vm_pageout.c revision 236921
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/9/sys/vm/vm_pageout.c 236921 2012-06-11 21:06:10Z kib $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/racct.h>
90#include <sys/resourcevar.h>
91#include <sys/sched.h>
92#include <sys/signalvar.h>
93#include <sys/vnode.h>
94#include <sys/vmmeter.h>
95#include <sys/sx.h>
96#include <sys/sysctl.h>
97
98#include <vm/vm.h>
99#include <vm/vm_param.h>
100#include <vm/vm_object.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/swap_pager.h>
106#include <vm/vm_extern.h>
107#include <vm/uma.h>
108
109/*
110 * System initialization
111 */
112
113/* the kernel process "vm_pageout"*/
114static void vm_pageout(void);
115static int vm_pageout_clean(vm_page_t);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126    &page_kp);
127
128#if !defined(NO_SWAPPING)
129/* the kernel process "vm_daemon"*/
130static void vm_daemon(void);
131static struct	proc *vmproc;
132
133static struct kproc_desc vm_kp = {
134	"vmdaemon",
135	vm_daemon,
136	&vmproc
137};
138SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139#endif
140
141
142int vm_pages_needed;		/* Event on which pageout daemon sleeps */
143int vm_pageout_deficit;		/* Estimated number of pages deficit */
144int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
145
146#if !defined(NO_SWAPPING)
147static int vm_pageout_req_swapout;	/* XXX */
148static int vm_daemon_needed;
149static struct mtx vm_daemon_mtx;
150/* Allow for use by vm_pageout before vm_daemon is initialized. */
151MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152#endif
153static int vm_max_launder = 32;
154static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155static int vm_pageout_full_stats_interval = 0;
156static int vm_pageout_algorithm=0;
157static int defer_swap_pageouts=0;
158static int disable_swap_pageouts=0;
159
160#if defined(NO_SWAPPING)
161static int vm_swap_enabled=0;
162static int vm_swap_idle_enabled=0;
163#else
164static int vm_swap_enabled=1;
165static int vm_swap_idle_enabled=0;
166#endif
167
168SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171SYSCTL_INT(_vm, OID_AUTO, max_launder,
172	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183#if defined(NO_SWAPPING)
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#else
189SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193#endif
194
195SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201static int pageout_lock_miss;
202SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205#define VM_PAGEOUT_PAGE_COUNT 16
206int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
209SYSCTL_INT(_vm, OID_AUTO, max_wired,
210	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212#if !defined(NO_SWAPPING)
213static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215static void vm_req_vmdaemon(int req);
216#endif
217static void vm_pageout_page_stats(void);
218
219/*
220 * Initialize a dummy page for marking the caller's place in the specified
221 * paging queue.  In principle, this function only needs to set the flag
222 * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223 * count to one as safety precautions.
224 */
225static void
226vm_pageout_init_marker(vm_page_t marker, u_short queue)
227{
228
229	bzero(marker, sizeof(*marker));
230	marker->flags = PG_MARKER;
231	marker->oflags = VPO_BUSY;
232	marker->queue = queue;
233	marker->hold_count = 1;
234}
235
236/*
237 * vm_pageout_fallback_object_lock:
238 *
239 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240 * known to have failed and page queue must be either PQ_ACTIVE or
241 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242 * while locking the vm object.  Use marker page to detect page queue
243 * changes and maintain notion of next page on page queue.  Return
244 * TRUE if no changes were detected, FALSE otherwise.  vm object is
245 * locked on return.
246 *
247 * This function depends on both the lock portion of struct vm_object
248 * and normal struct vm_page being type stable.
249 */
250boolean_t
251vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252{
253	struct vm_page marker;
254	boolean_t unchanged;
255	u_short queue;
256	vm_object_t object;
257
258	queue = m->queue;
259	vm_pageout_init_marker(&marker, queue);
260	object = m->object;
261
262	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263			   m, &marker, pageq);
264	vm_page_unlock_queues();
265	vm_page_unlock(m);
266	VM_OBJECT_LOCK(object);
267	vm_page_lock(m);
268	vm_page_lock_queues();
269
270	/* Page queue might have changed. */
271	*next = TAILQ_NEXT(&marker, pageq);
272	unchanged = (m->queue == queue &&
273		     m->object == object &&
274		     &marker == TAILQ_NEXT(m, pageq));
275	TAILQ_REMOVE(&vm_page_queues[queue].pl,
276		     &marker, pageq);
277	return (unchanged);
278}
279
280/*
281 * Lock the page while holding the page queue lock.  Use marker page
282 * to detect page queue changes and maintain notion of next page on
283 * page queue.  Return TRUE if no changes were detected, FALSE
284 * otherwise.  The page is locked on return. The page queue lock might
285 * be dropped and reacquired.
