vm_pageout.c revision 32585
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.107 1998/01/12 01:44:44 dyson Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/signalvar.h>
81#include <sys/vnode.h>
82#include <sys/vmmeter.h>
83#include <sys/sysctl.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <sys/lock.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_extern.h>
96
97/*
98 * System initialization
99 */
100
101/* the kernel process "vm_pageout"*/
102static void vm_pageout __P((void));
103static int vm_pageout_clean __P((vm_page_t, int));
104static int vm_pageout_scan __P((void));
105static int vm_pageout_free_page_calc __P((vm_size_t count));
106struct proc *pageproc;
107
108static struct kproc_desc page_kp = {
109	"pagedaemon",
110	vm_pageout,
111	&pageproc
112};
113SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
114
115#if !defined(NO_SWAPPING)
116/* the kernel process "vm_daemon"*/
117static void vm_daemon __P((void));
118static struct	proc *vmproc;
119
120static struct kproc_desc vm_kp = {
121	"vmdaemon",
122	vm_daemon,
123	&vmproc
124};
125SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126#endif
127
128
129int vm_pages_needed;		/* Event on which pageout daemon sleeps */
130
131int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
132
133extern int npendingio;
134#if !defined(NO_SWAPPING)
135static int vm_pageout_req_swapout;	/* XXX */
136static int vm_daemon_needed;
137#endif
138extern int nswiodone;
139extern int vm_swap_size;
140extern int vfs_update_wakeup;
141int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
142int vm_pageout_full_stats_interval = 0;
143int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
144int defer_swap_pageouts=0;
145int disable_swap_pageouts=0;
146
147int max_page_launder=100;
148#if defined(NO_SWAPPING)
149int vm_swap_enabled=0;
150int vm_swap_idle_enabled=0;
151#else
152int vm_swap_enabled=1;
153int vm_swap_idle_enabled=0;
154#endif
155
156SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
158
159SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160	CTLFLAG_RW, &vm_pageout_stats_max, 0, "");
161
162SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "");
164
165SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "");
167
168SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "");
170
171#if defined(NO_SWAPPING)
172SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176#else
177SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178	CTLFLAG_RW, &vm_swap_enabled, 0, "");
179SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "");
181#endif
182
183SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184	CTLFLAG_RW, &defer_swap_pageouts, 0, "");
185
186SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187	CTLFLAG_RW, &disable_swap_pageouts, 0, "");
188
189SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
190	CTLFLAG_RW, &max_page_launder, 0, "");
191
192
193#define VM_PAGEOUT_PAGE_COUNT 8
194int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
195
196int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
197
198#if !defined(NO_SWAPPING)
199typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
200static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
201static freeer_fcn_t vm_pageout_object_deactivate_pages;
202static void vm_req_vmdaemon __P((void));
203#endif
204static void vm_pageout_page_stats(void);
205void pmap_collect(void);
206
207/*
208 * vm_pageout_clean:
209 *
210 * Clean the page and remove it from the laundry.
211 *
212 * We set the busy bit to cause potential page faults on this page to
213 * block.
214 *
215 * And we set pageout-in-progress to keep the object from disappearing
216 * during pageout.  This guarantees that the page won't move from the
217 * inactive queue.  (However, any other page on the inactive queue may
218 * move!)
219 */
220static int
221vm_pageout_clean(m, sync)
222	vm_page_t m;
223	int sync;
224{
225	register vm_object_t object;
226	vm_page_t mc[2*vm_pageout_page_count];
227	int pageout_count;
228	int i, forward_okay, backward_okay, page_base;
229	vm_pindex_t pindex = m->pindex;
230
231	object = m->object;
232
233	/*
234	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
235	 * Try to avoid the deadlock.
236	 */
237	if ((sync != VM_PAGEOUT_FORCE) &&
238	    (object->type == OBJT_DEFAULT) &&
239	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
240		return 0;
241
242	/*
243	 * Don't mess with the page if it's busy.
244	 */
245	if ((!sync && m->hold_count != 0) ||
246	    ((m->busy != 0) || (m->flags & PG_BUSY)))
247		return 0;
248
249	/*
250	 * Try collapsing before it's too late.
251	 */
252	if (!sync && object->backing_object) {
253		vm_object_collapse(object);
254	}
255
256	mc[vm_pageout_page_count] = m;
257	pageout_count = 1;
258	page_base = vm_pageout_page_count;
259	forward_okay = TRUE;
260	if (pindex != 0)
261		backward_okay = TRUE;
262	else
263		backward_okay = FALSE;
264	/*
265	 * Scan object for clusterable pages.
