vm_pageout.c revision 3567
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.16 1994/10/09 01:52:15 phk Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/resourcevar.h>
79#include <sys/malloc.h>
80
81#include <vm/vm.h>
82#include <vm/vm_page.h>
83#include <vm/vm_pageout.h>
84#include <vm/swap_pager.h>
85
86extern vm_map_t kmem_map;
87int	vm_pages_needed;		/* Event on which pageout daemon sleeps */
88int	vm_pagescanner;			/* Event on which pagescanner sleeps */
89int	vm_pageout_free_min = 0;	/* Stop pageout to wait for pagers at this free level */
90
91int	vm_pageout_pages_needed = 0;	/* flag saying that the pageout daemon needs pages */
92int	vm_page_pagesfreed;
93int	vm_desired_cache_size;
94
95extern int npendingio;
96extern int hz;
97int	vm_pageout_proc_limit;
98extern int nswiodone;
99extern int swap_pager_full;
100extern int swap_pager_ready();
101
102#define MAXREF 32767
103
104#define MAXSCAN 512	/* maximum number of pages to scan in active queue */
105			/* set the "clock" hands to be (MAXSCAN * 4096) Bytes */
106#define ACT_DECLINE	1
107#define ACT_ADVANCE	3
108#define ACT_MAX		100
109
110#define LOWATER ((2048*1024)/NBPG)
111
112#define VM_PAGEOUT_PAGE_COUNT 8
113int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
114int vm_pageout_req_do_stats;
115
116int	vm_page_max_wired = 0;	/* XXX max # of wired pages system-wide */
117
118
119/*
120 * vm_pageout_clean:
121 * 	cleans a vm_page
122 */
123int
124vm_pageout_clean(m, sync)
125	register vm_page_t m;
126	int sync;
127{
128	/*
129	 *	Clean the page and remove it from the
130	 *	laundry.
131	 *
132	 *	We set the busy bit to cause
133	 *	potential page faults on this page to
134	 *	block.
135	 *
136	 *	And we set pageout-in-progress to keep
137	 *	the object from disappearing during
138	 *	pageout.  This guarantees that the
139	 *	page won't move from the inactive
140	 *	queue.  (However, any other page on
141	 *	the inactive queue may move!)
142	 */
143
144	register vm_object_t	object;
145	register vm_pager_t	pager;
146	int			pageout_status[VM_PAGEOUT_PAGE_COUNT];
147	vm_page_t		ms[VM_PAGEOUT_PAGE_COUNT];
148	int			pageout_count;
149	int			anyok=0;
150	int			i;
151	vm_offset_t offset = m->offset;
152
153	object = m->object;
154	if (!object) {
155		printf("pager: object missing\n");
156		return 0;
157	}
158
159	/*
160	 *	Try to collapse the object before
161	 *	making a pager for it.  We must
162	 *	unlock the page queues first.
163	 *	We try to defer the creation of a pager
164	 *	until all shadows are not paging.  This
165	 *	allows vm_object_collapse to work better and
166	 *	helps control swap space size.
