m, PG_REFERENCED);
1033
1034		/*
1035		 * Only if an object is currently being used, do we use the
1036		 * page activation count stats.
1037		 */
1038		if (actcount && (m->object->ref_count != 0)) {
1039			s = splvm();
1040			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1041			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1042			splx(s);
1043		} else {
1044			m->act_count -= min(m->act_count, ACT_DECLINE);
1045			if (vm_pageout_algorithm_lru ||
1046			    (m->object->ref_count == 0) ||
1047			    (m->act_count <= vm_pageout_actcmp)) {
1048				page_shortage--;
1049				if (m->object->ref_count == 0) {
1050					vm_page_protect(m, VM_PROT_NONE);
1051					if (m->dirty == 0)
1052						vm_page_cache(m);
1053					else
1054						vm_page_deactivate(m);
1055				} else {
1056					vm_page_deactivate(m);
1057				}
1058			} else {
1059				s = splvm();
1060				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1061				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1062				splx(s);
1063			}
1064		}
1065		m = next;
1066	}
1067
1068	s = splvm();
1069
1070	/*
1071	 * We try to maintain some *really* free pages, this allows interrupt
1072	 * code to be guaranteed space.  Since both cache and free queues
1073	 * are considered basically 'free', moving pages from cache to free
1074	 * does not effect other calculations.
1075	 */
1076
1077	while (cnt.v_free_count < cnt.v_free_reserved) {
1078		static int cache_rover = 0;
1079		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1080		if (!m)
1081			break;
1082		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1083		    m->busy ||
1084		    m->hold_count ||
1085		    m->wire_count) {
1086#ifdef INVARIANTS
1087			printf("Warning: busy page %p found in cache\n", m);
1088#endif
1089			vm_page_deactivate(m);
1090			continue;
1091		}
1092		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1093		vm_pageout_page_free(m);
1094		cnt.v_dfree++;
1095	}
1096	splx(s);
1097
1098#if !defined(NO_SWAPPING)
1099	/*
1100	 * Idle process swapout -- run once per second.
1101	 */
1102	if (vm_swap_idle_enabled) {
1103		static long lsec;
1104		if (time_second != lsec) {
1105			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1106			vm_req_vmdaemon();
1107			lsec = time_second;
1108		}
1109	}
1110#endif
1111
1112	/*
1113	 * If we didn't get enough free pages, and we have skipped a vnode
1114	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1115	 * if we did not get enough free pages.
1116	 */
1117	if (vm_paging_target() > 0) {
1118		if (vnodes_skipped && vm_page_count_min())
1119			(void) speedup_syncer();
1120#if !defined(NO_SWAPPING)
1121		if (vm_swap_enabled && vm_page_count_target()) {
1122			vm_req_vmdaemon();
1123			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1124		}
1125#endif
1126	}
1127
1128	/*
1129	 * make sure that we have swap space -- if we are low on memory and
1130	 * swap -- then kill the biggest process.
1131	 */
1132	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1133		bigproc = NULL;
1134		bigsize = 0;
1135		ALLPROC_LOCK(AP_SHARED);
1136		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1137			/*
1138			 * if this is a system process, skip it
1139			 */
1140			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1141			    (p->p_pid == 1) ||
1142			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1143				continue;
1144			}
1145			/*
1146			 * if the process is in a non-running type state,
1147			 * don't touch it.
1148			 */
1149			mtx_enter(&sched_lock, MTX_SPIN);
1150			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1151				mtx_exit(&sched_lock, MTX_SPIN);
1152				continue;
1153			}
1154			mtx_exit(&sched_lock, MTX_SPIN);
1155			/*
1156			 * get the process size
1157			 */
1158			size = vmspace_resident_count(p->p_vmspace);
1159			/*
1160			 * if the this process is bigger than the biggest one
1161			 * remember it.
1162			 */
1163			if (size > bigsize) {
1164				bigproc = p;
1165				bigsize = size;
1166			}
1167		}
1168		ALLPROC_LOCK(AP_RELEASE);
1169		if (bigproc != NULL) {
1170			killproc(bigproc, "out of swap space");
1171			bigproc->p_estcpu = 0;
1172			bigproc->p_nice = PRIO_MIN;
1173			resetpriority(bigproc);
1174			wakeup(&cnt.v_free_count);
1175		}
1176	}
1177	return force_wakeup;
1178}
1179
1180/*
1181 * This routine tries to maintain the pseudo LRU active queue,
1182 * so that during long periods of time where there is no paging,
1183 * that some statistic accumulation still occurs.  This code
1184 * helps the situation where paging just starts to occur.