266	 *
267	 * We can cluster ONLY if: ->> the page is NOT
268	 * clean, wired, busy, held, or mapped into a
269	 * buffer, and one of the following:
270	 * 1) The page is inactive, or a seldom used
271	 *    active page.
272	 * -or-
273	 * 2) we force the issue.
274	 */
275	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
276		vm_page_t p;
277
278		/*
279		 * See if forward page is clusterable.
280		 */
281		if (forward_okay) {
282			/*
283			 * Stop forward scan at end of object.
284			 */
285			if ((pindex + i) > object->size) {
286				forward_okay = FALSE;
287				goto do_backward;
288			}
289			p = vm_page_lookup(object, pindex + i);
290			if (p) {
291				if (((p->queue - p->pc) == PQ_CACHE) ||
292					(p->flags & PG_BUSY) || p->busy) {
293					forward_okay = FALSE;
294					goto do_backward;
295				}
296				vm_page_test_dirty(p);
297				if ((p->dirty & p->valid) != 0 &&
298				    ((p->queue == PQ_INACTIVE) ||
299				     (sync == VM_PAGEOUT_FORCE)) &&
300				    (p->wire_count == 0) &&
301				    (p->hold_count == 0)) {
302					mc[vm_pageout_page_count + i] = p;
303					pageout_count++;
304					if (pageout_count == vm_pageout_page_count)
305						break;
306				} else {
307					forward_okay = FALSE;
308				}
309			} else {
310				forward_okay = FALSE;
311			}
312		}
313do_backward:
314		/*
315		 * See if backward page is clusterable.
316		 */
317		if (backward_okay) {
318			/*
319			 * Stop backward scan at beginning of object.
320			 */
321			if ((pindex - i) == 0) {
322				backward_okay = FALSE;
323			}
324			p = vm_page_lookup(object, pindex - i);
325			if (p) {
326				if (((p->queue - p->pc) == PQ_CACHE) ||
327					(p->flags & PG_BUSY) || p->busy) {
328					backward_okay = FALSE;
329					continue;
330				}
331				vm_page_test_dirty(p);
332				if ((p->dirty & p->valid) != 0 &&
333				    ((p->queue == PQ_INACTIVE) ||
334				     (sync == VM_PAGEOUT_FORCE)) &&
335				    (p->wire_count == 0) &&
336				    (p->hold_count == 0)) {
337					mc[vm_pageout_page_count - i] = p;
338					pageout_count++;
339					page_base--;
340					if (pageout_count == vm_pageout_page_count)
341						break;
342				} else {
343					backward_okay = FALSE;
344				}
345			} else {
346				backward_okay = FALSE;
347			}
348		}
349	}
350
351	/*
352	 * we allow reads during pageouts...
353	 */
354	for (i = page_base; i < (page_base + pageout_count); i++) {
355		mc[i]->flags |= PG_BUSY;
356		vm_page_protect(mc[i], VM_PROT_READ);
357	}
358
359	return vm_pageout_flush(&mc[page_base], pageout_count, sync);
360}
361
362int
363vm_pageout_flush(mc, count, sync)
364	vm_page_t *mc;
365	int count;
366	int sync;
367{
368	register vm_object_t object;
369	int pageout_status[count];
370	int anyok = 0;
371	int i;
372
373	object = mc[0]->object;
374	object->paging_in_progress += count;
375
376	vm_pager_put_pages(object, mc, count,
377	    ((sync || (object == kernel_object)) ? TRUE : FALSE),
378	    pageout_status);
379
380	for (i = 0; i < count; i++) {
381		vm_page_t mt = mc[i];
382
383		switch (pageout_status[i]) {
384		case VM_PAGER_OK:
385			anyok++;
386			break;
387		case VM_PAGER_PEND:
388			anyok++;
389			break;
390		case VM_PAGER_BAD:
391			/*
392			 * Page outside of range of object. Right now we
393			 * essentially lose the changes by pretending it
394			 * worked.
395			 */
396			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
397			mt->dirty = 0;
398			break;
399		case VM_PAGER_ERROR:
400		case VM_PAGER_FAIL:
401			/*
402			 * If page couldn't be paged out, then reactivate the
403			 * page so it doesn't clog the inactive list.  (We
404			 * will try paging out it again later).