167	 *	(J. Dyson 11 Nov 93)
168	 */
169
170	if (!object->pager &&
171		cnt.v_free_count < vm_pageout_free_min)
172		return 0;
173
174	if (!object->pager &&
175		object->shadow &&
176		object->shadow->paging_in_progress)
177		return 0;
178
179	if( !sync) {
180		if (object->shadow) {
181			vm_object_collapse(object);
182			if (!vm_page_lookup(object, offset))
183				return 0;
184		}
185
186		if ((m->busy != 0) ||
187			(m->flags & PG_BUSY) || (m->hold_count != 0)) {
188			return 0;
189		}
190	}
191
192	pageout_count = 1;
193	ms[0] = m;
194
195	pager = object->pager;
196	if (pager) {
197		for (i = 1; i < vm_pageout_page_count; i++) {
198			ms[i] = vm_page_lookup(object, offset+i*NBPG);
199			if (ms[i]) {
200				if (( ((ms[i]->flags & (PG_CLEAN|PG_INACTIVE|PG_BUSY)) == PG_INACTIVE)
201					|| ( (ms[i]->flags & (PG_CLEAN|PG_BUSY)) == 0 && sync == VM_PAGEOUT_FORCE))
202					&& (ms[i]->wire_count == 0)
203					&& (ms[i]->busy == 0)
204					&& (ms[i]->hold_count == 0))
205					pageout_count++;
206				else
207					break;
208			} else
209				break;
210		}
211		for(i=0;i<pageout_count;i++) {
212			ms[i]->flags |= PG_BUSY;
213			pmap_page_protect(VM_PAGE_TO_PHYS(ms[i]), VM_PROT_READ);
214		}
215		object->paging_in_progress += pageout_count;
216		cnt.v_pageouts++;
217		cnt.v_pgpgout += pageout_count;
218	} else {
219
220		m->flags |= PG_BUSY;
221
222		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_READ);
223
224		cnt.v_pageouts++;
225		cnt.v_pgpgout++;
226
227		object->paging_in_progress++;
228
229		pager = vm_pager_allocate(PG_DFLT, (caddr_t)0,
230			object->size, VM_PROT_ALL, 0);
231		if (pager != NULL) {
232			vm_object_setpager(object, pager, 0, FALSE);
233		}
234	}
235
236	/*
237	 *	If there is no pager for the page,
238	 *	use the default pager.  If there's
239	 *	no place to put the page at the
240	 *	moment, leave it in the laundry and
241	 *	hope that there will be paging space
242	 *	later.
243	 */
244
245	if ((pager && pager->pg_type == PG_SWAP) ||
246		cnt.v_free_count >= vm_pageout_free_min) {
247		if( pageout_count == 1) {
248			pageout_status[0] = pager ?
249				vm_pager_put(pager, m,
250				    ((sync || (object == kernel_object)) ? TRUE: FALSE)) :
251				VM_PAGER_FAIL;
252		} else {
253			if( !pager) {
254				for(i=0;i<pageout_count;i++)
255					pageout_status[i] = VM_PAGER_FAIL;
256			} else {
257				vm_pager_put_pages(pager, ms, pageout_count,
258				    ((sync || (object == kernel_object)) ? TRUE : FALSE),
259				    pageout_status);
260			}
261		}
262
263	} else {
264		for(i=0;i<pageout_count;i++)
265			pageout_status[i] = VM_PAGER_FAIL;
266	}
267
268	for(i=0;i<pageout_count;i++) {
269		switch (pageout_status[i]) {
270		case VM_PAGER_OK:
271			ms[i]->flags &= ~PG_LAUNDRY;
272			++anyok;
273			break;
274		case VM_PAGER_PEND:
275			ms[i]->flags &= ~PG_LAUNDRY;
276			++anyok;
277			break;
278		case VM_PAGER_BAD:
279			/*
280			 * Page outside of range of object.
281			 * Right now we essentially lose the
282			 * changes by pretending it worked.
283			 */
284			ms[i]->flags &= ~PG_LAUNDRY;
285			ms[i]->flags |= PG_CLEAN;
286			pmap_clear_modify(VM_PAGE_TO_PHYS(ms[i]));
287			break;
288		case VM_PAGER_ERROR:
289		case VM_PAGER_FAIL:
290			/*
291			 * If page couldn't be paged out, then
292			 * reactivate the page so it doesn't
293			 * clog the inactive list.  (We will
294			 * try paging out it again later).
295			 */
296			if (ms[i]->flags & PG_INACTIVE)
297				vm_page_activate(ms[i]);
298			break;
299		case VM_PAGER_AGAIN:
300			break;
301		}
302
303
304		/*
305		 * If the operation is still going, leave
306		 * the page busy to block all other accesses.
307		 * Also, leave the paging in progress
308		 * indicator set so that we don't attempt an
309		 * object collapse.
310		 */
311		if (pageout_status[i] != VM_PAGER_PEND) {
312			PAGE_WAKEUP(ms[i]);
313			if (--object->paging_in_progress == 0)
314				wakeup((caddr_t) object);
315			if ((ms[i]->flags & PG_REFERENCED) ||
316				pmap_is_referenced(VM_PAGE_TO_PHYS(ms[i]))) {
317				pmap_clear_reference(VM_PAGE_TO_PHYS(ms[i]));
318				ms[i]->flags &= ~PG_REFERENCED;
319				if( ms[i]->flags & PG_INACTIVE)
320					vm_page_activate(ms[i]);
321			}
322		}
323	}
324	return anyok;
325}
326
327/*
328 *	vm_pageout_object_deactivate_pages
329 *
330 *	deactivate enough pages to satisfy the inactive target
331 *	requirements or if vm_page_proc_limit is set, then
332 *	deactivate all of the pages in the object and its
333 *	shadows.
