vm_pageout.c revision 6580
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.35 1995/02/14 06:09:15 phk Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/resourcevar.h>
79#include <sys/malloc.h>
80#include <sys/kernel.h>
81#include <sys/signalvar.h>
82
83#include <vm/vm.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/swap_pager.h>
87
88extern vm_map_t kmem_map;
89int vm_pages_needed;		/* Event on which pageout daemon sleeps */
90int vm_pagescanner;		/* Event on which pagescanner sleeps */
91
92int vm_pageout_pages_needed = 0;/* flag saying that the pageout daemon needs pages */
93int vm_page_pagesfreed;
94
95extern int npendingio;
96int vm_pageout_proc_limit;
97int vm_pageout_req_swapout;
98int vm_daemon_needed;
99extern int nswiodone;
100extern int swap_pager_full;
101extern int vm_swap_size;
102extern int swap_pager_ready();
103
104#define MAXSCAN 1024		/* maximum number of pages to scan in queues */
105
106#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
107
108#define VM_PAGEOUT_PAGE_COUNT 8
109int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
110int vm_pageout_req_do_stats;
111
112int vm_page_max_wired = 0;	/* XXX max # of wired pages system-wide */
113
114/*
115 * vm_pageout_clean:
116 * 	cleans a vm_page
117 */
118int
119vm_pageout_clean(m, sync)
120	register vm_page_t m;
121	int sync;
122{
123	/*
124	 * Clean the page and remove it from the laundry.
125	 *
126	 * We set the busy bit to cause potential page faults on this page to
127	 * block.
128	 *
129	 * And we set pageout-in-progress to keep the object from disappearing
130	 * during pageout.  This guarantees that the page won't move from the
131	 * inactive queue.  (However, any other page on the inactive queue may
132	 * move!)
133	 */
134
135	register vm_object_t object;
136	register vm_pager_t pager;
137	int pageout_status[VM_PAGEOUT_PAGE_COUNT];
138	vm_page_t ms[VM_PAGEOUT_PAGE_COUNT];
139	int pageout_count;
140	int anyok = 0;
141	int i;
142	vm_offset_t offset = m->offset;
143
144	object = m->object;
145	if (!object) {
146		printf("pager: object missing\n");
147		return 0;
148	}
149	if (!object->pager && (object->flags & OBJ_INTERNAL) == 0) {
150		printf("pager: non internal obj without pager\n");
151	}
152	/*
153	 * Try to collapse the object before making a pager for it.  We must
154	 * unlock the page queues first. We try to defer the creation of a
155	 * pager until all shadows are not paging.  This allows
156	 * vm_object_collapse to work better and helps control swap space
157	 * size. (J. Dyson 11 Nov 93)
158	 */
159
160	if (!object->pager &&
161	    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
162		return 0;
163
164	if ((!sync && m->bmapped != 0 && m->hold_count != 0) ||
165	    ((m->busy != 0) || (m->flags & PG_BUSY)))
166		return 0;
167
168	if (!sync && object->shadow) {
169		vm_object_collapse(object);
170	}
171	pageout_count = 1;
172	ms[0] = m;
173
174	pager = object->pager;
175	if (pager) {
176		for (i = 1; i < vm_pageout_page_count; i++) {
177			vm_page_t mt;
178
179			ms[i] = mt = vm_page_lookup(object, offset + i * NBPG);
180			if (mt) {
181				vm_page_test_dirty(mt);
182				/*
183				 * we can cluster ONLY if: ->> the page is NOT
184				 * busy, and is NOT clean the page is not
185				 * wired, busy, held, or mapped into a buffer.
186				 * and one of the following: 1) The page is
187				 * inactive, or a seldom used active page. 2)
188				 * or we force the issue.
189				 */
190				if ((mt->dirty & mt->valid) != 0
191				    && (((mt->flags & (PG_BUSY | PG_INACTIVE)) == PG_INACTIVE)
192					|| sync == VM_PAGEOUT_FORCE)
193				    && (mt->wire_count == 0)
194				    && (mt->busy == 0)
195				    && (mt->hold_count == 0)
196				    && (mt->bmapped == 0))
197					pageout_count++;
198				else
199					break;
200			} else
201				break;
202		}
203		/*
204		 * we allow reads during pageouts...
