vm_pageout.c revision 34206
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.117 1998/03/01 04:18:28 dyson Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/signalvar.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sysctl.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <sys/lock.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_extern.h>
96
97/*
98 * System initialization
99 */
100
101/* the kernel process "vm_pageout"*/
102static void vm_pageout __P((void));
103static int vm_pageout_clean __P((vm_page_t));
104static int vm_pageout_scan __P((void));
105static int vm_pageout_free_page_calc __P((vm_size_t count));
106struct proc *pageproc;
107
108static struct kproc_desc page_kp = {
109	"pagedaemon",
110	vm_pageout,
111	&pageproc
112};
113SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
114
115#if !defined(NO_SWAPPING)
116/* the kernel process "vm_daemon"*/
117static void vm_daemon __P((void));
118static struct	proc *vmproc;
119
120static struct kproc_desc vm_kp = {
121	"vmdaemon",
122	vm_daemon,
123	&vmproc
124};
125SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126#endif
127
128
129int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
130int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
131int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
132
133extern int npendingio;
134#if !defined(NO_SWAPPING)
135static int vm_pageout_req_swapout;	/* XXX */
136static int vm_daemon_needed;
137#endif
138extern int nswiodone;
139extern int vm_swap_size;
140extern int vfs_update_wakeup;
141static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
142static int vm_pageout_full_stats_interval = 0;
143static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
144static int defer_swap_pageouts=0;
145static int disable_swap_pageouts=0;
146
147static int max_page_launder=100;
148#if defined(NO_SWAPPING)
149static int vm_swap_enabled=0;
150static int vm_swap_idle_enabled=0;
151#else
152static int vm_swap_enabled=1;
153static int vm_swap_idle_enabled=0;
154#endif
155
156SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
158
159SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160	CTLFLAG_RW, &vm_pageout_stats_max, 0, "");
161
162SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "");
164
165SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "");
167
168SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "");
170
171#if defined(NO_SWAPPING)
172SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176#else
177SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178	CTLFLAG_RW, &vm_swap_enabled, 0, "");
179SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "");
181#endif
182
183SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184	CTLFLAG_RW, &defer_swap_pageouts, 0, "");
185
186SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187	CTLFLAG_RW, &disable_swap_pageouts, 0, "");
188
189SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
190	CTLFLAG_RW, &max_page_launder, 0, "");
191
192
193#define VM_PAGEOUT_PAGE_COUNT 16
194int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
195
196int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
197
198#if !defined(NO_SWAPPING)
199typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
200static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
201static freeer_fcn_t vm_pageout_object_deactivate_pages;
202static void vm_req_vmdaemon __P((void));
203#endif
204static void vm_pageout_page_stats(void);
205void pmap_collect(void);
206
207/*
208 * vm_pageout_clean:
209 *
210 * Clean the page and remove it from the laundry.
211 *
212 * We set the busy bit to cause potential page faults on this page to
213 * block.
214 *
215 * And we set pageout-in-progress to keep the object from disappearing
216 * during pageout.  This guarantees that the page won't move from the
217 * inactive queue.  (However, any other page on the inactive queue may
218 * move!)
219 */
220static int
221vm_pageout_clean(m)
222	vm_page_t m;
223{
224	register vm_object_t object;
225	vm_page_t mc[2*vm_pageout_page_count];
226	int pageout_count;
227	int i, forward_okay, backward_okay, page_base;
228	vm_pindex_t pindex = m->pindex;
229
230	object = m->object;
231
232	/*
233	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
234	 * Try to avoid the deadlock.
235	 */
236	if ((object->type == OBJT_DEFAULT) &&
237	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
238		return 0;
239
240	/*
241	 * Don't mess with the page if it's busy.
242	 */
243	if ((m->hold_count != 0) ||
244	    ((m->busy != 0) || (m->flags & PG_BUSY)))
245		return 0;
246
247	/*
248	 * Try collapsing before it's too late.
249	 */
250	if (object->backing_object) {
251		vm_object_collapse(object);
252	}
253
254	mc[vm_pageout_page_count] = m;
255	pageout_count = 1;
256	page_base = vm_pageout_page_count;
257	forward_okay = TRUE;
258	if (pindex != 0)
259		backward_okay = TRUE;
260	else
261		backward_okay = FALSE;
262	/*
263	 * Scan object for clusterable pages.