334 *
335 *	The object and map must be locked.
336 */
337int
338vm_pageout_object_deactivate_pages(map, object, count)
339	vm_map_t map;
340	vm_object_t object;
341	int count;
342{
343	register vm_page_t	p, next;
344	int rcount;
345	int dcount;
346
347	dcount = 0;
348	if (count == 0)
349		count = 1;
350
351	if (object->shadow) {
352		int scount = count;
353		if( object->shadow->ref_count > 1)
354			scount /= object->shadow->ref_count;
355		if( scount)
356			dcount += vm_pageout_object_deactivate_pages(map, object->shadow, scount);
357	}
358
359	if (object->paging_in_progress)
360		return dcount;
361
362	/*
363	 * scan the objects entire memory queue
364	 */
365	rcount = object->resident_page_count;
366	p = object->memq.tqh_first;
367	while (p && (rcount-- > 0)) {
368		next = p->listq.tqe_next;
369		vm_page_lock_queues();
370		/*
371		 * if a page is active, not wired and is in the processes pmap,
372		 * then deactivate the page.
373		 */
374		if ((p->flags & (PG_ACTIVE|PG_BUSY)) == PG_ACTIVE &&
375			p->wire_count == 0 &&
376			p->hold_count == 0 &&
377			p->busy == 0 &&
378			pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
379			if (!pmap_is_referenced(VM_PAGE_TO_PHYS(p)) &&
380				(p->flags & PG_REFERENCED) == 0) {
381				p->act_count -= min(p->act_count, ACT_DECLINE);
382				/*
383				 * if the page act_count is zero -- then we deactivate
384				 */
385				if (!p->act_count) {
386					vm_page_deactivate(p);
387					pmap_page_protect(VM_PAGE_TO_PHYS(p),
388						VM_PROT_NONE);
389				/*
390				 * else if on the next go-around we will deactivate the page
391				 * we need to place the page on the end of the queue to age
392				 * the other pages in memory.
393				 */
394				} else {
395					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
396					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
397					TAILQ_REMOVE(&object->memq, p, listq);
398					TAILQ_INSERT_TAIL(&object->memq, p, listq);
399				}
400				/*
401				 * see if we are done yet
402				 */
403				if (p->flags & PG_INACTIVE) {
404					--count;
405					++dcount;
406					if (count <= 0 &&
407						cnt.v_inactive_count > cnt.v_inactive_target) {
408							vm_page_unlock_queues();
409							return dcount;
410					}
411				}
412
413			} else {
414				/*
415				 * Move the page to the bottom of the queue.
416				 */
417				pmap_clear_reference(VM_PAGE_TO_PHYS(p));
418				p->flags &= ~PG_REFERENCED;
419				if (p->act_count < ACT_MAX)
420					p->act_count += ACT_ADVANCE;
421
422				TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
423				TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
424				TAILQ_REMOVE(&object->memq, p, listq);
425				TAILQ_INSERT_TAIL(&object->memq, p, listq);
426			}
427		}
428
429		vm_page_unlock_queues();
430		p = next;
431	}
432	return dcount;
433}
434
435
436/*
437 * deactivate some number of pages in a map, try to do it fairly, but
438 * that is really hard to do.
439 */
440
441void
442vm_pageout_map_deactivate_pages(map, entry, count, freeer)
443	vm_map_t map;
444	vm_map_entry_t entry;
445	int *count;
446	int (*freeer)(vm_map_t, vm_object_t, int);
447{
448	vm_map_t tmpm;
449	vm_map_entry_t tmpe;
450	vm_object_t obj;
451	if (*count <= 0)
452		return;
453	vm_map_reference(map);
454	if (!lock_try_read(&map->lock)) {
455		vm_map_deallocate(map);
456		return;
457	}
458	if (entry == 0) {
459		tmpe = map->header.next;
460		while (tmpe != &map->header && *count > 0) {
461			vm_pageout_map_deactivate_pages(map, tmpe, count, freeer);
462			tmpe = tmpe->next;
463		};
464	} else if (entry->is_sub_map || entry->is_a_map) {
465		tmpm = entry->object.share_map;
466		tmpe = tmpm->header.next;
467		while (tmpe != &tmpm->header && *count > 0) {
468			vm_pageout_map_deactivate_pages(tmpm, tmpe, count, freeer);
469			tmpe = tmpe->next;
470		};
471	} else if ((obj = entry->object.vm_object) != 0) {
472		*count -= (*freeer)(map, obj, *count);
473	}
474	lock_read_done(&map->lock);
475	vm_map_deallocate(map);
476	return;
477}
478
479/*
480 *	vm_pageout_scan does the dirty work for the pageout daemon.