286 *
287 * This function depends on normal struct vm_page being type stable.
288 */
289boolean_t
290vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291{
292	struct vm_page marker;
293	boolean_t unchanged;
294	u_short queue;
295
296	vm_page_lock_assert(m, MA_NOTOWNED);
297	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299	if (vm_page_trylock(m))
300		return (TRUE);
301
302	queue = m->queue;
303	vm_pageout_init_marker(&marker, queue);
304
305	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306	vm_page_unlock_queues();
307	vm_page_lock(m);
308	vm_page_lock_queues();
309
310	/* Page queue might have changed. */
311	*next = TAILQ_NEXT(&marker, pageq);
312	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314	return (unchanged);
315}
316
317/*
318 * vm_pageout_clean:
319 *
320 * Clean the page and remove it from the laundry.
321 *
322 * We set the busy bit to cause potential page faults on this page to
323 * block.  Note the careful timing, however, the busy bit isn't set till
324 * late and we cannot do anything that will mess with the page.
325 */
326static int
327vm_pageout_clean(vm_page_t m)
328{
329	vm_object_t object;
330	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331	int pageout_count;
332	int ib, is, page_base;
333	vm_pindex_t pindex = m->pindex;
334
335	vm_page_lock_assert(m, MA_OWNED);
336	object = m->object;
337	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339	/*
340	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341	 * with the new swapper, but we could have serious problems paging
342	 * out other object types if there is insufficient memory.
343	 *
344	 * Unfortunately, checking free memory here is far too late, so the
345	 * check has been moved up a procedural level.
346	 */
347
348	/*
349	 * Can't clean the page if it's busy or held.
350	 */
351	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352	    ("vm_pageout_clean: page %p is busy", m));
353	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354	vm_page_unlock(m);
355
356	mc[vm_pageout_page_count] = pb = ps = m;
357	pageout_count = 1;
358	page_base = vm_pageout_page_count;
359	ib = 1;
360	is = 1;
361
362	/*
363	 * Scan object for clusterable pages.
364	 *
365	 * We can cluster ONLY if: ->> the page is NOT
366	 * clean, wired, busy, held, or mapped into a
367	 * buffer, and one of the following:
368	 * 1) The page is inactive, or a seldom used
369	 *    active page.
370	 * -or-
371	 * 2) we force the issue.
372	 *
373	 * During heavy mmap/modification loads the pageout
374	 * daemon can really fragment the underlying file
375	 * due to flushing pages out of order and not trying
376	 * align the clusters (which leave sporatic out-of-order
377	 * holes).  To solve this problem we do the reverse scan
378	 * first and attempt to align our cluster, then do a
379	 * forward scan if room remains.
380	 */
381more:
382	while (ib && pageout_count < vm_pageout_page_count) {
383		vm_page_t p;
384
385		if (ib > pindex) {
386			ib = 0;
387			break;
388		}
389
390		if ((p = vm_page_prev(pb)) == NULL ||
391		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392			ib = 0;
393			break;
394		}
395		vm_page_lock(p);
396		vm_page_test_dirty(p);
397		if (p->dirty == 0 ||
398		    p->queue != PQ_INACTIVE ||
399		    p->hold_count != 0) {	/* may be undergoing I/O */
400			vm_page_unlock(p);
401			ib = 0;
402			break;
403		}
404		vm_page_unlock(p);
405		mc[--page_base] = pb = p;
406		++pageout_count;
407		++ib;
408		/*
409		 * alignment boundry, stop here and switch directions.  Do
410		 * not clear ib.
