vm_pageout.c revision 39770
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.126 1998/09/04 08:06:57 dfr Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include "opt_vm.h"
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/proc.h>
80#include <sys/resourcevar.h>
81#include <sys/signalvar.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sysctl.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/vm_prot.h>
89#include <sys/lock.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_map.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_extern.h>
97
98/*
99 * System initialization
100 */
101
102/* the kernel process "vm_pageout"*/
103static void vm_pageout __P((void));
104static int vm_pageout_clean __P((vm_page_t));
105static int vm_pageout_scan __P((void));
106static int vm_pageout_free_page_calc __P((vm_size_t count));
107struct proc *pageproc;
108
109static struct kproc_desc page_kp = {
110	"pagedaemon",
111	vm_pageout,
112	&pageproc
113};
114SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
115
116#if !defined(NO_SWAPPING)
117/* the kernel process "vm_daemon"*/
118static void vm_daemon __P((void));
119static struct	proc *vmproc;
120
121static struct kproc_desc vm_kp = {
122	"vmdaemon",
123	vm_daemon,
124	&vmproc
125};
126SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
127#endif
128
129
130int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
131int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
132int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
133
134extern int npendingio;
135#if !defined(NO_SWAPPING)
136static int vm_pageout_req_swapout;	/* XXX */
137static int vm_daemon_needed;
138#endif
139extern int nswiodone;
140extern int vm_swap_size;
141extern int vfs_update_wakeup;
142static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143static int vm_pageout_full_stats_interval = 0;
144static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
145static int defer_swap_pageouts=0;
146static int disable_swap_pageouts=0;
147
148static int max_page_launder=100;
149#if defined(NO_SWAPPING)
150static int vm_swap_enabled=0;
151static int vm_swap_idle_enabled=0;
152#else
153static int vm_swap_enabled=1;
154static int vm_swap_idle_enabled=0;
155#endif
156
157SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
158	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
159
160SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
161	CTLFLAG_RW, &vm_pageout_stats_max, 0, "");
162
163SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
164	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "");
165
166SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
167	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
170	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "");
171
172#if defined(NO_SWAPPING)
173SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
174	CTLFLAG_RD, &vm_swap_enabled, 0, "");
175SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
176	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
177#else
178SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
179	CTLFLAG_RW, &vm_swap_enabled, 0, "");
180SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
181	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "");
182#endif
183
184SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
185	CTLFLAG_RW, &defer_swap_pageouts, 0, "");
186
187SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
188	CTLFLAG_RW, &disable_swap_pageouts, 0, "");
189
190SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
191	CTLFLAG_RW, &max_page_launder, 0, "");
192
193
194#define VM_PAGEOUT_PAGE_COUNT 16
195int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
196
197int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
198
199#if !defined(NO_SWAPPING)
200typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
201static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
202static freeer_fcn_t vm_pageout_object_deactivate_pages;
203static void vm_req_vmdaemon __P((void));
204#endif
205static void vm_pageout_page_stats(void);
206void pmap_collect(void);
207
208/*
209 * vm_pageout_clean:
210 *
211 * Clean the page and remove it from the laundry.
212 *
213 * We set the busy bit to cause potential page faults on this page to
214 * block.
215 *
216 * And we set pageout-in-progress to keep the object from disappearing
217 * during pageout.  This guarantees that the page won't move from the
218 * inactive queue.  (However, any other page on the inactive queue may
219 * move!)
220 */
221static int
222vm_pageout_clean(m)
223	vm_page_t m;
224{
225	register vm_object_t object;
226	vm_page_t mc[2*vm_pageout_page_count];
227	int pageout_count;
228	int i, forward_okay, backward_okay, page_base;
229	vm_pindex_t pindex = m->pindex;
230
231	object = m->object;
232
233	/*
234	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
235	 * Try to avoid the deadlock.
236	 */
237	if ((object->type == OBJT_DEFAULT) &&
238	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
239		return 0;
240
241	/*
242	 * Don't mess with the page if it's busy.
243	 */
244	if ((m->hold_count != 0) ||
245	    ((m->busy != 0) || (m->flags & PG_BUSY)))
246		return 0;
247
248	/*
249	 * Try collapsing before it's too late.