205		 */
206		for (i = 0; i < pageout_count; i++) {
207			ms[i]->flags |= PG_BUSY;
208			pmap_page_protect(VM_PAGE_TO_PHYS(ms[i]), VM_PROT_READ);
209		}
210		object->paging_in_progress += pageout_count;
211	} else {
212
213		m->flags |= PG_BUSY;
214
215		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_READ);
216
217		object->paging_in_progress++;
218
219		pager = vm_pager_allocate(PG_DFLT, (caddr_t) 0,
220		    object->size, VM_PROT_ALL, 0);
221		if (pager != NULL) {
222			vm_object_setpager(object, pager, 0, FALSE);
223		}
224	}
225
226	/*
227	 * If there is no pager for the page, use the default pager.  If
228	 * there's no place to put the page at the moment, leave it in the
229	 * laundry and hope that there will be paging space later.
230	 */
231
232	if ((pager && pager->pg_type == PG_SWAP) ||
233	    (cnt.v_free_count + cnt.v_cache_count) >= cnt.v_pageout_free_min) {
234		if (pageout_count == 1) {
235			pageout_status[0] = pager ?
236			    vm_pager_put(pager, m,
237			    ((sync || (object == kernel_object)) ? TRUE : FALSE)) :
238			    VM_PAGER_FAIL;
239		} else {
240			if (!pager) {
241				for (i = 0; i < pageout_count; i++)
242					pageout_status[i] = VM_PAGER_FAIL;
243			} else {
244				vm_pager_put_pages(pager, ms, pageout_count,
245				    ((sync || (object == kernel_object)) ? TRUE : FALSE),
246				    pageout_status);
247			}
248		}
249	} else {
250		for (i = 0; i < pageout_count; i++)
251			pageout_status[i] = VM_PAGER_FAIL;
252	}
253
254	for (i = 0; i < pageout_count; i++) {
255		switch (pageout_status[i]) {
256		case VM_PAGER_OK:
257			++anyok;
258			break;
259		case VM_PAGER_PEND:
260			++anyok;
261			break;
262		case VM_PAGER_BAD:
263			/*
264			 * Page outside of range of object. Right now we
265			 * essentially lose the changes by pretending it
266			 * worked.
267			 */
268			pmap_clear_modify(VM_PAGE_TO_PHYS(ms[i]));
269			ms[i]->dirty = 0;
270			break;
271		case VM_PAGER_ERROR:
272		case VM_PAGER_FAIL:
273			/*
274			 * If page couldn't be paged out, then reactivate the
275			 * page so it doesn't clog the inactive list.  (We
276			 * will try paging out it again later).
277			 */
278			if (ms[i]->flags & PG_INACTIVE)
279				vm_page_activate(ms[i]);
280			break;
281		case VM_PAGER_AGAIN:
282			break;
283		}
284
285
286		/*
287		 * If the operation is still going, leave the page busy to
288		 * block all other accesses. Also, leave the paging in
289		 * progress indicator set so that we don't attempt an object
290		 * collapse.
291		 */
292		if (pageout_status[i] != VM_PAGER_PEND) {
293			if (--object->paging_in_progress == 0)
294				wakeup((caddr_t) object);
295			if ((ms[i]->flags & (PG_REFERENCED|PG_WANTED)) ||
296			    pmap_is_referenced(VM_PAGE_TO_PHYS(ms[i]))) {
297				pmap_clear_reference(VM_PAGE_TO_PHYS(ms[i]));
298				ms[i]->flags &= ~PG_REFERENCED;
299				if (ms[i]->flags & PG_INACTIVE)
300					vm_page_activate(ms[i]);
301			}
302			PAGE_WAKEUP(ms[i]);
303		}
304	}
305	return anyok;
306}
307
308/*
309 *	vm_pageout_object_deactivate_pages
310 *
311 *	deactivate enough pages to satisfy the inactive target
312 *	requirements or if vm_page_proc_limit is set, then
313 *	deactivate all of the pages in the object and its
314 *	shadows.
315 *
316 *	The object and map must be locked.