481 */
482int
483vm_pageout_scan()
484{
485	vm_page_t	m;
486	int		page_shortage, maxscan, maxlaunder;
487	int		pages_freed;
488	int		desired_free;
489	vm_page_t	next;
490	struct proc	*p;
491	vm_object_t	object;
492	int		force_wakeup = 0;
493	int		cache_size, orig_cache_size;
494
495	/*
496	 * We manage the cached memory by attempting to keep it
497	 * at about the desired level.
498	 * We deactivate the pages for the oldest cached objects
499	 * first.  This keeps pages that are "cached" from hogging
500	 * physical memory.
501	 */
502	orig_cache_size = 0;
503	object = vm_object_cached_list.tqh_first;
504
505	/* calculate the total cached size */
506
507	while( object) {
508		orig_cache_size += object->resident_page_count;
509		object = object->cached_list.tqe_next;
510	}
511
512redeact:
513	cache_size = orig_cache_size;
514	object = vm_object_cached_list.tqh_first;
515	vm_object_cache_lock();
516	while ( object && (cnt.v_inactive_count < cnt.v_inactive_target) &&
517		(cache_size >= vm_desired_cache_size)) {
518		vm_object_cache_unlock();
519
520		/*
521		 * if there are no resident pages -- get rid of the object
522		 */
523		if( object->resident_page_count == 0) {
524			if (object != vm_object_lookup(object->pager))
525				panic("vm_object_deactivate: I'm sooo confused.");
526			pager_cache(object, FALSE);
527			goto redeact;
528		} else {
529		/*
530		 * if there are resident pages -- deactivate them
531		 */
532			vm_object_deactivate_pages(object);
533			cache_size -= object->resident_page_count;
534			object = object->cached_list.tqe_next;
535		}
536
537		vm_object_cache_lock();
538	}
539	vm_object_cache_unlock();
540
541morefree:
542	/*
543	 * now swap processes out if we are in low memory conditions
544	 */
545	if (cnt.v_free_count <= cnt.v_free_min) {
546		/*
547		 * swap out inactive processes
548		 */
549		swapout_threads();
550	}
551
552	/*
553	 * scan the processes for exceeding their rlimits or if process
554	 * is swapped out -- deactivate pages
555	 */
556
557	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
558		vm_offset_t size;
559		int overage;
560		quad_t limit;
561
562		/*
563		 * if this is a system process or if we have already
564		 * looked at this process, skip it.
565		 */
566		if (p->p_flag & (P_SYSTEM|P_WEXIT)) {
567			continue;
568		}
569
570		/*
571		 * if the process is in a non-running type state,
572		 * don't touch it.
573		 */
574		if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
575			continue;
576		}
577
578		/*
579		 * get a limit
580		 */
581		limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
582			    p->p_rlimit[RLIMIT_RSS].rlim_max);
583
584		/*
585		 * let processes that are swapped out really be swapped out
586		 * set the limit to nothing (will force a swap-out.)
587		 */
588		if ((p->p_flag & P_INMEM) == 0)
589			limit = 0;
590
591		size = p->p_vmspace->vm_pmap.pm_stats.resident_count * NBPG;
592		if (limit >= 0 && size >= limit) {
593			overage = (size - limit) / NBPG;
594			vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
595				(vm_map_entry_t) 0, &overage, vm_pageout_object_deactivate_pages);
596		}
597	}
598
599	if (((cnt.v_free_count + cnt.v_inactive_count) >=
600		(cnt.v_inactive_target + cnt.v_free_target)) &&
601		(cnt.v_free_count >= cnt.v_free_target))
602		return force_wakeup;
603
604	pages_freed = 0;
605	desired_free = cnt.v_free_target;
606
607	/*
608	 *	Start scanning the inactive queue for pages we can free.