264	 *
265	 * We can cluster ONLY if: ->> the page is NOT
266	 * clean, wired, busy, held, or mapped into a
267	 * buffer, and one of the following:
268	 * 1) The page is inactive, or a seldom used
269	 *    active page.
270	 * -or-
271	 * 2) we force the issue.
272	 */
273	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
274		vm_page_t p;
275
276		/*
277		 * See if forward page is clusterable.
278		 */
279		if (forward_okay) {
280			/*
281			 * Stop forward scan at end of object.
282			 */
283			if ((pindex + i) > object->size) {
284				forward_okay = FALSE;
285				goto do_backward;
286			}
287			p = vm_page_lookup(object, pindex + i);
288			if (p) {
289				if (((p->queue - p->pc) == PQ_CACHE) ||
290					(p->flags & PG_BUSY) || p->busy) {
291					forward_okay = FALSE;
292					goto do_backward;
293				}
294				vm_page_test_dirty(p);
295				if ((p->dirty & p->valid) != 0 &&
296				    (p->queue == PQ_INACTIVE) &&
297				    (p->wire_count == 0) &&
298				    (p->hold_count == 0)) {
299					mc[vm_pageout_page_count + i] = p;
300					pageout_count++;
301					if (pageout_count == vm_pageout_page_count)
302						break;
303				} else {
304					forward_okay = FALSE;
305				}
306			} else {
307				forward_okay = FALSE;
308			}
309		}
310do_backward:
311		/*
312		 * See if backward page is clusterable.
313		 */
314		if (backward_okay) {
315			/*
316			 * Stop backward scan at beginning of object.
317			 */
318			if ((pindex - i) == 0) {
319				backward_okay = FALSE;
320			}
321			p = vm_page_lookup(object, pindex - i);
322			if (p) {
323				if (((p->queue - p->pc) == PQ_CACHE) ||
324					(p->flags & PG_BUSY) || p->busy) {
325					backward_okay = FALSE;
326					continue;
327				}
328				vm_page_test_dirty(p);
329				if ((p->dirty & p->valid) != 0 &&
330				    (p->queue == PQ_INACTIVE) &&
331				    (p->wire_count == 0) &&
332				    (p->hold_count == 0)) {
333					mc[vm_pageout_page_count - i] = p;
334					pageout_count++;
335					page_base--;
336					if (pageout_count == vm_pageout_page_count)
337						break;
338				} else {
339					backward_okay = FALSE;
340				}
341			} else {
342				backward_okay = FALSE;
343			}
344		}
345	}
346
347	/*
348	 * we allow reads during pageouts...
349	 */
350	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
351}
352
353int
354vm_pageout_flush(mc, count, flags)
355	vm_page_t *mc;
356	int count;
357	int flags;
358{
359	register vm_object_t object;
360	int pageout_status[count];
361	int numpagedout = 0;
362	int i;
363
364	for (i = 0; i < count; i++) {
365		mc[i]->busy++;
366		vm_page_protect(mc[i], VM_PROT_READ);
367	}
368
369	object = mc[0]->object;
370	object->paging_in_progress += count;
371
372	vm_pager_put_pages(object, mc, count,
373	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
374	    pageout_status);
375
376	for (i = 0; i < count; i++) {
377		vm_page_t mt = mc[i];
378
379		switch (pageout_status[i]) {
380		case VM_PAGER_OK:
381			numpagedout++;
382			break;
383		case VM_PAGER_PEND:
384			numpagedout++;
385			break;
386		case VM_PAGER_BAD:
387			/*
388			 * Page outside of range of object. Right now we
389			 * essentially lose the changes by pretending it
390			 * worked.
391			 */
392			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
393			mt->dirty = 0;
394			break;
395		case VM_PAGER_ERROR:
396		case VM_PAGER_FAIL:
397			/*
398			 * If page couldn't be paged out, then reactivate the
399			 * page so it doesn't clog the inactive list.  (We
400			 * will try paging out it again later).
401			 */
402			vm_page_activate(mt);
403			break;
404		case VM_PAGER_AGAIN:
405			break;
406		}
407
408		/*
409		 * If the operation is still going, leave the page busy to
410		 * block all other accesses. Also, leave the paging in
411		 * progress indicator set so that we don't attempt an object
412		 * collapse.