250	 */
251	if (object->backing_object) {
252		vm_object_collapse(object);
253	}
254
255	mc[vm_pageout_page_count] = m;
256	pageout_count = 1;
257	page_base = vm_pageout_page_count;
258	forward_okay = TRUE;
259	if (pindex != 0)
260		backward_okay = TRUE;
261	else
262		backward_okay = FALSE;
263	/*
264	 * Scan object for clusterable pages.
265	 *
266	 * We can cluster ONLY if: ->> the page is NOT
267	 * clean, wired, busy, held, or mapped into a
268	 * buffer, and one of the following:
269	 * 1) The page is inactive, or a seldom used
270	 *    active page.
271	 * -or-
272	 * 2) we force the issue.
273	 */
274	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
275		vm_page_t p;
276
277		/*
278		 * See if forward page is clusterable.
279		 */
280		if (forward_okay) {
281			/*
282			 * Stop forward scan at end of object.
283			 */
284			if ((pindex + i) > object->size) {
285				forward_okay = FALSE;
286				goto do_backward;
287			}
288			p = vm_page_lookup(object, pindex + i);
289			if (p) {
290				if (((p->queue - p->pc) == PQ_CACHE) ||
291					(p->flags & PG_BUSY) || p->busy) {
292					forward_okay = FALSE;
293					goto do_backward;
294				}
295				vm_page_test_dirty(p);
296				if ((p->dirty & p->valid) != 0 &&
297				    (p->queue == PQ_INACTIVE) &&
298				    (p->wire_count == 0) &&
299				    (p->hold_count == 0)) {
300					mc[vm_pageout_page_count + i] = p;
301					pageout_count++;
302					if (pageout_count == vm_pageout_page_count)
303						break;
304				} else {
305					forward_okay = FALSE;
306				}
307			} else {
308				forward_okay = FALSE;
309			}
310		}
311do_backward:
312		/*
313		 * See if backward page is clusterable.
314		 */
315		if (backward_okay) {
316			/*
317			 * Stop backward scan at beginning of object.
318			 */
319			if ((pindex - i) == 0) {
320				backward_okay = FALSE;
321			}
322			p = vm_page_lookup(object, pindex - i);
323			if (p) {
324				if (((p->queue - p->pc) == PQ_CACHE) ||
325					(p->flags & PG_BUSY) || p->busy) {
326					backward_okay = FALSE;
327					continue;
328				}
329				vm_page_test_dirty(p);
330				if ((p->dirty & p->valid) != 0 &&
331				    (p->queue == PQ_INACTIVE) &&
332				    (p->wire_count == 0) &&
333				    (p->hold_count == 0)) {
334					mc[vm_pageout_page_count - i] = p;
335					pageout_count++;
336					page_base--;
337					if (pageout_count == vm_pageout_page_count)
338						break;
339				} else {
340					backward_okay = FALSE;
341				}
342			} else {
343				backward_okay = FALSE;
344			}
345		}
346	}
347
348	/*
349	 * we allow reads during pageouts...
350	 */
351	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
352}
353
354int
355vm_pageout_flush(mc, count, flags)
356	vm_page_t *mc;
357	int count;
358	int flags;
359{
360	register vm_object_t object;
361	int pageout_status[count];
362	int numpagedout = 0;
363	int i;
364
365	for (i = 0; i < count; i++) {
366		vm_page_io_start(mc[i]);
367		vm_page_protect(mc[i], VM_PROT_READ);
368	}
369
370	object = mc[0]->object;
371	vm_object_pip_add(object, count);
372
373	vm_pager_put_pages(object, mc, count,
374	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
375	    pageout_status);
376
377	for (i = 0; i < count; i++) {
378		vm_page_t mt = mc[i];
379
380		switch (pageout_status[i]) {
381		case VM_PAGER_OK:
382			numpagedout++;
383			break;
384		case VM_PAGER_PEND:
385			numpagedout++;
386			break;
387		case VM_PAGER_BAD:
388			/*
389			 * Page outside of range of object. Right now we
390			 * essentially lose the changes by pretending it
391			 * worked.
392			 */
393			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
394			mt->dirty = 0;
395			break;
396		case VM_PAGER_ERROR:
397		case VM_PAGER_FAIL:
398			/*
399			 * If page couldn't be paged out, then reactivate the
400			 * page so it doesn't clog the inactive list.  (We
401			 * will try paging out it again later).