411		 */
412		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413			break;
414	}
415
416	while (pageout_count < vm_pageout_page_count &&
417	    pindex + is < object->size) {
418		vm_page_t p;
419
420		if ((p = vm_page_next(ps)) == NULL ||
421		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422			break;
423		vm_page_lock(p);
424		vm_page_test_dirty(p);
425		if (p->dirty == 0 ||
426		    p->queue != PQ_INACTIVE ||
427		    p->hold_count != 0) {	/* may be undergoing I/O */
428			vm_page_unlock(p);
429			break;
430		}
431		vm_page_unlock(p);
432		mc[page_base + pageout_count] = ps = p;
433		++pageout_count;
434		++is;
435	}
436
437	/*
438	 * If we exhausted our forward scan, continue with the reverse scan
439	 * when possible, even past a page boundry.  This catches boundry
440	 * conditions.
441	 */
442	if (ib && pageout_count < vm_pageout_page_count)
443		goto more;
444
445	/*
446	 * we allow reads during pageouts...
447	 */
448	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
449	    NULL));
450}
451
452/*
453 * vm_pageout_flush() - launder the given pages
454 *
455 *	The given pages are laundered.  Note that we setup for the start of
456 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
457 *	reference count all in here rather then in the parent.  If we want
458 *	the parent to do more sophisticated things we may have to change
459 *	the ordering.
460 *
461 *	Returned runlen is the count of pages between mreq and first
462 *	page after mreq with status VM_PAGER_AGAIN.
463 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464 *	for any page in runlen set.
465 */
466int
467vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468    boolean_t *eio)
469{
470	vm_object_t object = mc[0]->object;
471	int pageout_status[count];
472	int numpagedout = 0;
473	int i, runlen;
474
475	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478	/*
479	 * Initiate I/O.  Bump the vm_page_t->busy counter and
480	 * mark the pages read-only.
481	 *
482	 * We do not have to fixup the clean/dirty bits here... we can
483	 * allow the pager to do it after the I/O completes.
484	 *
485	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
486	 * edge case with file fragments.
487	 */
488	for (i = 0; i < count; i++) {
489		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
491			mc[i], i, count));
492		vm_page_io_start(mc[i]);
493		pmap_remove_write(mc[i]);
494	}
495	vm_object_pip_add(object, count);
496
497	vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499	runlen = count - mreq;
500	if (eio != NULL)
501		*eio = FALSE;
502	for (i = 0; i < count; i++) {
503		vm_page_t mt = mc[i];
504
505		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506		    (mt->aflags & PGA_WRITEABLE) == 0,
507		    ("vm_pageout_flush: page %p is not write protected", mt));
508		switch (pageout_status[i]) {
509		case VM_PAGER_OK:
510		case VM_PAGER_PEND:
511			numpagedout++;
512			break;
513		case VM_PAGER_BAD:
514			/*
515			 * Page outside of range of object. Right now we
516			 * essentially lose the changes by pretending it
517			 * worked.
518			 */
519			vm_page_undirty(mt);
520			break;
521		case VM_PAGER_ERROR:
522		case VM_PAGER_FAIL:
523			/*
524			 * If page couldn't be paged out, then reactivate the
525			 * page so it doesn't clog the inactive list.  (We
526			 * will try paging out it again later).
527			 */
528			vm_page_lock(mt);
529			vm_page_activate(mt);
530			vm_page_unlock(mt);
531			if (eio != NULL && i >= mreq && i - mreq < runlen)
532				*eio = TRUE;
533			break;
534		case VM_PAGER_AGAIN:
535			if (i >= mreq && i - mreq < runlen)
536				runlen = i - mreq;
537			break;
538		}
539
540		/*
541		 * If the operation is still going, leave the page busy to
542		 * block all other accesses. Also, leave the paging in
543		 * progress indicator set so that we don't attempt an object
544		 * collapse.
545		 */
546		if (pageout_status[i] != VM_PAGER_PEND) {
547			vm_object_pip_wakeup(object);
548			vm_page_io_finish(mt);
549			if (vm_page_count_severe()) {
550				vm_page_lock(mt);
551				vm_page_try_to_cache(mt);
552				vm_page_unlock(mt);
553			}
554		}
555	}
556	if (prunlen != NULL)
557		*prunlen = runlen;
558	return (numpagedout);
559}
560
561#if !defined(NO_SWAPPING)
562/*
563 *	vm_pageout_object_deactivate_pages
564 *
565 *	Deactivate enough pages to satisfy the inactive target
566 *	requirements.