413		 */
414		if (pageout_status[i] != VM_PAGER_PEND) {
415			vm_object_pip_wakeup(object);
416			PAGE_BWAKEUP(mt);
417		}
418	}
419	return numpagedout;
420}
421
422#if !defined(NO_SWAPPING)
423/*
424 *	vm_pageout_object_deactivate_pages
425 *
426 *	deactivate enough pages to satisfy the inactive target
427 *	requirements or if vm_page_proc_limit is set, then
428 *	deactivate all of the pages in the object and its
429 *	backing_objects.
430 *
431 *	The object and map must be locked.
432 */
433static void
434vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
435	vm_map_t map;
436	vm_object_t object;
437	vm_pindex_t desired;
438	int map_remove_only;
439{
440	register vm_page_t p, next;
441	int rcount;
442	int remove_mode;
443	int s;
444
445	if (object->type == OBJT_DEVICE)
446		return;
447
448	while (object) {
449		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
450			return;
451		if (object->paging_in_progress)
452			return;
453
454		remove_mode = map_remove_only;
455		if (object->shadow_count > 1)
456			remove_mode = 1;
457	/*
458	 * scan the objects entire memory queue
459	 */
460		rcount = object->resident_page_count;
461		p = TAILQ_FIRST(&object->memq);
462		while (p && (rcount-- > 0)) {
463			int actcount;
464			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
465				return;
466			next = TAILQ_NEXT(p, listq);
467			cnt.v_pdpages++;
468			if (p->wire_count != 0 ||
469			    p->hold_count != 0 ||
470			    p->busy != 0 ||
471			    (p->flags & PG_BUSY) ||
472			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
473				p = next;
474				continue;
475			}
476
477			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
478			if (actcount) {
479				p->flags |= PG_REFERENCED;
480			} else if (p->flags & PG_REFERENCED) {
481				actcount = 1;
482			}
483
484			if ((p->queue != PQ_ACTIVE) &&
485				(p->flags & PG_REFERENCED)) {
486				vm_page_activate(p);
487				p->act_count += actcount;
488				p->flags &= ~PG_REFERENCED;
489			} else if (p->queue == PQ_ACTIVE) {
490				if ((p->flags & PG_REFERENCED) == 0) {
491					p->act_count -= min(p->act_count, ACT_DECLINE);
492					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
493						vm_page_protect(p, VM_PROT_NONE);
494						vm_page_deactivate(p);
495					} else {
496						s = splvm();
497						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
498						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
499						splx(s);
500					}
501				} else {
502					vm_page_activate(p);
503					p->flags &= ~PG_REFERENCED;
504					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
505						p->act_count += ACT_ADVANCE;
506					s = splvm();
507					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
508					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
509					splx(s);
510				}
511			} else if (p->queue == PQ_INACTIVE) {
512				vm_page_protect(p, VM_PROT_NONE);
513			}
514			p = next;
515		}
516		object = object->backing_object;
517	}
518	return;
519}
520
521/*
522 * deactivate some number of pages in a map, try to do it fairly, but
523 * that is really hard to do.
524 */
525static void
526vm_pageout_map_deactivate_pages(map, desired)
527	vm_map_t map;
528	vm_pindex_t desired;
529{
530	vm_map_entry_t tmpe;
531	vm_object_t obj, bigobj;
532
533	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
534		return;
535	}
536
537	bigobj = NULL;
538
539	/*
540	 * first, search out the biggest object, and try to free pages from
541	 * that.
542	 */
543	tmpe = map->header.next;
544	while (tmpe != &map->header) {
545		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
546			obj = tmpe->object.vm_object;
547			if ((obj != NULL) && (obj->shadow_count <= 1) &&
548				((bigobj == NULL) ||
549				 (bigobj->resident_page_count < obj->resident_page_count))) {
550				bigobj = obj;
551			}
552		}
553		tmpe = tmpe->next;
554	}
555
556	if (bigobj)
557		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
558
559	/*
560	 * Next, hunt around for other pages to deactivate.  We actually
561	 * do this search sort of wrong -- .text first is not the best idea.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
566			break;
567		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
568			obj = tmpe->object.vm_object;
569			if (obj)
570				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
571		}
572		tmpe = tmpe->next;
573	};
574
575	/*
576	 * Remove all mappings if a process is swapped out, this will free page
577	 * table pages.