402			 */
403			vm_page_activate(mt);
404			break;
405		case VM_PAGER_AGAIN:
406			break;
407		}
408
409		/*
410		 * If the operation is still going, leave the page busy to
411		 * block all other accesses. Also, leave the paging in
412		 * progress indicator set so that we don't attempt an object
413		 * collapse.
414		 */
415		if (pageout_status[i] != VM_PAGER_PEND) {
416			vm_object_pip_wakeup(object);
417			vm_page_io_finish(mt);
418		}
419	}
420	return numpagedout;
421}
422
423#if !defined(NO_SWAPPING)
424/*
425 *	vm_pageout_object_deactivate_pages
426 *
427 *	deactivate enough pages to satisfy the inactive target
428 *	requirements or if vm_page_proc_limit is set, then
429 *	deactivate all of the pages in the object and its
430 *	backing_objects.
431 *
432 *	The object and map must be locked.
433 */
434static void
435vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
436	vm_map_t map;
437	vm_object_t object;
438	vm_pindex_t desired;
439	int map_remove_only;
440{
441	register vm_page_t p, next;
442	int rcount;
443	int remove_mode;
444	int s;
445
446	if (object->type == OBJT_DEVICE)
447		return;
448
449	while (object) {
450		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
451			return;
452		if (object->paging_in_progress)
453			return;
454
455		remove_mode = map_remove_only;
456		if (object->shadow_count > 1)
457			remove_mode = 1;
458	/*
459	 * scan the objects entire memory queue
460	 */
461		rcount = object->resident_page_count;
462		p = TAILQ_FIRST(&object->memq);
463		while (p && (rcount-- > 0)) {
464			int actcount;
465			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
466				return;
467			next = TAILQ_NEXT(p, listq);
468			cnt.v_pdpages++;
469			if (p->wire_count != 0 ||
470			    p->hold_count != 0 ||
471			    p->busy != 0 ||
472			    (p->flags & PG_BUSY) ||
473			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
474				p = next;
475				continue;
476			}
477
478			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
479			if (actcount) {
480				vm_page_flag_set(p, PG_REFERENCED);
481			} else if (p->flags & PG_REFERENCED) {
482				actcount = 1;
483			}
484
485			if ((p->queue != PQ_ACTIVE) &&
486				(p->flags & PG_REFERENCED)) {
487				vm_page_activate(p);
488				p->act_count += actcount;
489				vm_page_flag_clear(p, PG_REFERENCED);
490			} else if (p->queue == PQ_ACTIVE) {
491				if ((p->flags & PG_REFERENCED) == 0) {
492					p->act_count -= min(p->act_count, ACT_DECLINE);
493					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
494						vm_page_protect(p, VM_PROT_NONE);
495						vm_page_deactivate(p);
496					} else {
497						s = splvm();
498						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
499						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
500						splx(s);
501					}
502				} else {
503					vm_page_activate(p);
504					vm_page_flag_clear(p, PG_REFERENCED);
505					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
506						p->act_count += ACT_ADVANCE;
507					s = splvm();
508					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
509					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
510					splx(s);
511				}
512			} else if (p->queue == PQ_INACTIVE) {
513				vm_page_protect(p, VM_PROT_NONE);
514			}
515			p = next;
516		}
517		object = object->backing_object;
518	}
519	return;
520}
521
522/*
523 * deactivate some number of pages in a map, try to do it fairly, but
524 * that is really hard to do.
525 */
526static void
527vm_pageout_map_deactivate_pages(map, desired)
528	vm_map_t map;
529	vm_pindex_t desired;
530{
531	vm_map_entry_t tmpe;
532	vm_object_t obj, bigobj;
533
534	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
535		return;
536	}
537
538	bigobj = NULL;
539
540	/*
541	 * first, search out the biggest object, and try to free pages from
542	 * that.
543	 */
544	tmpe = map->header.next;
545	while (tmpe != &map->header) {
546		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
547			obj = tmpe->object.vm_object;
548			if ((obj != NULL) && (obj->shadow_count <= 1) &&
549				((bigobj == NULL) ||
550				 (bigobj->resident_page_count < obj->resident_page_count))) {
551				bigobj = obj;
552			}
553		}
554		tmpe = tmpe->next;
555	}
556
557	if (bigobj)
558		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
559
560	/*
561	 * Next, hunt around for other pages to deactivate.  We actually
562	 * do this search sort of wrong -- .text first is not the best idea.