317 */
318int
319vm_pageout_object_deactivate_pages(map, object, count, map_remove_only)
320	vm_map_t map;
321	vm_object_t object;
322	int count;
323	int map_remove_only;
324{
325	register vm_page_t p, next;
326	int rcount;
327	int dcount;
328
329	dcount = 0;
330	if (count == 0)
331		count = 1;
332
333	if (object->pager && (object->pager->pg_type == PG_DEVICE))
334		return 0;
335
336	if (object->shadow) {
337		if (object->shadow->ref_count == 1)
338			dcount += vm_pageout_object_deactivate_pages(map, object->shadow, count / 2 + 1, map_remove_only);
339		else
340			vm_pageout_object_deactivate_pages(map, object->shadow, count, 1);
341	}
342	if (object->paging_in_progress || !vm_object_lock_try(object))
343		return dcount;
344
345	/*
346	 * scan the objects entire memory queue
347	 */
348	rcount = object->resident_page_count;
349	p = object->memq.tqh_first;
350	while (p && (rcount-- > 0)) {
351		next = p->listq.tqe_next;
352		cnt.v_pdpages++;
353		vm_page_lock_queues();
354		if (p->wire_count != 0 ||
355		    p->hold_count != 0 ||
356		    p->bmapped != 0 ||
357		    p->busy != 0 ||
358		    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
359			p = next;
360			continue;
361		}
362		/*
363		 * if a page is active, not wired and is in the processes
364		 * pmap, then deactivate the page.
365		 */
366		if ((p->flags & (PG_ACTIVE | PG_BUSY)) == PG_ACTIVE) {
367			if (!pmap_is_referenced(VM_PAGE_TO_PHYS(p)) &&
368			    (p->flags & (PG_REFERENCED|PG_WANTED)) == 0) {
369				p->act_count -= min(p->act_count, ACT_DECLINE);
370				/*
371				 * if the page act_count is zero -- then we
372				 * deactivate
373				 */
374				if (!p->act_count) {
375					if (!map_remove_only)
376						vm_page_deactivate(p);
377					pmap_page_protect(VM_PAGE_TO_PHYS(p),
378					    VM_PROT_NONE);
379					/*
380					 * else if on the next go-around we
381					 * will deactivate the page we need to
382					 * place the page on the end of the
383					 * queue to age the other pages in
384					 * memory.
385					 */
386				} else {
387					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
388					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
389					TAILQ_REMOVE(&object->memq, p, listq);
390					TAILQ_INSERT_TAIL(&object->memq, p, listq);
391				}
392				/*
393				 * see if we are done yet
394				 */
395				if (p->flags & PG_INACTIVE) {
396					--count;
397					++dcount;
398					if (count <= 0 &&
399					    cnt.v_inactive_count > cnt.v_inactive_target) {
400						vm_page_unlock_queues();
401						vm_object_unlock(object);
402						return dcount;
403					}
404				}
405			} else {
406				/*
407				 * Move the page to the bottom of the queue.
408				 */
409				pmap_clear_reference(VM_PAGE_TO_PHYS(p));
410				p->flags &= ~PG_REFERENCED;
411				if (p->act_count < ACT_MAX)
412					p->act_count += ACT_ADVANCE;
413
414				TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
415				TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
416				TAILQ_REMOVE(&object->memq, p, listq);
417				TAILQ_INSERT_TAIL(&object->memq, p, listq);
418			}
419		} else if ((p->flags & (PG_INACTIVE | PG_BUSY)) == PG_INACTIVE) {
420			pmap_page_protect(VM_PAGE_TO_PHYS(p),
421			    VM_PROT_NONE);
422		}
423		vm_page_unlock_queues();
424		p = next;
425	}
426	vm_object_unlock(object);
427	return dcount;
428}
429
430
431/*
432 * deactivate some number of pages in a map, try to do it fairly, but
433 * that is really hard to do.