1185 */
1186static void
1187vm_pageout_page_stats()
1188{
1189	int s;
1190	vm_page_t m,next;
1191	int pcount,tpcount;		/* Number of pages to check */
1192	static int fullintervalcount = 0;
1193	int page_shortage;
1194	int s0;
1195
1196	page_shortage =
1197	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1198	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1199
1200	if (page_shortage <= 0)
1201		return;
1202
1203	s0 = splvm();
1204
1205	pcount = cnt.v_active_count;
1206	fullintervalcount += vm_pageout_stats_interval;
1207	if (fullintervalcount < vm_pageout_full_stats_interval) {
1208		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1209		if (pcount > tpcount)
1210			pcount = tpcount;
1211	} else {
1212		fullintervalcount = 0;
1213	}
1214
1215	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1216	while ((m != NULL) && (pcount-- > 0)) {
1217		int actcount;
1218
1219		if (m->queue != PQ_ACTIVE) {
1220			break;
1221		}
1222
1223		next = TAILQ_NEXT(m, pageq);
1224		/*
1225		 * Don't deactivate pages that are busy.
1226		 */
1227		if ((m->busy != 0) ||
1228		    (m->flags & PG_BUSY) ||
1229		    (m->hold_count != 0)) {
1230			s = splvm();
1231			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1232			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1233			splx(s);
1234			m = next;
1235			continue;
1236		}
1237
1238		actcount = 0;
1239		if (m->flags & PG_REFERENCED) {
1240			vm_page_flag_clear(m, PG_REFERENCED);
1241			actcount += 1;
1242		}
1243
1244		actcount += pmap_ts_referenced(m);
1245		if (actcount) {
1246			m->act_count += ACT_ADVANCE + actcount;
1247			if (m->act_count > ACT_MAX)
1248				m->act_count = ACT_MAX;
1249			s = splvm();
1250			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1251			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1252			splx(s);
1253		} else {
1254			if (m->act_count == 0) {
1255				/*
1256				 * We turn off page access, so that we have more accurate
1257				 * RSS stats.  We don't do this in the normal page deactivation
1258				 * when the system is loaded VM wise, because the cost of
1259				 * the large number of page protect operations would be higher
1260				 * than the value of doing the operation.
1261				 */
1262				vm_page_protect(m, VM_PROT_NONE);
1263				vm_page_deactivate(m);
1264			} else {
1265				m->act_count -= min(m->act_count, ACT_DECLINE);
1266				s = splvm();
1267				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1268				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1269				splx(s);
1270			}
1271		}
1272
1273		m = next;
1274	}
1275	splx(s0);
1276}
1277
1278static int
1279vm_pageout_free_page_calc(count)
1280vm_size_t count;
1281{
1282	if (count < cnt.v_page_count)
1283		 return 0;
1284	/*
1285	 * free_reserved needs to include enough for the largest swap pager
1286	 * structures plus enough for any pv_entry structs when paging.
1287	 */
1288	if (cnt.v_page_count > 1024)
1289		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1290	else
1291		cnt.v_free_min = 4;
1292	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1293		cnt.v_interrupt_free_min;
1294	cnt.v_free_reserved = vm_pageout_page_count +
1295		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1296	cnt.v_free_severe = cnt.v_free_min / 2;
1297	cnt.v_free_min += cnt.v_free_reserved;
1298	cnt.v_free_severe += cnt.v_free_reserved;
1299	return 1;
1300}
1301
1302
1303/*
1304 *	vm_pageout is the high level pageout daemon.
1305 */
1306static void
1307vm_pageout()
1308{
1309
1310	mtx_enter(&Giant, MTX_DEF);
1311
1312	/*
1313	 * Initialize some paging parameters.
1314	 */
1315
1316	cnt.v_interrupt_free_min = 2;
1317	if (cnt.v_page_count < 2000)
1318		vm_pageout_page_count = 8;
1319
1320	vm_pageout_free_page_calc(cnt.v_page_count);
1321	/*
1322	 * free_reserved needs to include enough for the largest swap pager
1323	 * structures plus enough for any pv_entry structs when paging.
1324	 */
1325	if (cnt.v_free_count > 6144)
1326		cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1327	else
1328		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1329
1330	if (cnt.v_free_count > 2048) {
1331		cnt.v_cache_min = cnt.v_free_target;
1332		cnt.v_cache_max = 2 * cnt.v_cache_min;
1333		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1334	} else {
1335		cnt.v_cache_min = 0;
1336		cnt.v_cache_max = 0;
1337		cnt.v_inactive_target = cnt.v_free_count / 4;
1338	}
1339	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1340		cnt.v_inactive_target = cnt.v_free_count / 3;
1341
1342	/* XXX does not really belong here */
1343	if (vm_page_max_wired == 0)
1344		vm_page_max_wired = cnt.v_free_count / 3;
1345
1346	if (vm_pageout_stats_max == 0)
1347		vm_pageout_stats_max = cnt.v_free_target;
1348
1349	/*
1350	 * Set interval in seconds for stats scan.