405			 */
406			if (mt->queue == PQ_INACTIVE)
407				vm_page_activate(mt);
408			break;
409		case VM_PAGER_AGAIN:
410			break;
411		}
412
413
414		/*
415		 * If the operation is still going, leave the page busy to
416		 * block all other accesses. Also, leave the paging in
417		 * progress indicator set so that we don't attempt an object
418		 * collapse.
419		 */
420		if (pageout_status[i] != VM_PAGER_PEND) {
421			vm_object_pip_wakeup(object);
422			PAGE_WAKEUP(mt);
423		}
424	}
425	return anyok;
426}
427
428#if !defined(NO_SWAPPING)
429/*
430 *	vm_pageout_object_deactivate_pages
431 *
432 *	deactivate enough pages to satisfy the inactive target
433 *	requirements or if vm_page_proc_limit is set, then
434 *	deactivate all of the pages in the object and its
435 *	backing_objects.
436 *
437 *	The object and map must be locked.
438 */
439static void
440vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
441	vm_map_t map;
442	vm_object_t object;
443	vm_pindex_t desired;
444	int map_remove_only;
445{
446	register vm_page_t p, next;
447	int rcount;
448	int remove_mode;
449	int s;
450
451	if (object->type == OBJT_DEVICE)
452		return;
453
454	while (object) {
455		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
456			return;
457		if (object->paging_in_progress)
458			return;
459
460		remove_mode = map_remove_only;
461		if (object->shadow_count > 1)
462			remove_mode = 1;
463	/*
464	 * scan the objects entire memory queue
465	 */
466		rcount = object->resident_page_count;
467		p = TAILQ_FIRST(&object->memq);
468		while (p && (rcount-- > 0)) {
469			int actcount;
470			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
471				return;
472			next = TAILQ_NEXT(p, listq);
473			cnt.v_pdpages++;
474			if (p->wire_count != 0 ||
475			    p->hold_count != 0 ||
476			    p->busy != 0 ||
477			    (p->flags & PG_BUSY) ||
478			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
479				p = next;
480				continue;
481			}
482
483			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
484			if (actcount) {
485				p->flags |= PG_REFERENCED;
486			} else if (p->flags & PG_REFERENCED) {
487				actcount = 1;
488			}
489
490			if ((p->queue != PQ_ACTIVE) &&
491				(p->flags & PG_REFERENCED)) {
492				vm_page_activate(p);
493				p->act_count += actcount;
494				p->flags &= ~PG_REFERENCED;
495			} else if (p->queue == PQ_ACTIVE) {
496				if ((p->flags & PG_REFERENCED) == 0) {
497					p->act_count -= min(p->act_count, ACT_DECLINE);
498					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
499						vm_page_protect(p, VM_PROT_NONE);
500						vm_page_deactivate(p);
501					} else {
502						s = splvm();
503						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
504						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
505						splx(s);
506					}
507				} else {
508					p->flags &= ~PG_REFERENCED;
509					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
510						p->act_count += ACT_ADVANCE;
511					s = splvm();
512					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
513					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
514					splx(s);
515				}
516			} else if (p->queue == PQ_INACTIVE) {
517				vm_page_protect(p, VM_PROT_NONE);
518			}
519			p = next;
520		}
521		object = object->backing_object;
522	}
523	return;
524}
525
526/*
527 * deactivate some number of pages in a map, try to do it fairly, but
528 * that is really hard to do.
529 */
530static void
531vm_pageout_map_deactivate_pages(map, desired)
532	vm_map_t map;
533	vm_pindex_t desired;
534{
535	vm_map_entry_t tmpe;
536	vm_object_t obj, bigobj;
537
538	vm_map_reference(map);
539	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
540		vm_map_deallocate(map);
541		return;
542	}
543
544	bigobj = NULL;
545
546	/*
547	 * first, search out the biggest object, and try to free pages from
548	 * that.
549	 */
550	tmpe = map->header.next;
551	while (tmpe != &map->header) {
552		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
553			obj = tmpe->object.vm_object;
554			if ((obj != NULL) && (obj->shadow_count <= 1) &&
555				((bigobj == NULL) ||
556				 (bigobj->resident_page_count < obj->resident_page_count))) {
557				bigobj = obj;
558			}
559		}
560		tmpe = tmpe->next;
561	}
562
563	if (bigobj)
564		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
565
566	/*
567	 * Next, hunt around for other pages to deactivate.  We actually
568	 * do this search sort of wrong -- .text first is not the best idea.