578	 */
579	if (desired == 0)
580		pmap_remove(vm_map_pmap(map),
581			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
582	vm_map_unlock(map);
583	return;
584}
585#endif
586
587void
588vm_pageout_page_free(vm_page_t m) {
589	struct vnode *vp;
590	vm_object_t object;
591
592	object = m->object;
593	object->ref_count++;
594
595	if (object->type == OBJT_VNODE) {
596		vp = object->handle;
597		vp->v_usecount++;
598		if (VSHOULDBUSY(vp))
599			vbusy(vp);
600	}
601
602	m->flags |= PG_BUSY;
603	vm_page_protect(m, VM_PROT_NONE);
604	vm_page_free(m);
605	vm_object_deallocate(object);
606}
607
608/*
609 *	vm_pageout_scan does the dirty work for the pageout daemon.
610 */
611static int
612vm_pageout_scan()
613{
614	vm_page_t m, next;
615	int page_shortage, addl_page_shortage, maxscan, pcount;
616	int maxlaunder;
617	int pages_freed;
618	struct proc *p, *bigproc;
619	vm_offset_t size, bigsize;
620	vm_object_t object;
621	int force_wakeup = 0;
622	int actcount;
623	int vnodes_skipped = 0;
624	int s;
625
626	/*
627	 * Do whatever cleanup that the pmap code can.
628	 */
629	pmap_collect();
630
631	/*
632	 * Start scanning the inactive queue for pages we can free. We keep
633	 * scanning until we have enough free pages or we have scanned through
634	 * the entire queue.  If we encounter dirty pages, we start cleaning
635	 * them.
636	 */
637
638	pages_freed = 0;
639	addl_page_shortage = vm_pageout_deficit;
640	vm_pageout_deficit = 0;
641
642	if (max_page_launder == 0)
643		max_page_launder = 1;
644	maxlaunder = (cnt.v_inactive_target > max_page_launder) ?
645	    max_page_launder : cnt.v_inactive_target;
646
647rescan0:
648	maxscan = cnt.v_inactive_count;
649	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
650
651		(m != NULL) && (maxscan-- > 0) &&
652			((cnt.v_cache_count + cnt.v_free_count) <
653			(cnt.v_cache_min + cnt.v_free_target));
654
655		m = next) {
656
657		cnt.v_pdpages++;
658
659		if (m->queue != PQ_INACTIVE) {
660			goto rescan0;
661		}
662
663		next = TAILQ_NEXT(m, pageq);
664
665		if (m->hold_count) {
666			s = splvm();
667			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
668			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
669			splx(s);
670			addl_page_shortage++;
671			continue;
672		}
673		/*
674		 * Dont mess with busy pages, keep in the front of the
675		 * queue, most likely are being paged out.
676		 */
677		if (m->busy || (m->flags & PG_BUSY)) {
678			addl_page_shortage++;
679			continue;
680		}
681
682		/*
683		 * If the object is not being used, we ignore previous references.
684		 */
685		if (m->object->ref_count == 0) {
686			m->flags &= ~PG_REFERENCED;
687			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
688
689		/*
690		 * Otherwise, if the page has been referenced while in the inactive
691		 * queue, we bump the "activation count" upwards, making it less
692		 * likely that the page will be added back to the inactive queue
693		 * prematurely again.  Here we check the page tables (or emulated
694		 * bits, if any), given the upper level VM system not knowing anything
695		 * about existing references.
696		 */
697		} else if (((m->flags & PG_REFERENCED) == 0) &&
698			(actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
699			vm_page_activate(m);
700			m->act_count += (actcount + ACT_ADVANCE);
701			continue;
702		}
703
704		/*
705		 * If the upper level VM system knows about any page references,
706		 * we activate the page.  We also set the "activation count" higher
707		 * than normal so that we will less likely place pages back onto the
708		 * inactive queue again.
709		 */
710		if ((m->flags & PG_REFERENCED) != 0) {
711			m->flags &= ~PG_REFERENCED;
712			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
713			vm_page_activate(m);
714			m->act_count += (actcount + ACT_ADVANCE + 1);
715			continue;
716		}
717
718		/*
719		 * If the upper level VM system doesn't know anything about the
720		 * page being dirty, we have to check for it again.  As far as the
721		 * VM code knows, any partially dirty pages are fully dirty.