1351	 */
1352	if (vm_pageout_stats_interval == 0)
1353		vm_pageout_stats_interval = 5;
1354	if (vm_pageout_full_stats_interval == 0)
1355		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1356
1357
1358	/*
1359	 * Set maximum free per pass
1360	 */
1361	if (vm_pageout_stats_free_max == 0)
1362		vm_pageout_stats_free_max = 5;
1363
1364	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1365
1366	curproc->p_flag |= P_BUFEXHAUST;
1367	swap_pager_swap_init();
1368	/*
1369	 * The pageout daemon is never done, so loop forever.
1370	 */
1371	while (TRUE) {
1372		int error;
1373		int s = splvm();
1374
1375		/*
1376		 * If we have enough free memory, wakeup waiters.  Do
1377		 * not clear vm_pages_needed until we reach our target,
1378		 * otherwise we may be woken up over and over again and
1379		 * waste a lot of cpu.
1380		 */
1381		if (vm_pages_needed && !vm_page_count_min()) {
1382			if (vm_paging_needed() <= 0)
1383				vm_pages_needed = 0;
1384			wakeup(&cnt.v_free_count);
1385		}
1386		if (vm_pages_needed) {
1387			/*
1388			 * Still not done, sleep a bit and go again
1389			 */
1390			tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1391		} else {
1392			/*
1393			 * Good enough, sleep & handle stats
1394			 */
1395			error = tsleep(&vm_pages_needed,
1396				PVM, "psleep", vm_pageout_stats_interval * hz);
1397			if (error && !vm_pages_needed) {
1398				if (vm_pageout_actcmp > 0)
1399					--vm_pageout_actcmp;
1400				splx(s);
1401				vm_pageout_page_stats();
1402				continue;
1403			}
1404		}
1405
1406		if (vm_pages_needed)
1407			cnt.v_pdwakeups++;
1408		splx(s);
1409		vm_pageout_scan();
1410		vm_pageout_deficit = 0;
1411	}
1412}
1413
1414void
1415pagedaemon_wakeup()
1416{
1417	if (!vm_pages_needed && curproc != pageproc) {
1418		vm_pages_needed++;
1419		wakeup(&vm_pages_needed);
1420	}
1421}
1422
1423#if !defined(NO_SWAPPING)
1424static void
1425vm_req_vmdaemon()
1426{
1427	static int lastrun = 0;
1428
1429	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1430		wakeup(&vm_daemon_needed);
1431		lastrun = ticks;
1432	}
1433}
1434
1435static void
1436vm_daemon()
1437{
1438	struct proc *p;
1439
1440	mtx_enter(&Giant, MTX_DEF);
1441
1442	while (TRUE) {
1443		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1444		if (vm_pageout_req_swapout) {
1445			swapout_procs(vm_pageout_req_swapout);
1446			vm_pageout_req_swapout = 0;
1447		}
1448		/*
1449		 * scan the processes for exceeding their rlimits or if
1450		 * process is swapped out -- deactivate pages
1451		 */
1452
1453		ALLPROC_LOCK(AP_SHARED);
1454		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1455			vm_pindex_t limit, size;
1456
1457			/*
1458			 * if this is a system process or if we have already
1459			 * looked at this process, skip it.
1460			 */
1461			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1462				continue;
1463			}
1464			/*
1465			 * if the process is in a non-running type state,
1466			 * don't touch it.
1467			 */
1468			mtx_enter(&sched_lock, MTX_SPIN);
1469			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1470				mtx_exit(&sched_lock, MTX_SPIN);
1471				continue;
1472			}
1473			mtx_exit(&sched_lock, MTX_SPIN);
1474			/*
1475			 * get a limit
1476			 */
1477			limit = OFF_TO_IDX(
1478			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1479				p->p_rlimit[RLIMIT_RSS].rlim_max));
1480
1481			/*
1482			 * let processes that are swapped out really be
1483			 * swapped out set the limit to nothing (will force a
1484			 * swap-out.)
1485			 */
1486			if ((p->p_flag & P_INMEM) == 0)
1487				limit = 0;	/* XXX */
1488
1489			size = vmspace_resident_count(p->p_vmspace);
1490			if (limit >= 0 && size >= limit) {
1491				vm_pageout_map_deactivate_pages(
1492				    &p->p_vmspace->vm_map, limit);
1493			}
1494		}
1495		ALLPROC_LOCK(AP_RELEASE);
1496	}
1497}
1498#endif
1499