569	 */
570	tmpe = map->header.next;
571	while (tmpe != &map->header) {
572		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
573			break;
574		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
575			obj = tmpe->object.vm_object;
576			if (obj)
577				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
578		}
579		tmpe = tmpe->next;
580	};
581
582	/*
583	 * Remove all mappings if a process is swapped out, this will free page
584	 * table pages.
585	 */
586	if (desired == 0)
587		pmap_remove(vm_map_pmap(map),
588			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
589	vm_map_unlock(map);
590	vm_map_deallocate(map);
591	return;
592}
593#endif
594
595void
596vm_pageout_page_free(vm_page_t m) {
597	struct vnode *vp;
598	vm_object_t object;
599
600	object = m->object;
601	vp = NULL;
602
603	object->ref_count++;
604	if (object->type == OBJT_VNODE) {
605		vp = object->handle;
606		vp->v_usecount++;
607		if (VSHOULDBUSY(vp))
608			vbusy(vp);
609	}
610	m->flags |= PG_BUSY;
611	vm_page_protect(m, VM_PROT_NONE);
612	PAGE_WAKEUP(m);
613	vm_page_free(m);
614	vm_object_deallocate(object);
615}
616
617/*
618 *	vm_pageout_scan does the dirty work for the pageout daemon.
619 */
620static int
621vm_pageout_scan()
622{
623	vm_page_t m, next;
624	int page_shortage, addl_page_shortage, maxscan, pcount;
625	int maxlaunder;
626	int pages_freed;
627	struct proc *p, *bigproc;
628	vm_offset_t size, bigsize;
629	vm_object_t object;
630	int force_wakeup = 0;
631	int actcount;
632	int vnodes_skipped = 0;
633	int s;
634
635	/*
636	 * Do whatever cleanup that the pmap code can.
637	 */
638	pmap_collect();
639
640	/*
641	 * Start scanning the inactive queue for pages we can free. We keep
642	 * scanning until we have enough free pages or we have scanned through
643	 * the entire queue.  If we encounter dirty pages, we start cleaning
644	 * them.
645	 */
646
647	pages_freed = 0;
648	addl_page_shortage = 0;
649
650	if (max_page_launder == 0)
651		max_page_launder = 1;
652	maxlaunder = (cnt.v_inactive_target > max_page_launder) ?
653	    max_page_launder : cnt.v_inactive_target;
654
655rescan0:
656	maxscan = cnt.v_inactive_count;
657	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
658
659		(m != NULL) && (maxscan-- > 0) &&
660			((cnt.v_cache_count + cnt.v_free_count) <
661			(cnt.v_cache_min + cnt.v_free_target));
662
663		m = next) {
664
665		cnt.v_pdpages++;
666
667		if (m->queue != PQ_INACTIVE) {
668			goto rescan0;
669		}
670
671		next = TAILQ_NEXT(m, pageq);
672
673		if (m->hold_count) {
674			s = splvm();
675			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
676			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
677			splx(s);
678			addl_page_shortage++;
679			continue;
680		}
681		/*
682		 * Dont mess with busy pages, keep in the front of the
683		 * queue, most likely are being paged out.
684		 */
685		if (m->busy || (m->flags & PG_BUSY)) {
686			addl_page_shortage++;
687			continue;
688		}
689
690		/*
691		 * If the object is not being used, we ignore previous references.
692		 */
693		if (m->object->ref_count == 0) {
694			m->flags &= ~PG_REFERENCED;
695			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
696
697		/*
698		 * Otherwise, if the page has been referenced while in the inactive
699		 * queue, we bump the "activation count" upwards, making it less
700		 * likely that the page will be added back to the inactive queue
701		 * prematurely again.  Here we check the page tables (or emulated
702		 * bits, if any), given the upper level VM system not knowing anything
703		 * about existing references.
704		 */
705		} else if (((m->flags & PG_REFERENCED) == 0) &&
706			(actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
707			vm_page_activate(m);
708			m->act_count += (actcount + ACT_ADVANCE);
709			continue;
710		}
711
712		/*
713		 * If the upper level VM system knows about any page references,
714		 * we activate the page.  We also set the "activation count" higher
715		 * than normal so that we will less likely place pages back onto the
716		 * inactive queue again.
717		 */
718		if ((m->flags & PG_REFERENCED) != 0) {
719			m->flags &= ~PG_REFERENCED;
720			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
721			vm_page_activate(m);
722			m->act_count += (actcount + ACT_ADVANCE + 1);
723			continue;
724		}
725
726		/*
727		 * If the upper level VM system doesn't know anything about the
728		 * page being dirty, we have to check for it again.  As far as the
729		 * VM code knows, any partially dirty pages are fully dirty.