609	 *	We keep scanning until we have enough free pages or
610	 *	we have scanned through the entire queue.  If we
611	 *	encounter dirty pages, we start cleaning them.
612	 */
613
614	maxlaunder = (cnt.v_free_target - cnt.v_free_count);
615	maxscan = cnt.v_inactive_count;
616rescan1:
617	m = vm_page_queue_inactive.tqh_first;
618	while (m && (maxscan-- > 0) &&
619		(cnt.v_free_count < desired_free) ) {
620		vm_page_t	next;
621
622		next = m->pageq.tqe_next;
623
624		if( (m->flags & PG_INACTIVE) == 0) {
625			printf("vm_pageout_scan: page not inactive?");
626			continue;
627		}
628
629		/*
630		 * activate held pages
631		 */
632		if (m->hold_count != 0) {
633			vm_page_activate(m);
634			m = next;
635			continue;
636		}
637
638		/*
639		 * dont mess with busy pages
640		 */
641		if (m->busy || (m->flags & PG_BUSY)) {
642			m = next;
643			continue;
644		}
645
646		/*
647		 * NOTE: PG_CLEAN doesn't guarantee that the page is clean.
648		 */
649		if (m->flags & PG_CLEAN) {
650			/*
651			 * If we're not low on memory and the page has been reference,
652			 * or if the page has been modified, then reactivate the page.
653			 */
654			if (((cnt.v_free_count > vm_pageout_free_min) &&
655			    (pmap_is_referenced(VM_PAGE_TO_PHYS(m)) || ((m->flags & PG_REFERENCED) != 0))) ||
656			    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
657				m->flags &= ~PG_REFERENCED;
658				vm_page_activate(m);
659			} else if (!m->act_count) {
660				pmap_page_protect(VM_PAGE_TO_PHYS(m),
661						  VM_PROT_NONE);
662				vm_page_free(m);
663				++cnt.v_dfree;
664				++pages_freed;
665			} else {
666				m->act_count -= min(m->act_count, ACT_DECLINE);
667				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
668				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
669			}
670		} else if ((m->flags & PG_LAUNDRY) && maxlaunder > 0) {
671			int written;
672			if (pmap_is_referenced(VM_PAGE_TO_PHYS(m)) ||
673				((m->flags & PG_REFERENCED) != 0)) {
674				pmap_clear_reference(VM_PAGE_TO_PHYS(m));
675				vm_page_activate(m);
676				m->flags &= ~PG_REFERENCED;
677				m = next;
678				continue;
679			}
680			/*
681			 *	If a page is dirty, then it is either
682			 *	being washed (but not yet cleaned)
683			 *	or it is still in the laundry.  If it is
684			 *	still in the laundry, then we start the
685			 *	cleaning operation.
686			 */
687
688			written = vm_pageout_clean(m,0);
689			if (written)
690				maxlaunder -= written;
691
692			if (!next)
693				break;
694			/*
695			 * if the next page has been re-activated, start scanning again
696			 */
697			if ((next->flags & PG_INACTIVE) == 0)
698				goto rescan1;
699		} else if ((m->flags & PG_REFERENCED) ||
700				pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
701			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
702			m->flags &= ~PG_REFERENCED;
703			vm_page_activate(m);
704		}
705		m = next;
706	}
707
708	/*
709	 *	Compute the page shortage.  If we are still very low on memory
710	 *	be sure that we will move a minimal amount of pages from active
711	 *	to inactive.
712	 */
713
714	page_shortage = cnt.v_inactive_target -
715	    (cnt.v_free_count + cnt.v_inactive_count);
716
717	if (page_shortage <= 0) {
718		if (pages_freed == 0) {
719			if( cnt.v_free_count < cnt.v_free_min) {
720				page_shortage = cnt.v_free_min - cnt.v_free_count;
721			} else if(((cnt.v_free_count + cnt.v_inactive_count) <
722				(cnt.v_free_min + cnt.v_inactive_target))) {
723				page_shortage = 1;
724			} else {
725				page_shortage = 0;
726			}
727		}
728
729	}
730
731	maxscan = cnt.v_active_count;
732	m = vm_page_queue_active.tqh_first;
733	while (m && maxscan-- && (page_shortage > 0)) {
734
735		next = m->pageq.tqe_next;
736
737		/*
738 		 * Don't deactivate pages that are busy.