567 *
568 *	The object and map must be locked.
569 */
570static void
571vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
572    long desired)
573{
574	vm_object_t backing_object, object;
575	vm_page_t p;
576	int actcount, remove_mode;
577
578	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
579	if (first_object->type == OBJT_DEVICE ||
580	    first_object->type == OBJT_SG)
581		return;
582	for (object = first_object;; object = backing_object) {
583		if (pmap_resident_count(pmap) <= desired)
584			goto unlock_return;
585		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
586		if (object->type == OBJT_PHYS || object->paging_in_progress)
587			goto unlock_return;
588
589		remove_mode = 0;
590		if (object->shadow_count > 1)
591			remove_mode = 1;
592		/*
593		 * Scan the object's entire memory queue.
594		 */
595		TAILQ_FOREACH(p, &object->memq, listq) {
596			if (pmap_resident_count(pmap) <= desired)
597				goto unlock_return;
598			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
599				continue;
600			PCPU_INC(cnt.v_pdpages);
601			vm_page_lock(p);
602			if (p->wire_count != 0 || p->hold_count != 0 ||
603			    !pmap_page_exists_quick(pmap, p)) {
604				vm_page_unlock(p);
605				continue;
606			}
607			actcount = pmap_ts_referenced(p);
608			if ((p->aflags & PGA_REFERENCED) != 0) {
609				if (actcount == 0)
610					actcount = 1;
611				vm_page_aflag_clear(p, PGA_REFERENCED);
612			}
613			if (p->queue != PQ_ACTIVE && actcount != 0) {
614				vm_page_activate(p);
615				p->act_count += actcount;
616			} else if (p->queue == PQ_ACTIVE) {
617				if (actcount == 0) {
618					p->act_count -= min(p->act_count,
619					    ACT_DECLINE);
620					if (!remove_mode &&
621					    (vm_pageout_algorithm ||
622					    p->act_count == 0)) {
623						pmap_remove_all(p);
624						vm_page_deactivate(p);
625					} else {
626						vm_page_lock_queues();
627						vm_page_requeue(p);
628						vm_page_unlock_queues();
629					}
630				} else {
631					vm_page_activate(p);
632					if (p->act_count < ACT_MAX -
633					    ACT_ADVANCE)
634						p->act_count += ACT_ADVANCE;
635					vm_page_lock_queues();
636					vm_page_requeue(p);
637					vm_page_unlock_queues();
638				}
639			} else if (p->queue == PQ_INACTIVE)
640				pmap_remove_all(p);
641			vm_page_unlock(p);
642		}
643		if ((backing_object = object->backing_object) == NULL)
644			goto unlock_return;
645		VM_OBJECT_LOCK(backing_object);
646		if (object != first_object)
647			VM_OBJECT_UNLOCK(object);
648	}
649unlock_return:
650	if (object != first_object)
651		VM_OBJECT_UNLOCK(object);
652}
653
654/*
655 * deactivate some number of pages in a map, try to do it fairly, but
656 * that is really hard to do.
657 */
658static void
659vm_pageout_map_deactivate_pages(map, desired)
660	vm_map_t map;
661	long desired;
662{
663	vm_map_entry_t tmpe;
664	vm_object_t obj, bigobj;
665	int nothingwired;
666
667	if (!vm_map_trylock(map))
668		return;
669
670	bigobj = NULL;
671	nothingwired = TRUE;
672
673	/*
674	 * first, search out the biggest object, and try to free pages from
675	 * that.
676	 */
677	tmpe = map->header.next;
678	while (tmpe != &map->header) {
679		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
680			obj = tmpe->object.vm_object;
681			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
682				if (obj->shadow_count <= 1 &&
683				    (bigobj == NULL ||
684				     bigobj->resident_page_count < obj->resident_page_count)) {
685					if (bigobj != NULL)
686						VM_OBJECT_UNLOCK(bigobj);
687					bigobj = obj;
688				} else
689					VM_OBJECT_UNLOCK(obj);
690			}
691		}
692		if (tmpe->wired_count > 0)
693			nothingwired = FALSE;
694		tmpe = tmpe->next;
695	}
696
697	if (bigobj != NULL) {
698		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
699		VM_OBJECT_UNLOCK(bigobj);
700	}
701	/*
702	 * Next, hunt around for other pages to deactivate.  We actually
703	 * do this search sort of wrong -- .text first is not the best idea.