722		 */
723		if (m->dirty == 0) {
724			vm_page_test_dirty(m);
725		} else if (m->dirty != 0) {
726			m->dirty = VM_PAGE_BITS_ALL;
727		}
728
729		/*
730		 * Invalid pages can be easily freed
731		 */
732		if (m->valid == 0) {
733			vm_pageout_page_free(m);
734			cnt.v_dfree++;
735			pages_freed++;
736
737		/*
738		 * Clean pages can be placed onto the cache queue.
739		 */
740		} else if (m->dirty == 0) {
741			vm_page_cache(m);
742			pages_freed++;
743
744		/*
745		 * Dirty pages need to be paged out.  Note that we clean
746		 * only a limited number of pages per pagedaemon pass.
747		 */
748		} else if (maxlaunder > 0) {
749			int written;
750			int swap_pageouts_ok;
751			struct vnode *vp = NULL;
752
753			object = m->object;
754
755			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
756				swap_pageouts_ok = 1;
757			} else {
758				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
759				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
760					(cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min);
761
762			}
763
764			/*
765			 * We don't bother paging objects that are "dead".  Those
766			 * objects are in a "rundown" state.
767			 */
768			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
769				s = splvm();
770				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
771				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
772				splx(s);
773				continue;
774			}
775
776			if ((object->type == OBJT_VNODE) &&
777				(object->flags & OBJ_DEAD) == 0) {
778				vp = object->handle;
779				if (VOP_ISLOCKED(vp) ||
780				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
781					if ((m->queue == PQ_INACTIVE) &&
782						(m->hold_count == 0) &&
783						(m->busy == 0) &&
784						(m->flags & PG_BUSY) == 0) {
785						s = splvm();
786						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
787						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
788						splx(s);
789					}
790					if (object->flags & OBJ_MIGHTBEDIRTY)
791						vnodes_skipped++;
792					continue;
793				}
794
795				/*
796				 * The page might have been moved to another queue
797				 * during potential blocking in vget() above.
798				 */
799				if (m->queue != PQ_INACTIVE) {
800					if (object->flags & OBJ_MIGHTBEDIRTY)
801						vnodes_skipped++;
802					vput(vp);
803					continue;
804				}
805
806				/*
807				 * The page may have been busied during the blocking in
808				 * vput();  We don't move the page back onto the end of
809				 * the queue so that statistics are more correct if we don't.
810				 */
811				if (m->busy || (m->flags & PG_BUSY)) {
812					vput(vp);
813					continue;
814				}
815
816				/*
817				 * If the page has become held, then skip it
818				 */
819				if (m->hold_count) {
820					s = splvm();
821					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
822					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
823					splx(s);
824					if (object->flags & OBJ_MIGHTBEDIRTY)
825						vnodes_skipped++;
826					vput(vp);
827					continue;
828				}
829			}
830
831			/*
832			 * If a page is dirty, then it is either being washed
833			 * (but not yet cleaned) or it is still in the
834			 * laundry.  If it is still in the laundry, then we
835			 * start the cleaning operation.
836			 */
837			written = vm_pageout_clean(m);
838			if (vp)
839				vput(vp);
840
841			maxlaunder -= written;
842		}
843	}
844
845	/*
846	 * Compute the page shortage.  If we are still very low on memory be
847	 * sure that we will move a minimal amount of pages from active to
848	 * inactive.
849	 */
850	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
851	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
852	if (page_shortage <= 0) {
853		if (pages_freed == 0) {
854			page_shortage = cnt.v_free_min - cnt.v_free_count;
855		} else {
856			page_shortage = 1;
857		}
858	}
859
860	/*
861	 * If the "inactive" loop finds that there is a shortage over and
862	 * above the page statistics variables, then we need to accomodate
863	 * that.  This avoids potential deadlocks due to pages being temporarily
864	 * busy for I/O or other types of temporary wiring.
865	 */
866	if (addl_page_shortage) {
867		if (page_shortage < 0)
868			page_shortage = 0;
869		page_shortage += addl_page_shortage;
870	}
871
872	pcount = cnt.v_active_count;
873	m = TAILQ_FIRST(&vm_page_queue_active);
874	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
875
876		/*
877		 * This is a consistancy check, and should likely be a panic
878		 * or warning.
879		 */
880		if (m->queue != PQ_ACTIVE) {
881			break;
882		}
883
884		next = TAILQ_NEXT(m, pageq);
885		/*
886		 * Don't deactivate pages that are busy.