434 */
435
436void
437vm_pageout_map_deactivate_pages(map, entry, count, freeer)
438	vm_map_t map;
439	vm_map_entry_t entry;
440	int *count;
441	int (*freeer) (vm_map_t, vm_object_t, int);
442{
443	vm_map_t tmpm;
444	vm_map_entry_t tmpe;
445	vm_object_t obj;
446
447	if (*count <= 0)
448		return;
449	vm_map_reference(map);
450	if (!lock_try_read(&map->lock)) {
451		vm_map_deallocate(map);
452		return;
453	}
454	if (entry == 0) {
455		tmpe = map->header.next;
456		while (tmpe != &map->header && *count > 0) {
457			vm_pageout_map_deactivate_pages(map, tmpe, count, freeer, 0);
458			tmpe = tmpe->next;
459		};
460	} else if (entry->is_sub_map || entry->is_a_map) {
461		tmpm = entry->object.share_map;
462		tmpe = tmpm->header.next;
463		while (tmpe != &tmpm->header && *count > 0) {
464			vm_pageout_map_deactivate_pages(tmpm, tmpe, count, freeer, 0);
465			tmpe = tmpe->next;
466		};
467	} else if ((obj = entry->object.vm_object) != 0) {
468		*count -= (*freeer) (map, obj, *count);
469	}
470	lock_read_done(&map->lock);
471	vm_map_deallocate(map);
472	return;
473}
474
475void
476vm_req_vmdaemon()
477{
478	extern int ticks;
479	static int lastrun = 0;
480
481	if ((ticks > (lastrun + hz / 10)) || (ticks < lastrun)) {
482		wakeup((caddr_t) &vm_daemon_needed);
483		lastrun = ticks;
484	}
485}
486
487/*
488 *	vm_pageout_scan does the dirty work for the pageout daemon.
489 */
490int
491vm_pageout_scan()
492{
493	vm_page_t m;
494	int page_shortage, maxscan, maxlaunder;
495	int pages_freed;
496	int desired_free;
497	vm_page_t next;
498	struct proc *p, *bigproc;
499	vm_offset_t size, bigsize;
500	vm_object_t object;
501	int force_wakeup = 0;
502
503	/* calculate the total cached size */
504
505	if ((cnt.v_inactive_count + cnt.v_free_count + cnt.v_cache_count) <
506	    (cnt.v_inactive_target + cnt.v_free_min)) {
507		vm_req_vmdaemon();
508	}
509	/*
510	 * now swap processes out if we are in low memory conditions
511	 */
512	if ((cnt.v_free_count <= cnt.v_free_min) &&
513	    !swap_pager_full && vm_swap_size && vm_pageout_req_swapout == 0) {
514		vm_pageout_req_swapout = 1;
515		vm_req_vmdaemon();
516	}
517	pages_freed = 0;
518	desired_free = cnt.v_free_target;
519
520	/*
521	 * Start scanning the inactive queue for pages we can free. We keep
522	 * scanning until we have enough free pages or we have scanned through
523	 * the entire queue.  If we encounter dirty pages, we start cleaning
524	 * them.
525	 */
526
527	maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
528	    MAXLAUNDER : cnt.v_inactive_target;
529
530rescan1:
531	maxscan = min(cnt.v_inactive_count, MAXSCAN);
532	m = vm_page_queue_inactive.tqh_first;
533	while (m && (maxscan-- > 0) &&
534	    ((cnt.v_free_count + cnt.v_cache_count) < desired_free)) {
535		vm_page_t next;
536
537		cnt.v_pdpages++;
538		next = m->pageq.tqe_next;
539
540#if defined(VM_DIAGNOSE)
541		if ((m->flags & PG_INACTIVE) == 0) {
542			printf("vm_pageout_scan: page not inactive?\n");
543			break;
544		}
545#endif
546
547		/*
548		 * dont mess with busy pages
549		 */
550		if (m->hold_count || m->busy || (m->flags & PG_BUSY) ||
551		    m->bmapped != 0) {
552			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
553			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
554			m = next;
555			continue;
556		}
557		if (((m->flags & PG_REFERENCED) == 0) &&
558		    pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
559			m->flags |= PG_REFERENCED;
560		}
561		if (m->object->ref_count == 0) {
562			m->flags &= ~PG_REFERENCED;
563			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
564		}
565		if ((m->flags & (PG_REFERENCED|PG_WANTED)) != 0) {
566			m->flags &= ~PG_REFERENCED;
567			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
568			vm_page_activate(m);
569			if (m->act_count < ACT_MAX)
570				m->act_count += ACT_ADVANCE;
571			m = next;
572			continue;
573		}
574		vm_page_test_dirty(m);
575
576		if ((m->dirty & m->valid) == 0) {
577			if (m->valid == 0) {
578				pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
579				vm_page_free(m);
580			} else if (((cnt.v_free_count + cnt.v_cache_count) < desired_free) ||
581			    (cnt.v_cache_count < cnt.v_cache_min)) {
582				vm_page_cache(m);
583			}
584		} else if (maxlaunder > 0) {
585			int written;
586
587			object = m->object;
588			if ((object->flags & OBJ_DEAD) || !vm_object_lock_try(object)) {
589				m = next;
590				continue;
591			}
592			/*
593			 * If a page is dirty, then it is either being washed
594			 * (but not yet cleaned) or it is still in the
595			 * laundry.  If it is still in the laundry, then we
596			 * start the cleaning operation.