704	 */
705	tmpe = map->header.next;
706	while (tmpe != &map->header) {
707		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
708			break;
709		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
710			obj = tmpe->object.vm_object;
711			if (obj != NULL) {
712				VM_OBJECT_LOCK(obj);
713				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
714				VM_OBJECT_UNLOCK(obj);
715			}
716		}
717		tmpe = tmpe->next;
718	}
719
720	/*
721	 * Remove all mappings if a process is swapped out, this will free page
722	 * table pages.
723	 */
724	if (desired == 0 && nothingwired) {
725		pmap_remove(vm_map_pmap(map), vm_map_min(map),
726		    vm_map_max(map));
727	}
728	vm_map_unlock(map);
729}
730#endif		/* !defined(NO_SWAPPING) */
731
732/*
733 *	vm_pageout_scan does the dirty work for the pageout daemon.
734 */
735static void
736vm_pageout_scan(int pass)
737{
738	vm_page_t m, next;
739	struct vm_page marker;
740	int page_shortage, maxscan, pcount;
741	int addl_page_shortage, addl_page_shortage_init;
742	vm_object_t object;
743	int actcount;
744	int vnodes_skipped = 0;
745	int maxlaunder;
746
747	/*
748	 * Decrease registered cache sizes.
749	 */
750	EVENTHANDLER_INVOKE(vm_lowmem, 0);
751	/*
752	 * We do this explicitly after the caches have been drained above.
753	 */
754	uma_reclaim();
755
756	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
757
758	/*
759	 * Calculate the number of pages we want to either free or move
760	 * to the cache.
761	 */
762	page_shortage = vm_paging_target() + addl_page_shortage_init;
763
764	vm_pageout_init_marker(&marker, PQ_INACTIVE);
765
766	/*
767	 * Start scanning the inactive queue for pages we can move to the
768	 * cache or free.  The scan will stop when the target is reached or
769	 * we have scanned the entire inactive queue.  Note that m->act_count
770	 * is not used to form decisions for the inactive queue, only for the
771	 * active queue.
772	 *
773	 * maxlaunder limits the number of dirty pages we flush per scan.
774	 * For most systems a smaller value (16 or 32) is more robust under
775	 * extreme memory and disk pressure because any unnecessary writes
776	 * to disk can result in extreme performance degredation.  However,
777	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
778	 * used) will die horribly with limited laundering.  If the pageout
779	 * daemon cannot clean enough pages in the first pass, we let it go
780	 * all out in succeeding passes.
781	 */
782	if ((maxlaunder = vm_max_launder) <= 1)
783		maxlaunder = 1;
784	if (pass)
785		maxlaunder = 10000;
786	vm_page_lock_queues();
787rescan0:
788	addl_page_shortage = addl_page_shortage_init;
789	maxscan = cnt.v_inactive_count;
790
791	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
792	     m != NULL && maxscan-- > 0 && page_shortage > 0;
793	     m = next) {
794
795		cnt.v_pdpages++;
796
797		if (m->queue != PQ_INACTIVE)
798			goto rescan0;
799
800		next = TAILQ_NEXT(m, pageq);
801
802		/*
803		 * skip marker pages
804		 */
805		if (m->flags & PG_MARKER)
806			continue;
807
808		KASSERT((m->flags & PG_FICTITIOUS) == 0,
809		    ("Fictitious page %p cannot be in inactive queue", m));
810		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
811		    ("Unmanaged page %p cannot be in inactive queue", m));
812
813		/*
814		 * Lock the page.
815		 */
816		if (!vm_pageout_page_lock(m, &next)) {
817			vm_page_unlock(m);
818			addl_page_shortage++;
819			continue;
820		}
821
822		/*
823		 * A held page may be undergoing I/O, so skip it.
824		 */
825		if (m->hold_count) {
826			vm_page_unlock(m);
827			vm_page_requeue(m);
828			addl_page_shortage++;
829			continue;
830		}
831
832		/*
833		 * Don't mess with busy pages, keep in the front of the
834		 * queue, most likely are being paged out.