730		 */
731		if (m->dirty == 0) {
732			vm_page_test_dirty(m);
733		} else if (m->dirty != 0) {
734			m->dirty = VM_PAGE_BITS_ALL;
735		}
736
737		/*
738		 * Invalid pages can be easily freed
739		 */
740		if (m->valid == 0) {
741			vm_pageout_page_free(m);
742			cnt.v_dfree++;
743			pages_freed++;
744
745		/*
746		 * Clean pages can be placed onto the cache queue.
747		 */
748		} else if (m->dirty == 0) {
749			vm_page_cache(m);
750			pages_freed++;
751
752		/*
753		 * Dirty pages need to be paged out.  Note that we clean
754		 * only a limited number of pages per pagedaemon pass.
755		 */
756		} else if (maxlaunder > 0) {
757			int written;
758			int swap_pageouts_ok;
759			struct vnode *vp = NULL;
760
761			object = m->object;
762
763			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
764				swap_pageouts_ok = 1;
765			} else {
766				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
767				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
768					(cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min);
769
770			}
771
772			/*
773			 * We don't bother paging objects that are "dead".  Those
774			 * objects are in a "rundown" state.
775			 */
776			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
777				s = splvm();
778				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
779				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
780				splx(s);
781				continue;
782			}
783
784			if (object->type == OBJT_VNODE && (object->flags & OBJ_DEAD) == 0) {
785				vp = object->handle;
786				if (VOP_ISLOCKED(vp) ||
787				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
788					if ((m->queue == PQ_INACTIVE) &&
789						(m->hold_count == 0) &&
790						(m->busy == 0) &&
791						(m->flags & PG_BUSY) == 0) {
792						s = splvm();
793						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
794						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
795						splx(s);
796					}
797					if (object->flags & OBJ_MIGHTBEDIRTY)
798						vnodes_skipped++;
799					continue;
800				}
801
802				/*
803				 * The page might have been moved to another queue
804				 * during potential blocking in vget() above.
805				 */
806				if (m->queue != PQ_INACTIVE) {
807					if (object->flags & OBJ_MIGHTBEDIRTY)
808						vnodes_skipped++;
809					vput(vp);
810					continue;
811				}
812
813				/*
814				 * The page may have been busied during the blocking in
815				 * vput();  We don't move the page back onto the end of
816				 * the queue so that statistics are more correct if we don't.
817				 */
818				if (m->busy || (m->flags & PG_BUSY)) {
819					vput(vp);
820					continue;
821				}
822
823				/*
824				 * If the page has become held, then skip it
825				 */
826				if (m->hold_count) {
827					s = splvm();
828					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
829					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
830					splx(s);
831					if (object->flags & OBJ_MIGHTBEDIRTY)
832						vnodes_skipped++;
833					vput(vp);
834					continue;
835				}
836			}
837
838			/*
839			 * If a page is dirty, then it is either being washed
840			 * (but not yet cleaned) or it is still in the
841			 * laundry.  If it is still in the laundry, then we
842			 * start the cleaning operation.
843			 */
844			written = vm_pageout_clean(m, 0);
845			if (vp)
846				vput(vp);
847
848			maxlaunder -= written;
849		}
850	}
851
852	/*
853	 * Compute the page shortage.  If we are still very low on memory be
854	 * sure that we will move a minimal amount of pages from active to
855	 * inactive.
856	 */
857	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
858	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
859	if (page_shortage <= 0) {
860		if (pages_freed == 0) {
861			page_shortage = cnt.v_free_min - cnt.v_free_count;
862		} else {
863			page_shortage = 1;
864		}
865	}
866
867	/*
868	 * If the "inactive" loop finds that there is a shortage over and
869	 * above the page statistics variables, then we need to accomodate
870	 * that.  This avoids potential deadlocks due to pages being temporarily
871	 * busy for I/O or other types of temporary wiring.
872	 */
873	if (addl_page_shortage) {
874		if (page_shortage < 0)
875			page_shortage = 0;
876		page_shortage += addl_page_shortage;
877	}
878
879	pcount = cnt.v_active_count;
880	m = TAILQ_FIRST(&vm_page_queue_active);
881	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
882
883		/*
884		 * This is a consistancy check, and should likely be a panic
885		 * or warning.