739		 */
740		if ((m->busy != 0) ||
741			(m->flags & PG_BUSY) || (m->hold_count != 0)) {
742			m = next;
743			continue;
744		}
745
746		if ((m->flags & PG_REFERENCED) ||
747			pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
748			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
749			m->flags &= ~PG_REFERENCED;
750			if (m->act_count < ACT_MAX)
751				m->act_count += ACT_ADVANCE;
752			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
753			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
754			TAILQ_REMOVE(&m->object->memq, m, listq);
755			TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
756		} else {
757			m->act_count -= min(m->act_count, ACT_DECLINE);
758
759			/*
760			 * if the page act_count is zero -- then we deactivate
761			 */
762			if (!m->act_count) {
763				vm_page_deactivate(m);
764				--page_shortage;
765			/*
766			 * else if on the next go-around we will deactivate the page
767			 * we need to place the page on the end of the queue to age
768			 * the other pages in memory.
769			 */
770			} else {
771				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
772				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
773				TAILQ_REMOVE(&m->object->memq, m, listq);
774				TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
775			}
776		}
777		m = next;
778	}
779
780	/*
781	 * if we have not freed any pages and we are desparate for memory
782	 * then we keep trying until we get some (any) memory.
783	 */
784
785	if( !force_wakeup && (swap_pager_full || !force_wakeup ||
786		(pages_freed == 0 && (cnt.v_free_count < cnt.v_free_min)))){
787		vm_pager_sync();
788		force_wakeup = 1;
789		goto morefree;
790	}
791	vm_page_pagesfreed += pages_freed;
792	return force_wakeup;
793}
794
795/*
796 *	vm_pageout is the high level pageout daemon.
797 */
798void
799vm_pageout()
800{
801	(void) spl0();
802
803	/*
804	 *	Initialize some paging parameters.
805	 */
806
807	cnt.v_free_min = 12;
808	/*
809	 * free_reserved needs to include enough for the largest
810	 * swap pager structures plus enough for any pv_entry
811	 * structs when paging.
812	 */
813	cnt.v_free_reserved = 4 + cnt.v_page_count / 1024;
814	if (cnt.v_free_min < 8)
815		cnt.v_free_min = 8;
816	if (cnt.v_free_min > 32)
817		cnt.v_free_min = 32;
818	vm_pageout_free_min = cnt.v_free_reserved;
819	cnt.v_free_target = 2*cnt.v_free_min + cnt.v_free_reserved;
820	cnt.v_inactive_target = cnt.v_free_count / 12;
821	cnt.v_free_min += cnt.v_free_reserved;
822	vm_desired_cache_size = cnt.v_page_count / 3;
823
824        /* XXX does not really belong here */
825	if (vm_page_max_wired == 0)
826		vm_page_max_wired = cnt.v_free_count / 3;
827
828
829	(void) swap_pager_alloc(0, 0, 0, 0);
830
831	/*
832	 *	The pageout daemon is never done, so loop
833	 *	forever.
834	 */
835	while (TRUE) {
836		int force_wakeup;
837/*
838		cnt.v_free_min = 12 + averunnable.ldavg[0] / 1024;
839		cnt.v_free_target = 2*cnt.v_free_min + cnt.v_free_reserved;
840		cnt.v_inactive_target = cnt.v_free_target*2;
841*/
842
843		tsleep((caddr_t) &vm_pages_needed, PVM, "psleep", 0);
844
845		vm_pager_sync();
846		/*
847		 * The force wakeup hack added to eliminate delays and potiential
848		 * deadlock.  It was possible for the page daemon to indefintely
849		 * postpone waking up a process that it might be waiting for memory
850		 * on.  The putmulti stuff seems to have aggravated the situation.
851		 */
852		force_wakeup = vm_pageout_scan();
853		vm_pager_sync();
854		if( force_wakeup)
855			wakeup( (caddr_t) &cnt.v_free_count);
856		cnt.v_scan++;
857		wakeup((caddr_t) kmem_map);
858	}
859}
860
861