887		 */
888		if ((m->busy != 0) ||
889		    (m->flags & PG_BUSY) ||
890		    (m->hold_count != 0)) {
891			s = splvm();
892			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
893			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
894			splx(s);
895			m = next;
896			continue;
897		}
898
899		/*
900		 * The count for pagedaemon pages is done after checking the
901		 * page for eligbility...
902		 */
903		cnt.v_pdpages++;
904
905		/*
906		 * Check to see "how much" the page has been used.
907		 */
908		actcount = 0;
909		if (m->object->ref_count != 0) {
910			if (m->flags & PG_REFERENCED) {
911				actcount += 1;
912			}
913			actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
914			if (actcount) {
915				m->act_count += ACT_ADVANCE + actcount;
916				if (m->act_count > ACT_MAX)
917					m->act_count = ACT_MAX;
918			}
919		}
920
921		/*
922		 * Since we have "tested" this bit, we need to clear it now.
923		 */
924		m->flags &= ~PG_REFERENCED;
925
926		/*
927		 * Only if an object is currently being used, do we use the
928		 * page activation count stats.
929		 */
930		if (actcount && (m->object->ref_count != 0)) {
931			s = splvm();
932			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
933			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
934			splx(s);
935		} else {
936			m->act_count -= min(m->act_count, ACT_DECLINE);
937			if (vm_pageout_algorithm_lru ||
938				(m->object->ref_count == 0) || (m->act_count == 0)) {
939				page_shortage--;
940				if (m->object->ref_count == 0) {
941					vm_page_protect(m, VM_PROT_NONE);
942					if (m->dirty == 0)
943						vm_page_cache(m);
944					else
945						vm_page_deactivate(m);
946				} else {
947					vm_page_deactivate(m);
948				}
949			} else {
950				s = splvm();
951				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
952				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
953				splx(s);
954			}
955		}
956		m = next;
957	}
958
959	s = splvm();
960	/*
961	 * We try to maintain some *really* free pages, this allows interrupt
962	 * code to be guaranteed space.
963	 */
964	while (cnt.v_free_count < cnt.v_free_reserved) {
965		static int cache_rover = 0;
966		m = vm_page_list_find(PQ_CACHE, cache_rover);
967		if (!m)
968			break;
969		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
970		vm_pageout_page_free(m);
971		cnt.v_dfree++;
972	}
973	splx(s);
974
975#if !defined(NO_SWAPPING)
976	/*
977	 * Idle process swapout -- run once per second.
978	 */
979	if (vm_swap_idle_enabled) {
980		static long lsec;
981		if (time.tv_sec != lsec) {
982			vm_pageout_req_swapout |= VM_SWAP_IDLE;
983			vm_req_vmdaemon();
984			lsec = time.tv_sec;
985		}
986	}
987#endif
988
989	/*
990	 * If we didn't get enough free pages, and we have skipped a vnode
991	 * in a writeable object, wakeup the sync daemon.  And kick swapout
992	 * if we did not get enough free pages.
993	 */
994	if ((cnt.v_cache_count + cnt.v_free_count) <
995		(cnt.v_free_target + cnt.v_cache_min) ) {
996		if (vnodes_skipped &&
997		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
998			if (!vfs_update_wakeup) {
999				vfs_update_wakeup = 1;
1000				wakeup(&vfs_update_wakeup);
1001			}
1002		}
1003#if !defined(NO_SWAPPING)
1004		if (vm_swap_enabled &&
1005			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
1006			vm_req_vmdaemon();
1007			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1008		}
1009#endif
1010	}
1011
1012
1013	/*
1014	 * make sure that we have swap space -- if we are low on memory and
1015	 * swap -- then kill the biggest process.
1016	 */
1017	if ((vm_swap_size == 0 || swap_pager_full) &&
1018	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
1019		bigproc = NULL;
1020		bigsize = 0;
1021		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1022			/*
1023			 * if this is a system process, skip it
1024			 */
1025			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1026			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1027				continue;
1028			}
1029			/*
1030			 * if the process is in a non-running type state,
1031			 * don't touch it.
1032			 */
1033			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1034				continue;
1035			}
1036			/*
1037			 * get the process size
1038			 */
1039			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1040			/*
1041			 * if the this process is bigger than the biggest one
1042			 * remember it.