886		 */
887		if (m->queue != PQ_ACTIVE) {
888			break;
889		}
890
891		next = TAILQ_NEXT(m, pageq);
892		/*
893		 * Don't deactivate pages that are busy.
894		 */
895		if ((m->busy != 0) ||
896		    (m->flags & PG_BUSY) ||
897		    (m->hold_count != 0)) {
898			s = splvm();
899			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
900			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
901			splx(s);
902			m = next;
903			continue;
904		}
905
906		/*
907		 * The count for pagedaemon pages is done after checking the
908		 * page for eligbility...
909		 */
910		cnt.v_pdpages++;
911
912		/*
913		 * Check to see "how much" the page has been used.
914		 */
915		actcount = 0;
916		if (m->object->ref_count != 0) {
917			if (m->flags & PG_REFERENCED) {
918				actcount += 1;
919			}
920			actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
921			if (actcount) {
922				m->act_count += ACT_ADVANCE + actcount;
923				if (m->act_count > ACT_MAX)
924					m->act_count = ACT_MAX;
925			}
926		}
927
928		/*
929		 * Since we have "tested" this bit, we need to clear it now.
930		 */
931		m->flags &= ~PG_REFERENCED;
932
933		/*
934		 * Only if an object is currently being used, do we use the
935		 * page activation count stats.
936		 */
937		if (actcount && (m->object->ref_count != 0)) {
938			s = splvm();
939			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
940			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
941			splx(s);
942		} else {
943			m->act_count -= min(m->act_count, ACT_DECLINE);
944			if (vm_pageout_algorithm_lru ||
945				(m->object->ref_count == 0) || (m->act_count == 0)) {
946				page_shortage--;
947				if (m->object->ref_count == 0) {
948					vm_page_protect(m, VM_PROT_NONE);
949					if (m->dirty == 0)
950						vm_page_cache(m);
951					else
952						vm_page_deactivate(m);
953				} else {
954					vm_page_deactivate(m);
955				}
956			} else {
957				s = splvm();
958				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
959				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
960				splx(s);
961			}
962		}
963		m = next;
964	}
965
966	s = splvm();
967	/*
968	 * We try to maintain some *really* free pages, this allows interrupt
969	 * code to be guaranteed space.
970	 */
971	while (cnt.v_free_count < cnt.v_free_reserved) {
972		static int cache_rover = 0;
973		m = vm_page_list_find(PQ_CACHE, cache_rover);
974		if (!m)
975			break;
976		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
977		vm_pageout_page_free(m);
978		cnt.v_dfree++;
979	}
980	splx(s);
981
982#if !defined(NO_SWAPPING)
983	/*
984	 * Idle process swapout -- run once per second.
985	 */
986	if (vm_swap_idle_enabled) {
987		static long lsec;
988		if (time.tv_sec != lsec) {
989			vm_pageout_req_swapout |= VM_SWAP_IDLE;
990			vm_req_vmdaemon();
991			lsec = time.tv_sec;
992		}
993	}
994#endif
995
996	/*
997	 * If we didn't get enough free pages, and we have skipped a vnode
998	 * in a writeable object, wakeup the sync daemon.  And kick swapout
999	 * if we did not get enough free pages.
1000	 */
1001	if ((cnt.v_cache_count + cnt.v_free_count) <
1002		(cnt.v_free_target + cnt.v_cache_min) ) {
1003		if (vnodes_skipped &&
1004		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
1005			if (!vfs_update_wakeup) {
1006				vfs_update_wakeup = 1;
1007				wakeup(&vfs_update_wakeup);
1008			}
1009		}
1010#if !defined(NO_SWAPPING)
1011		if (vm_swap_enabled &&
1012			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
1013			vm_req_vmdaemon();
1014			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1015		}
1016#endif
1017	}
1018
1019
1020	/*
1021	 * make sure that we have swap space -- if we are low on memory and
1022	 * swap -- then kill the biggest process.
1023	 */
1024	if ((vm_swap_size == 0 || swap_pager_full) &&
1025	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
1026		bigproc = NULL;
1027		bigsize = 0;
1028		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1029			/*
1030			 * if this is a system process, skip it
1031			 */
1032			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1033			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1034				continue;
1035			}
1036			/*
1037			 * if the process is in a non-running type state,
1038			 * don't touch it.
1039			 */
1040			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1041				continue;
1042			}
1043			/*
1044			 * get the process size
1045			 */
1046			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1047			/*
1048			 * if the this process is bigger than the biggest one
1049			 * remember it.