563	 */
564	tmpe = map->header.next;
565	while (tmpe != &map->header) {
566		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
567			break;
568		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
569			obj = tmpe->object.vm_object;
570			if (obj)
571				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
572		}
573		tmpe = tmpe->next;
574	};
575
576	/*
577	 * Remove all mappings if a process is swapped out, this will free page
578	 * table pages.
579	 */
580	if (desired == 0)
581		pmap_remove(vm_map_pmap(map),
582			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
583	vm_map_unlock(map);
584	return;
585}
586#endif
587
588void
589vm_pageout_page_free(vm_page_t m) {
590	struct vnode *vp;
591	vm_object_t object;
592
593	object = m->object;
594	object->ref_count++;
595
596	if (object->type == OBJT_VNODE) {
597		vp = object->handle;
598		vp->v_usecount++;
599		if (VSHOULDBUSY(vp))
600			vbusy(vp);
601	}
602
603	vm_page_busy(m);
604	vm_page_protect(m, VM_PROT_NONE);
605	vm_page_free(m);
606	vm_object_deallocate(object);
607}
608
609/*
610 *	vm_pageout_scan does the dirty work for the pageout daemon.
611 */
612static int
613vm_pageout_scan()
614{
615	vm_page_t m, next;
616	int page_shortage, addl_page_shortage, maxscan, pcount;
617	int maxlaunder;
618	int pages_freed;
619	struct proc *p, *bigproc;
620	vm_offset_t size, bigsize;
621	vm_object_t object;
622	int force_wakeup = 0;
623	int actcount;
624	int vnodes_skipped = 0;
625	int s;
626
627	/*
628	 * Do whatever cleanup that the pmap code can.
629	 */
630	pmap_collect();
631
632	/*
633	 * Start scanning the inactive queue for pages we can free. We keep
634	 * scanning until we have enough free pages or we have scanned through
635	 * the entire queue.  If we encounter dirty pages, we start cleaning
636	 * them.
637	 */
638
639	pages_freed = 0;
640	addl_page_shortage = vm_pageout_deficit;
641	vm_pageout_deficit = 0;
642
643	if (max_page_launder == 0)
644		max_page_launder = 1;
645	maxlaunder = (cnt.v_inactive_target > max_page_launder) ?
646	    max_page_launder : cnt.v_inactive_target;
647
648rescan0:
649	maxscan = cnt.v_inactive_count;
650	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
651
652		(m != NULL) && (maxscan-- > 0) &&
653			((cnt.v_cache_count + cnt.v_free_count) <
654			(cnt.v_cache_min + cnt.v_free_target));
655
656		m = next) {
657
658		cnt.v_pdpages++;
659
660		if (m->queue != PQ_INACTIVE) {
661			goto rescan0;
662		}
663
664		next = TAILQ_NEXT(m, pageq);
665
666		if (m->hold_count) {
667			s = splvm();
668			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
669			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
670			splx(s);
671			addl_page_shortage++;
672			continue;
673		}
674		/*
675		 * Dont mess with busy pages, keep in the front of the
676		 * queue, most likely are being paged out.
677		 */
678		if (m->busy || (m->flags & PG_BUSY)) {
679			addl_page_shortage++;
680			continue;
681		}
682
683		/*
684		 * If the object is not being used, we ignore previous references.
685		 */
686		if (m->object->ref_count == 0) {
687			vm_page_flag_clear(m, PG_REFERENCED);
688			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
689
690		/*
691		 * Otherwise, if the page has been referenced while in the inactive
692		 * queue, we bump the "activation count" upwards, making it less
693		 * likely that the page will be added back to the inactive queue
694		 * prematurely again.  Here we check the page tables (or emulated
695		 * bits, if any), given the upper level VM system not knowing anything
696		 * about existing references.
697		 */
698		} else if (((m->flags & PG_REFERENCED) == 0) &&
699			(actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
700			vm_page_activate(m);
701			m->act_count += (actcount + ACT_ADVANCE);
702			continue;
703		}
704
705		/*
706		 * If the upper level VM system knows about any page references,
707		 * we activate the page.  We also set the "activation count" higher
708		 * than normal so that we will less likely place pages back onto the
709		 * inactive queue again.