1043			 */
1044			if (size > bigsize) {
1045				bigproc = p;
1046				bigsize = size;
1047			}
1048		}
1049		if (bigproc != NULL) {
1050			killproc(bigproc, "out of swap space");
1051			bigproc->p_estcpu = 0;
1052			bigproc->p_nice = PRIO_MIN;
1053			resetpriority(bigproc);
1054			wakeup(&cnt.v_free_count);
1055		}
1056	}
1057	return force_wakeup;
1058}
1059
1060/*
1061 * This routine tries to maintain the pseudo LRU active queue,
1062 * so that during long periods of time where there is no paging,
1063 * that some statistic accumlation still occurs.  This code
1064 * helps the situation where paging just starts to occur.
1065 */
1066static void
1067vm_pageout_page_stats()
1068{
1069	int s;
1070	vm_page_t m,next;
1071	int pcount,tpcount;		/* Number of pages to check */
1072	static int fullintervalcount = 0;
1073
1074	pcount = cnt.v_active_count;
1075	fullintervalcount += vm_pageout_stats_interval;
1076	if (fullintervalcount < vm_pageout_full_stats_interval) {
1077		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1078		if (pcount > tpcount)
1079			pcount = tpcount;
1080	}
1081
1082	m = TAILQ_FIRST(&vm_page_queue_active);
1083	while ((m != NULL) && (pcount-- > 0)) {
1084		int actcount;
1085
1086		if (m->queue != PQ_ACTIVE) {
1087			break;
1088		}
1089
1090		next = TAILQ_NEXT(m, pageq);
1091		/*
1092		 * Don't deactivate pages that are busy.
1093		 */
1094		if ((m->busy != 0) ||
1095		    (m->flags & PG_BUSY) ||
1096		    (m->hold_count != 0)) {
1097			s = splvm();
1098			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1099			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1100			splx(s);
1101			m = next;
1102			continue;
1103		}
1104
1105		actcount = 0;
1106		if (m->flags & PG_REFERENCED) {
1107			m->flags &= ~PG_REFERENCED;
1108			actcount += 1;
1109		}
1110
1111		actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1112		if (actcount) {
1113			m->act_count += ACT_ADVANCE + actcount;
1114			if (m->act_count > ACT_MAX)
1115				m->act_count = ACT_MAX;
1116			s = splvm();
1117			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1118			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1119			splx(s);
1120		} else {
1121			if (m->act_count == 0) {
1122				/*
1123				 * We turn off page access, so that we have more accurate
1124				 * RSS stats.  We don't do this in the normal page deactivation
1125				 * when the system is loaded VM wise, because the cost of
1126				 * the large number of page protect operations would be higher
1127				 * than the value of doing the operation.
1128				 */
1129				vm_page_protect(m, VM_PROT_NONE);
1130				vm_page_deactivate(m);
1131			} else {
1132				m->act_count -= min(m->act_count, ACT_DECLINE);
1133				s = splvm();
1134				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1135				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1136				splx(s);
1137			}
1138		}
1139
1140		m = next;
1141	}
1142}
1143
1144static int
1145vm_pageout_free_page_calc(count)
1146vm_size_t count;
1147{
1148	if (count < cnt.v_page_count)
1149		 return 0;
1150	/*
1151	 * free_reserved needs to include enough for the largest swap pager
1152	 * structures plus enough for any pv_entry structs when paging.
1153	 */
1154	if (cnt.v_page_count > 1024)
1155		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1156	else
1157		cnt.v_free_min = 4;
1158	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1159		cnt.v_interrupt_free_min;
1160	cnt.v_free_reserved = vm_pageout_page_count +
1161		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1162	cnt.v_free_min += cnt.v_free_reserved;
1163	return 1;
1164}
1165
1166
1167/*
1168 *	vm_pageout is the high level pageout daemon.
1169 */
1170static void
1171vm_pageout()
1172{
1173	/*
1174	 * Initialize some paging parameters.
1175	 */
1176
1177	cnt.v_interrupt_free_min = 2;
1178	if (cnt.v_page_count < 2000)
1179		vm_pageout_page_count = 8;
1180
1181	vm_pageout_free_page_calc(cnt.v_page_count);
1182	/*
1183	 * free_reserved needs to include enough for the largest swap pager
1184	 * structures plus enough for any pv_entry structs when paging.