1050			 */
1051			if (size > bigsize) {
1052				bigproc = p;
1053				bigsize = size;
1054			}
1055		}
1056		if (bigproc != NULL) {
1057			killproc(bigproc, "out of swap space");
1058			bigproc->p_estcpu = 0;
1059			bigproc->p_nice = PRIO_MIN;
1060			resetpriority(bigproc);
1061			wakeup(&cnt.v_free_count);
1062		}
1063	}
1064	return force_wakeup;
1065}
1066
1067/*
1068 * This routine tries to maintain the pseudo LRU active queue,
1069 * so that during long periods of time where there is no paging,
1070 * that some statistic accumlation still occurs.  This code
1071 * helps the situation where paging just starts to occur.
1072 */
1073static void
1074vm_pageout_page_stats()
1075{
1076	int s;
1077	vm_page_t m,next;
1078	int pcount,tpcount;		/* Number of pages to check */
1079	static int fullintervalcount = 0;
1080
1081	pcount = cnt.v_active_count;
1082	fullintervalcount += vm_pageout_stats_interval;
1083	if (fullintervalcount < vm_pageout_full_stats_interval) {
1084		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1085		if (pcount > tpcount)
1086			pcount = tpcount;
1087	}
1088
1089	m = TAILQ_FIRST(&vm_page_queue_active);
1090	while ((m != NULL) && (pcount-- > 0)) {
1091		int actcount;
1092
1093		if (m->queue != PQ_ACTIVE) {
1094			break;
1095		}
1096
1097		next = TAILQ_NEXT(m, pageq);
1098		/*
1099		 * Don't deactivate pages that are busy.
1100		 */
1101		if ((m->busy != 0) ||
1102		    (m->flags & PG_BUSY) ||
1103		    (m->hold_count != 0)) {
1104			s = splvm();
1105			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1106			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1107			splx(s);
1108			m = next;
1109			continue;
1110		}
1111
1112		actcount = 0;
1113		if (m->flags & PG_REFERENCED) {
1114			m->flags &= ~PG_REFERENCED;
1115			actcount += 1;
1116		}
1117
1118		actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1119		if (actcount) {
1120			m->act_count += ACT_ADVANCE + actcount;
1121			if (m->act_count > ACT_MAX)
1122				m->act_count = ACT_MAX;
1123			s = splvm();
1124			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1125			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1126			splx(s);
1127		} else {
1128			if (m->act_count == 0) {
1129				/*
1130				 * We turn off page access, so that we have more accurate
1131				 * RSS stats.  We don't do this in the normal page deactivation
1132				 * when the system is loaded VM wise, because the cost of
1133				 * the large number of page protect operations would be higher
1134				 * than the value of doing the operation.
1135				 */
1136				vm_page_protect(m, VM_PROT_NONE);
1137				vm_page_deactivate(m);
1138			} else {
1139				m->act_count -= min(m->act_count, ACT_DECLINE);
1140				s = splvm();
1141				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1142				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1143				splx(s);
1144			}
1145		}
1146
1147		m = next;
1148	}
1149}
1150
1151
1152static int
1153vm_pageout_free_page_calc(count)
1154vm_size_t count;
1155{
1156	if (count < cnt.v_page_count)
1157		 return 0;
1158	/*
1159	 * free_reserved needs to include enough for the largest swap pager
1160	 * structures plus enough for any pv_entry structs when paging.
1161	 */
1162	if (cnt.v_page_count > 1024)
1163		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1164	else
1165		cnt.v_free_min = 4;
1166	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1167		cnt.v_interrupt_free_min;
1168	cnt.v_free_reserved = vm_pageout_page_count +
1169		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1170	cnt.v_free_min += cnt.v_free_reserved;
1171	return 1;
1172}
1173
1174
1175/*
1176 *	vm_pageout is the high level pageout daemon.
1177 */
1178static void
1179vm_pageout()
1180{
1181	/*
1182	 * Initialize some paging parameters.
1183	 */
1184
1185	cnt.v_interrupt_free_min = 2;
1186	if (cnt.v_page_count < 2000)
1187		vm_pageout_page_count = 8;
1188
1189	vm_pageout_free_page_calc(cnt.v_page_count);
1190	/*
1191	 * free_reserved needs to include enough for the largest swap pager
1192	 * structures plus enough for any pv_entry structs when paging.