710		 */
711		if ((m->flags & PG_REFERENCED) != 0) {
712			vm_page_flag_clear(m, PG_REFERENCED);
713			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
714			vm_page_activate(m);
715			m->act_count += (actcount + ACT_ADVANCE + 1);
716			continue;
717		}
718
719		/*
720		 * If the upper level VM system doesn't know anything about the
721		 * page being dirty, we have to check for it again.  As far as the
722		 * VM code knows, any partially dirty pages are fully dirty.
723		 */
724		if (m->dirty == 0) {
725			vm_page_test_dirty(m);
726		} else {
727			m->dirty = VM_PAGE_BITS_ALL;
728		}
729
730		/*
731		 * Invalid pages can be easily freed
732		 */
733		if (m->valid == 0) {
734			vm_pageout_page_free(m);
735			cnt.v_dfree++;
736			pages_freed++;
737
738		/*
739		 * Clean pages can be placed onto the cache queue.
740		 */
741		} else if (m->dirty == 0) {
742			vm_page_cache(m);
743			pages_freed++;
744
745		/*
746		 * Dirty pages need to be paged out.  Note that we clean
747		 * only a limited number of pages per pagedaemon pass.
748		 */
749		} else if (maxlaunder > 0) {
750			int written;
751			int swap_pageouts_ok;
752			struct vnode *vp = NULL;
753
754			object = m->object;
755
756			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
757				swap_pageouts_ok = 1;
758			} else {
759				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
760				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
761					(cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min);
762
763			}
764
765			/*
766			 * We don't bother paging objects that are "dead".  Those
767			 * objects are in a "rundown" state.
768			 */
769			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
770				s = splvm();
771				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
772				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
773				splx(s);
774				continue;
775			}
776
777			if ((object->type == OBJT_VNODE) &&
778				(object->flags & OBJ_DEAD) == 0) {
779				vp = object->handle;
780				if (VOP_ISLOCKED(vp) ||
781				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
782					if ((m->queue == PQ_INACTIVE) &&
783						(m->hold_count == 0) &&
784						(m->busy == 0) &&
785						(m->flags & PG_BUSY) == 0) {
786						s = splvm();
787						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
788						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
789						splx(s);
790					}
791					if (object->flags & OBJ_MIGHTBEDIRTY)
792						vnodes_skipped++;
793					continue;
794				}
795
796				/*
797				 * The page might have been moved to another queue
798				 * during potential blocking in vget() above.
799				 */
800				if (m->queue != PQ_INACTIVE) {
801					if (object->flags & OBJ_MIGHTBEDIRTY)
802						vnodes_skipped++;
803					vput(vp);
804					continue;
805				}
806
807				/*
808				 * The page may have been busied during the blocking in
809				 * vput();  We don't move the page back onto the end of
810				 * the queue so that statistics are more correct if we don't.
811				 */
812				if (m->busy || (m->flags & PG_BUSY)) {
813					vput(vp);
814					continue;
815				}
816
817				/*
818				 * If the page has become held, then skip it
819				 */
820				if (m->hold_count) {
821					s = splvm();
822					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
823					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
824					splx(s);
825					if (object->flags & OBJ_MIGHTBEDIRTY)
826						vnodes_skipped++;
827					vput(vp);
828					continue;
829				}
830			}
831
832			/*
833			 * If a page is dirty, then it is either being washed
834			 * (but not yet cleaned) or it is still in the
835			 * laundry.  If it is still in the laundry, then we
836			 * start the cleaning operation.
837			 */
838			written = vm_pageout_clean(m);
839			if (vp)
840				vput(vp);
841
842			maxlaunder -= written;
843		}
844	}
845
846	/*
847	 * Compute the page shortage.  If we are still very low on memory be
848	 * sure that we will move a minimal amount of pages from active to
849	 * inactive.
850	 */
851	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
852	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
853	page_shortage += addl_page_shortage;
854	if (page_shortage <= 0) {
855		page_shortage = 0;
856	}
857
858	pcount = cnt.v_active_count;
859	m = TAILQ_FIRST(&vm_page_queue_active);
860	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
861
862		/*
863		 * This is a consistancy check, and should likely be a panic
864		 * or warning.
865		 */
866		if (m->queue != PQ_ACTIVE) {
867			break;
868		}
869
870		next = TAILQ_NEXT(m, pageq);
871		/*
872		 * Don't deactivate pages that are busy.