1185	 */
1186	if (cnt.v_free_count > 6144)
1187		cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1188	else
1189		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1190
1191	if (cnt.v_free_count > 2048) {
1192		cnt.v_cache_min = cnt.v_free_target;
1193		cnt.v_cache_max = 2 * cnt.v_cache_min;
1194		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1195	} else {
1196		cnt.v_cache_min = 0;
1197		cnt.v_cache_max = 0;
1198		cnt.v_inactive_target = cnt.v_free_count / 4;
1199	}
1200	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1201		cnt.v_inactive_target = cnt.v_free_count / 3;
1202
1203	/* XXX does not really belong here */
1204	if (vm_page_max_wired == 0)
1205		vm_page_max_wired = cnt.v_free_count / 3;
1206
1207	if (vm_pageout_stats_max == 0)
1208		vm_pageout_stats_max = cnt.v_free_target;
1209
1210	/*
1211	 * Set interval in seconds for stats scan.
1212	 */
1213	if (vm_pageout_stats_interval == 0)
1214		vm_pageout_stats_interval = 4;
1215	if (vm_pageout_full_stats_interval == 0)
1216		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1217
1218
1219	/*
1220	 * Set maximum free per pass
1221	 */
1222	if (vm_pageout_stats_free_max == 0)
1223		vm_pageout_stats_free_max = 25;
1224
1225	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1226
1227	swap_pager_swap_init();
1228	/*
1229	 * The pageout daemon is never done, so loop forever.
1230	 */
1231	while (TRUE) {
1232		int inactive_target;
1233		int error;
1234		int s = splvm();
1235		if (!vm_pages_needed ||
1236			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1237			vm_pages_needed = 0;
1238			error = tsleep(&vm_pages_needed,
1239				PVM, "psleep", vm_pageout_stats_interval * hz);
1240			if (error && !vm_pages_needed) {
1241				splx(s);
1242				vm_pageout_page_stats();
1243				continue;
1244			}
1245		} else if (vm_pages_needed) {
1246			vm_pages_needed = 0;
1247			tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1248		}
1249
1250		if (vm_pages_needed)
1251			cnt.v_pdwakeups++;
1252		vm_pages_needed = 0;
1253		splx(s);
1254		vm_pager_sync();
1255		vm_pageout_scan();
1256		vm_pageout_deficit = 0;
1257		vm_pager_sync();
1258		wakeup(&cnt.v_free_count);
1259	}
1260}
1261
1262void
1263pagedaemon_wakeup()
1264{
1265	if (!vm_pages_needed && curproc != pageproc) {
1266		vm_pages_needed++;
1267		wakeup(&vm_pages_needed);
1268	}
1269}
1270
1271#if !defined(NO_SWAPPING)
1272static void
1273vm_req_vmdaemon()
1274{
1275	static int lastrun = 0;
1276
1277	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1278		wakeup(&vm_daemon_needed);
1279		lastrun = ticks;
1280	}
1281}
1282
1283static void
1284vm_daemon()
1285{
1286	vm_object_t object;
1287	struct proc *p;
1288
1289	while (TRUE) {
1290		tsleep(&vm_daemon_needed, PUSER, "psleep", 0);
1291		if (vm_pageout_req_swapout) {
1292			swapout_procs(vm_pageout_req_swapout);
1293			vm_pageout_req_swapout = 0;
1294		}
1295		/*
1296		 * scan the processes for exceeding their rlimits or if
1297		 * process is swapped out -- deactivate pages
1298		 */
1299
1300		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1301			quad_t limit;
1302			vm_offset_t size;
1303
1304			/*
1305			 * if this is a system process or if we have already
1306			 * looked at this process, skip it.
1307			 */
1308			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1309				continue;
1310			}
1311			/*
1312			 * if the process is in a non-running type state,
1313			 * don't touch it.
1314			 */
1315			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1316				continue;
1317			}
1318			/*
1319			 * get a limit
1320			 */
1321			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1322			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1323
1324			/*
1325			 * let processes that are swapped out really be
1326			 * swapped out set the limit to nothing (will force a
1327			 * swap-out.)
1328			 */
1329			if ((p->p_flag & P_INMEM) == 0)
1330				limit = 0;	/* XXX */
1331
1332			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1333			if (limit >= 0 && size >= limit) {
1334				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1335				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1336			}
1337		}
1338	}
1339}
1340#endif
1341