1193	 */
1194	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1195
1196	if (cnt.v_free_count > 1024) {
1197		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
1198		cnt.v_cache_min = (cnt.v_free_count - 1024) / 8;
1199		cnt.v_inactive_target = 2*cnt.v_cache_min + 192;
1200	} else {
1201		cnt.v_cache_min = 0;
1202		cnt.v_cache_max = 0;
1203		cnt.v_inactive_target = cnt.v_free_count / 4;
1204	}
1205
1206	/* XXX does not really belong here */
1207	if (vm_page_max_wired == 0)
1208		vm_page_max_wired = cnt.v_free_count / 3;
1209
1210	if (vm_pageout_stats_max == 0)
1211		vm_pageout_stats_max = cnt.v_free_target;
1212
1213	/*
1214	 * Set interval in seconds for stats scan.
1215	 */
1216	if (vm_pageout_stats_interval == 0)
1217		vm_pageout_stats_interval = 4;
1218	if (vm_pageout_full_stats_interval == 0)
1219		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1220
1221
1222	/*
1223	 * Set maximum free per pass
1224	 */
1225	if (vm_pageout_stats_free_max == 0)
1226		vm_pageout_stats_free_max = 25;
1227
1228	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1229
1230	swap_pager_swap_init();
1231	/*
1232	 * The pageout daemon is never done, so loop forever.
1233	 */
1234	while (TRUE) {
1235		int inactive_target;
1236		int error;
1237		int s = splvm();
1238		if (!vm_pages_needed ||
1239			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1240			vm_pages_needed = 0;
1241			error = tsleep(&vm_pages_needed,
1242				PVM, "psleep", vm_pageout_stats_interval * hz);
1243			if (error && !vm_pages_needed) {
1244				splx(s);
1245				vm_pageout_page_stats();
1246				continue;
1247			}
1248		} else if (vm_pages_needed) {
1249			tsleep(&vm_pages_needed, PVM, "psleep", hz/10);
1250		}
1251		inactive_target =
1252			(cnt.v_page_count - cnt.v_wire_count) / 4;
1253		if (inactive_target < 2*cnt.v_free_min)
1254			inactive_target = 2*cnt.v_free_min;
1255		cnt.v_inactive_target = inactive_target;
1256		if (vm_pages_needed)
1257			cnt.v_pdwakeups++;
1258		vm_pages_needed = 0;
1259		splx(s);
1260		vm_pager_sync();
1261		vm_pageout_scan();
1262		vm_pager_sync();
1263		wakeup(&cnt.v_free_count);
1264	}
1265}
1266
1267void
1268pagedaemon_wakeup()
1269{
1270	if (!vm_pages_needed && curproc != pageproc) {
1271		vm_pages_needed++;
1272		wakeup(&vm_pages_needed);
1273	}
1274}
1275
1276#if !defined(NO_SWAPPING)
1277static void
1278vm_req_vmdaemon()
1279{
1280	static int lastrun = 0;
1281
1282	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1283		wakeup(&vm_daemon_needed);
1284		lastrun = ticks;
1285	}
1286}
1287
1288static void
1289vm_daemon()
1290{
1291	vm_object_t object;
1292	struct proc *p;
1293
1294	while (TRUE) {
1295		tsleep(&vm_daemon_needed, PUSER, "psleep", 0);
1296		if (vm_pageout_req_swapout) {
1297			swapout_procs(vm_pageout_req_swapout);
1298			vm_pageout_req_swapout = 0;
1299		}
1300		/*
1301		 * scan the processes for exceeding their rlimits or if
1302		 * process is swapped out -- deactivate pages
1303		 */
1304
1305		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1306			quad_t limit;
1307			vm_offset_t size;
1308
1309			/*
1310			 * if this is a system process or if we have already
1311			 * looked at this process, skip it.
1312			 */
1313			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1314				continue;
1315			}
1316			/*
1317			 * if the process is in a non-running type state,
1318			 * don't touch it.
1319			 */
1320			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1321				continue;
1322			}
1323			/*
1324			 * get a limit
1325			 */
1326			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1327			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1328
1329			/*
1330			 * let processes that are swapped out really be
1331			 * swapped out set the limit to nothing (will force a
1332			 * swap-out.)
1333			 */
1334			if ((p->p_flag & P_INMEM) == 0)
1335				limit = 0;	/* XXX */
1336
1337			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1338			if (limit >= 0 && size >= limit) {
1339				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1340				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1341			}
1342		}
1343	}
1344}
1345#endif
1346