873		 */
874		if ((m->busy != 0) ||
875		    (m->flags & PG_BUSY) ||
876		    (m->hold_count != 0)) {
877			s = splvm();
878			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
879			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
880			splx(s);
881			m = next;
882			continue;
883		}
884
885		/*
886		 * The count for pagedaemon pages is done after checking the
887		 * page for eligbility...
888		 */
889		cnt.v_pdpages++;
890
891		/*
892		 * Check to see "how much" the page has been used.
893		 */
894		actcount = 0;
895		if (m->object->ref_count != 0) {
896			if (m->flags & PG_REFERENCED) {
897				actcount += 1;
898			}
899			actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
900			if (actcount) {
901				m->act_count += ACT_ADVANCE + actcount;
902				if (m->act_count > ACT_MAX)
903					m->act_count = ACT_MAX;
904			}
905		}
906
907		/*
908		 * Since we have "tested" this bit, we need to clear it now.
909		 */
910		vm_page_flag_clear(m, PG_REFERENCED);
911
912		/*
913		 * Only if an object is currently being used, do we use the
914		 * page activation count stats.
915		 */
916		if (actcount && (m->object->ref_count != 0)) {
917			s = splvm();
918			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
919			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
920			splx(s);
921		} else {
922			m->act_count -= min(m->act_count, ACT_DECLINE);
923			if (vm_pageout_algorithm_lru ||
924				(m->object->ref_count == 0) || (m->act_count == 0)) {
925				page_shortage--;
926				if (m->object->ref_count == 0) {
927					vm_page_protect(m, VM_PROT_NONE);
928					if (m->dirty == 0)
929						vm_page_cache(m);
930					else
931						vm_page_deactivate(m);
932				} else {
933					vm_page_deactivate(m);
934				}
935			} else {
936				s = splvm();
937				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
938				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
939				splx(s);
940			}
941		}
942		m = next;
943	}
944
945	s = splvm();
946	/*
947	 * We try to maintain some *really* free pages, this allows interrupt
948	 * code to be guaranteed space.
949	 */
950	while (cnt.v_free_count < cnt.v_free_reserved) {
951		static int cache_rover = 0;
952		m = vm_page_list_find(PQ_CACHE, cache_rover);
953		if (!m)
954			break;
955		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
956		vm_pageout_page_free(m);
957		cnt.v_dfree++;
958	}
959	splx(s);
960
961#if !defined(NO_SWAPPING)
962	/*
963	 * Idle process swapout -- run once per second.
964	 */
965	if (vm_swap_idle_enabled) {
966		static long lsec;
967		if (time_second != lsec) {
968			vm_pageout_req_swapout |= VM_SWAP_IDLE;
969			vm_req_vmdaemon();
970			lsec = time_second;
971		}
972	}
973#endif
974
975	/*
976	 * If we didn't get enough free pages, and we have skipped a vnode
977	 * in a writeable object, wakeup the sync daemon.  And kick swapout
978	 * if we did not get enough free pages.
979	 */
980	if ((cnt.v_cache_count + cnt.v_free_count) <
981		(cnt.v_free_target + cnt.v_cache_min) ) {
982		if (vnodes_skipped &&
983		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
984			if (!vfs_update_wakeup) {
985				vfs_update_wakeup = 1;
986				wakeup(&vfs_update_wakeup);
987			}
988		}
989#if !defined(NO_SWAPPING)
990		if (vm_swap_enabled &&
991			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
992			vm_req_vmdaemon();
993			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
994		}
995#endif
996	}
997
998
999	/*
1000	 * make sure that we have swap space -- if we are low on memory and
1001	 * swap -- then kill the biggest process.
1002	 */
1003	if ((vm_swap_size == 0 || swap_pager_full) &&
1004	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
1005		bigproc = NULL;
1006		bigsize = 0;
1007		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1008			/*
1009			 * if this is a system process, skip it
1010			 */
1011			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1012			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1013				continue;
1014			}
1015			/*
1016			 * if the process is in a non-running type state,
1017			 * don't touch it.
1018			 */
1019			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1020				continue;
1021			}
1022			/*
1023			 * get the process size
1024			 */
1025			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1026			/*
1027			 * if the this process is bigger than the biggest one
1028			 * remember it.