597			 */
598			written = vm_pageout_clean(m, 0);
599			vm_object_unlock(object);
600
601			if (!next) {
602				break;
603			}
604			maxlaunder -= written;
605			/*
606			 * if the next page has been re-activated, start
607			 * scanning again
608			 */
609			if ((next->flags & PG_INACTIVE) == 0) {
610				goto rescan1;
611			}
612		}
613		m = next;
614	}
615
616	/*
617	 * Compute the page shortage.  If we are still very low on memory be
618	 * sure that we will move a minimal amount of pages from active to
619	 * inactive.
620	 */
621
622	page_shortage = cnt.v_inactive_target -
623	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
624	if (page_shortage <= 0) {
625		if (pages_freed == 0) {
626			if ((cnt.v_free_count + cnt.v_cache_count) < desired_free) {
627				page_shortage =
628				    desired_free - (cnt.v_free_count + cnt.v_cache_count);
629			}
630		}
631		if( (page_shortage <= 0) && (cnt.v_free_count < cnt.v_free_min))
632			page_shortage = 1;
633	}
634	maxscan = min(cnt.v_active_count, MAXSCAN);
635	m = vm_page_queue_active.tqh_first;
636	while (m && (maxscan-- > 0) && (page_shortage > 0)) {
637
638		cnt.v_pdpages++;
639		next = m->pageq.tqe_next;
640
641		/*
642		 * Don't deactivate pages that are busy.
643		 */
644		if ((m->busy != 0) ||
645		    (m->flags & PG_BUSY) ||
646		    (m->hold_count != 0) ||
647		    (m->bmapped != 0)) {
648			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
649			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
650			m = next;
651			continue;
652		}
653		if (m->object->ref_count && ((m->flags & (PG_REFERENCED|PG_WANTED)) ||
654			pmap_is_referenced(VM_PAGE_TO_PHYS(m)))) {
655			int s;
656
657			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
658			m->flags &= ~PG_REFERENCED;
659			if (m->act_count < ACT_MAX) {
660				m->act_count += ACT_ADVANCE;
661			}
662			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
663			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
664			s = splhigh();
665			TAILQ_REMOVE(&m->object->memq, m, listq);
666			TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
667			splx(s);
668		} else {
669			m->flags &= ~PG_REFERENCED;
670			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
671			m->act_count -= min(m->act_count, ACT_DECLINE);
672
673			/*
674			 * if the page act_count is zero -- then we deactivate
675			 */
676			if (!m->act_count && (page_shortage > 0)) {
677				if (m->object->ref_count == 0) {
678					vm_page_test_dirty(m);
679					--page_shortage;
680					if ((m->dirty & m->valid) == 0) {
681						m->act_count = 0;
682						vm_page_cache(m);
683					} else {
684						vm_page_deactivate(m);
685					}
686				} else {
687					vm_page_deactivate(m);
688					--page_shortage;
689				}
690			} else if (m->act_count) {
691				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
692				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
693			}
694		}
695		m = next;
696	}
697
698	/*
699	 * We try to maintain some *really* free pages, this allows interrupt
700	 * code to be guaranteed space.
701	 */
702	while (cnt.v_free_count < cnt.v_free_reserved) {
703		m = vm_page_queue_cache.tqh_first;
704		if (!m)
705			break;
706		vm_page_free(m);
707	}
708
709	/*
710	 * make sure that we have swap space -- if we are low on memory and
711	 * swap -- then kill the biggest process.
712	 */
713	if ((vm_swap_size == 0 || swap_pager_full) &&
714	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
715		bigproc = NULL;
716		bigsize = 0;
717		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
718			/*
719			 * if this is a system process, skip it
720			 */
721			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
722			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
723				continue;
724			}
725			/*
726			 * if the process is in a non-running type state,
727			 * don't touch it.
728			 */
729			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
730				continue;
731			}
732			/*
733			 * get the process size
734			 */
735			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
736			/*
737			 * if the this process is bigger than the biggest one
738			 * remember it.