1029			 */
1030			if (size > bigsize) {
1031				bigproc = p;
1032				bigsize = size;
1033			}
1034		}
1035		if (bigproc != NULL) {
1036			killproc(bigproc, "out of swap space");
1037			bigproc->p_estcpu = 0;
1038			bigproc->p_nice = PRIO_MIN;
1039			resetpriority(bigproc);
1040			wakeup(&cnt.v_free_count);
1041		}
1042	}
1043	return force_wakeup;
1044}
1045
1046/*
1047 * This routine tries to maintain the pseudo LRU active queue,
1048 * so that during long periods of time where there is no paging,
1049 * that some statistic accumlation still occurs.  This code
1050 * helps the situation where paging just starts to occur.
1051 */
1052static void
1053vm_pageout_page_stats()
1054{
1055	int s;
1056	vm_page_t m,next;
1057	int pcount,tpcount;		/* Number of pages to check */
1058	static int fullintervalcount = 0;
1059	int page_shortage;
1060
1061	page_shortage = (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1062	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1063	if (page_shortage <= 0)
1064		return;
1065
1066	pcount = cnt.v_active_count;
1067	fullintervalcount += vm_pageout_stats_interval;
1068	if (fullintervalcount < vm_pageout_full_stats_interval) {
1069		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1070		if (pcount > tpcount)
1071			pcount = tpcount;
1072	}
1073
1074	m = TAILQ_FIRST(&vm_page_queue_active);
1075	while ((m != NULL) && (pcount-- > 0)) {
1076		int actcount;
1077
1078		if (m->queue != PQ_ACTIVE) {
1079			break;
1080		}
1081
1082		next = TAILQ_NEXT(m, pageq);
1083		/*
1084		 * Don't deactivate pages that are busy.
1085		 */
1086		if ((m->busy != 0) ||
1087		    (m->flags & PG_BUSY) ||
1088		    (m->hold_count != 0)) {
1089			s = splvm();
1090			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1091			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1092			splx(s);
1093			m = next;
1094			continue;
1095		}
1096
1097		actcount = 0;
1098		if (m->flags & PG_REFERENCED) {
1099			vm_page_flag_clear(m, PG_REFERENCED);
1100			actcount += 1;
1101		}
1102
1103		actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1104		if (actcount) {
1105			m->act_count += ACT_ADVANCE + actcount;
1106			if (m->act_count > ACT_MAX)
1107				m->act_count = ACT_MAX;
1108			s = splvm();
1109			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1110			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1111			splx(s);
1112		} else {
1113			if (m->act_count == 0) {
1114				/*
1115				 * We turn off page access, so that we have more accurate
1116				 * RSS stats.  We don't do this in the normal page deactivation
1117				 * when the system is loaded VM wise, because the cost of
1118				 * the large number of page protect operations would be higher
1119				 * than the value of doing the operation.
1120				 */
1121				vm_page_protect(m, VM_PROT_NONE);
1122				vm_page_deactivate(m);
1123			} else {
1124				m->act_count -= min(m->act_count, ACT_DECLINE);
1125				s = splvm();
1126				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1127				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1128				splx(s);
1129			}
1130		}
1131
1132		m = next;
1133	}
1134}
1135
1136static int
1137vm_pageout_free_page_calc(count)
1138vm_size_t count;
1139{
1140	if (count < cnt.v_page_count)
1141		 return 0;
1142	/*
1143	 * free_reserved needs to include enough for the largest swap pager
1144	 * structures plus enough for any pv_entry structs when paging.
1145	 */
1146	if (cnt.v_page_count > 1024)
1147		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1148	else
1149		cnt.v_free_min = 4;
1150	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1151		cnt.v_interrupt_free_min;
1152	cnt.v_free_reserved = vm_pageout_page_count +
1153		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1154	cnt.v_free_min += cnt.v_free_reserved;
1155	return 1;
1156}
1157
1158
1159/*
1160 *	vm_pageout is the high level pageout daemon.
1161 */
1162static void
1163vm_pageout()
1164{
1165	/*
1166	 * Initialize some paging parameters.
1167	 */
1168
1169	cnt.v_interrupt_free_min = 2;
1170	if (cnt.v_page_count < 2000)
1171		vm_pageout_page_count = 8;
1172
1173	vm_pageout_free_page_calc(cnt.v_page_count);
1174	/*
1175	 * free_reserved needs to include enough for the largest swap pager
1176	 * structures plus enough for any pv_entry structs when paging.
1177	 */
1178	if (cnt.v_free_count > 6144)
1179		cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1180	else
1181		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1182
1183	if (cnt.v_free_count > 2048) {
1184		cnt.v_cache_min = cnt.v_free_target;
1185		cnt.v_cache_max = 2 * cnt.v_cache_min;
1186		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1187	} else {
1188		cnt.v_cache_min = 0;
1189		cnt.v_cache_max = 0;
1190		cnt.v_inactive_target = cnt.v_free_count / 4;
1191	}
1192	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1193		cnt.v_inactive_target = cnt.v_free_count / 3;
1194
1195	/* XXX does not really belong here */
1196	if (vm_page_max_wired == 0)
1197		vm_page_max_wired = cnt.v_free_count / 3;
1198
1199	if (vm_pageout_stats_max == 0)
1200		vm_pageout_stats_max = cnt.v_free_target;
1201
1202	/*
1203	 * Set interval in seconds for stats scan.
1204	 */
1205	if (vm_pageout_stats_interval == 0)
1206		vm_pageout_stats_interval = 5;
1207	if (vm_pageout_full_stats_interval == 0)
1208		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1209
1210
1211	/*
1212	 * Set maximum free per pass
1213	 */
1214	if (vm_pageout_stats_free_max == 0)
1215		vm_pageout_stats_free_max = 5;
1216
1217	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1218
1219	swap_pager_swap_init();
1220	/*
1221	 * The pageout daemon is never done, so loop forever.
1222	 */
1223	while (TRUE) {
1224		int inactive_target;
1225		int error;
1226		int s = splvm();
1227		if (!vm_pages_needed ||
1228			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1229			vm_pages_needed = 0;
1230			error = tsleep(&vm_pages_needed,
1231				PVM, "psleep", vm_pageout_stats_interval * hz);
1232			if (error && !vm_pages_needed) {
1233				splx(s);
1234				vm_pageout_page_stats();
1235				continue;
1236			}
1237		} else if (vm_pages_needed) {
1238			vm_pages_needed = 0;
1239			tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1240		}
1241
1242		if (vm_pages_needed)
1243			cnt.v_pdwakeups++;
1244		vm_pages_needed = 0;
1245		splx(s);
1246		vm_pager_sync();
1247		vm_pageout_scan();
1248		vm_pageout_deficit = 0;
1249		vm_pager_sync();
1250		wakeup(&cnt.v_free_count);
1251	}
1252}
1253
1254void
1255pagedaemon_wakeup()
1256{
1257	if (!vm_pages_needed && curproc != pageproc) {
1258		vm_pages_needed++;
1259		wakeup(&vm_pages_needed);
1260	}
1261}
1262
1263#if !defined(NO_SWAPPING)
1264static void
1265vm_req_vmdaemon()
1266{
1267	static int lastrun = 0;
1268
1269	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1270		wakeup(&vm_daemon_needed);
1271		lastrun = ticks;
1272	}
1273}
1274
1275static void
1276vm_daemon()
1277{
1278	vm_object_t object;
1279	struct proc *p;
1280
1281	while (TRUE) {
1282		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1283		if (vm_pageout_req_swapout) {
1284			swapout_procs(vm_pageout_req_swapout);
1285			vm_pageout_req_swapout = 0;
1286		}
1287		/*
1288		 * scan the processes for exceeding their rlimits or if
1289		 * process is swapped out -- deactivate pages
1290		 */
1291
1292		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1293			quad_t limit;
1294			vm_offset_t size;
1295
1296			/*
1297			 * if this is a system process or if we have already
1298			 * looked at this process, skip it.
1299			 */
1300			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1301				continue;
1302			}
1303			/*
1304			 * if the process is in a non-running type state,
1305			 * don't touch it.
1306			 */
1307			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1308				continue;
1309			}
1310			/*
1311			 * get a limit
1312			 */
1313			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1314			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1315
1316			/*
1317			 * let processes that are swapped out really be
1318			 * swapped out set the limit to nothing (will force a
1319			 * swap-out.)
1320			 */
1321			if ((p->p_flag & P_INMEM) == 0)
1322				limit = 0;	/* XXX */
1323
1324			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1325			if (limit >= 0 && size >= limit) {
1326				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1327				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1328			}
1329		}
1330	}
1331}
1332#endif
1333