739			 */
740			if (size > bigsize) {
741				bigproc = p;
742				bigsize = size;
743			}
744		}
745		if (bigproc != NULL) {
746			printf("Process %lu killed by vm_pageout -- out of swap\n", (u_long) bigproc->p_pid);
747			psignal(bigproc, SIGKILL);
748			bigproc->p_estcpu = 0;
749			bigproc->p_nice = PRIO_MIN;
750			resetpriority(bigproc);
751			wakeup((caddr_t) &cnt.v_free_count);
752		}
753	}
754	vm_page_pagesfreed += pages_freed;
755	return force_wakeup;
756}
757
758/*
759 *	vm_pageout is the high level pageout daemon.
760 */
761void
762vm_pageout()
763{
764	(void) spl0();
765
766	/*
767	 * Initialize some paging parameters.
768	 */
769
770	if (cnt.v_page_count > 1024)
771		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
772	else
773		cnt.v_free_min = 4;
774	/*
775	 * free_reserved needs to include enough for the largest swap pager
776	 * structures plus enough for any pv_entry structs when paging.
777	 */
778	cnt.v_pageout_free_min = 6 + cnt.v_page_count / 1024;
779	cnt.v_free_reserved = cnt.v_pageout_free_min + 2;
780	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
781	cnt.v_inactive_target = cnt.v_free_count / 4;
782	if (cnt.v_inactive_target > 512)
783		cnt.v_inactive_target = 512;
784	cnt.v_free_min += cnt.v_free_reserved;
785	if (cnt.v_page_count > 1024) {
786		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
787		cnt.v_cache_min = (cnt.v_free_count - 1024) / 20;
788	} else {
789		cnt.v_cache_min = 0;
790		cnt.v_cache_max = 0;
791	}
792
793	/* XXX does not really belong here */
794	if (vm_page_max_wired == 0)
795		vm_page_max_wired = cnt.v_free_count / 3;
796
797
798	(void) swap_pager_alloc(0, 0, 0, 0);
799	/*
800	 * The pageout daemon is never done, so loop forever.
801	 */
802	while (TRUE) {
803		tsleep((caddr_t) &vm_pages_needed, PVM, "psleep", 0);
804		cnt.v_pdwakeups++;
805		vm_pager_sync();
806		vm_pageout_scan();
807		vm_pager_sync();
808		wakeup((caddr_t) &cnt.v_free_count);
809		wakeup((caddr_t) kmem_map);
810	}
811}
812
813void
814vm_daemon __P((void))
815{
816	vm_object_t object;
817	struct proc *p;
818
819	while (TRUE) {
820		tsleep((caddr_t) &vm_daemon_needed, PUSER, "psleep", 0);
821		swapout_threads();
822		/*
823		 * scan the processes for exceeding their rlimits or if
824		 * process is swapped out -- deactivate pages
825		 */
826
827		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
828			int overage;
829			quad_t limit;
830			vm_offset_t size;
831
832			/*
833			 * if this is a system process or if we have already
834			 * looked at this process, skip it.
835			 */
836			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
837				continue;
838			}
839			/*
840			 * if the process is in a non-running type state,
841			 * don't touch it.
842			 */
843			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
844				continue;
845			}
846			/*
847			 * get a limit
848			 */
849			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
850			    p->p_rlimit[RLIMIT_RSS].rlim_max);
851
852			/*
853			 * let processes that are swapped out really be
854			 * swapped out set the limit to nothing (will force a
855			 * swap-out.)
856			 */
857			if ((p->p_flag & P_INMEM) == 0)
858				limit = 0;	/* XXX */
859
860			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * NBPG;
861			if (limit >= 0 && size >= limit) {
862				overage = (size - limit) / NBPG;
863				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
864				    (vm_map_entry_t) 0, &overage, vm_pageout_object_deactivate_pages);
865			}
866		}
867	}
868
869	/*
870	 * we remove cached objects that have no RSS...
871	 */
872restart:
873	vm_object_cache_lock();
874	object = vm_object_cached_list.tqh_first;
875	while (object) {
876		vm_object_cache_unlock();
877		/*
878		 * if there are no resident pages -- get rid of the object
879		 */
880		if (object->resident_page_count == 0) {
881			if (object != vm_object_lookup(object->pager))
882				panic("vm_object_cache_trim: I'm sooo confused.");
883			pager_cache(object, FALSE);
884			goto restart;
885		}
886		object = object->cached_list.tqe_next;
887		vm_object_cache_lock();
888	}
889	vm_object_cache_unlock();
890}
891