835		 */
836		object = m->object;
837		if (!VM_OBJECT_TRYLOCK(object) &&
838		    (!vm_pageout_fallback_object_lock(m, &next) ||
839			m->hold_count != 0)) {
840			VM_OBJECT_UNLOCK(object);
841			vm_page_unlock(m);
842			addl_page_shortage++;
843			continue;
844		}
845		if (m->busy || (m->oflags & VPO_BUSY)) {
846			vm_page_unlock(m);
847			VM_OBJECT_UNLOCK(object);
848			addl_page_shortage++;
849			continue;
850		}
851
852		/*
853		 * If the object is not being used, we ignore previous
854		 * references.
855		 */
856		if (object->ref_count == 0) {
857			vm_page_aflag_clear(m, PGA_REFERENCED);
858			KASSERT(!pmap_page_is_mapped(m),
859			    ("vm_pageout_scan: page %p is mapped", m));
860
861		/*
862		 * Otherwise, if the page has been referenced while in the
863		 * inactive queue, we bump the "activation count" upwards,
864		 * making it less likely that the page will be added back to
865		 * the inactive queue prematurely again.  Here we check the
866		 * page tables (or emulated bits, if any), given the upper
867		 * level VM system not knowing anything about existing
868		 * references.
869		 */
870		} else if (((m->aflags & PGA_REFERENCED) == 0) &&
871			(actcount = pmap_ts_referenced(m))) {
872			vm_page_activate(m);
873			vm_page_unlock(m);
874			m->act_count += actcount + ACT_ADVANCE;
875			VM_OBJECT_UNLOCK(object);
876			continue;
877		}
878
879		/*
880		 * If the upper level VM system knows about any page
881		 * references, we activate the page.  We also set the
882		 * "activation count" higher than normal so that we will less
883		 * likely place pages back onto the inactive queue again.
884		 */
885		if ((m->aflags & PGA_REFERENCED) != 0) {
886			vm_page_aflag_clear(m, PGA_REFERENCED);
887			actcount = pmap_ts_referenced(m);
888			vm_page_activate(m);
889			vm_page_unlock(m);
890			m->act_count += actcount + ACT_ADVANCE + 1;
891			VM_OBJECT_UNLOCK(object);
892			continue;
893		}
894
895		/*
896		 * If the upper level VM system does not believe that the page
897		 * is fully dirty, but it is mapped for write access, then we
898		 * consult the pmap to see if the page's dirty status should
899		 * be updated.
900		 */
901		if (m->dirty != VM_PAGE_BITS_ALL &&
902		    (m->aflags & PGA_WRITEABLE) != 0) {
903			/*
904			 * Avoid a race condition: Unless write access is
905			 * removed from the page, another processor could
906			 * modify it before all access is removed by the call
907			 * to vm_page_cache() below.  If vm_page_cache() finds
908			 * that the page has been modified when it removes all
909			 * access, it panics because it cannot cache dirty
910			 * pages.  In principle, we could eliminate just write
911			 * access here rather than all access.  In the expected
912			 * case, when there are no last instant modifications
913			 * to the page, removing all access will be cheaper
914			 * overall.
915			 */
916			if (pmap_is_modified(m))
917				vm_page_dirty(m);
918			else if (m->dirty == 0)
919				pmap_remove_all(m);
920		}
921
922		if (m->valid == 0) {
923			/*
924			 * Invalid pages can be easily freed
925			 */
926			vm_page_free(m);
927			cnt.v_dfree++;
928			--page_shortage;
929		} else if (m->dirty == 0) {
930			/*
931			 * Clean pages can be placed onto the cache queue.
932			 * This effectively frees them.
933			 */
934			vm_page_cache(m);
935			--page_shortage;
936		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
937			/*
938			 * Dirty pages need to be paged out, but flushing
939			 * a page is extremely expensive verses freeing
940			 * a clean page.  Rather then artificially limiting
941			 * the number of pages we can flush, we instead give
942			 * dirty pages extra priority on the inactive queue
943			 * by forcing them to be cycled through the queue
944			 * twice before being flushed, after which the
945			 * (now clean) page will cycle through once more
946			 * before being freed.  This significantly extends
947			 * the thrash point for a heavily loaded machine.
948			 */
949			m->flags |= PG_WINATCFLS;
950			vm_page_requeue(m);
951		} else if (maxlaunder > 0) {
952			/*
953			 * We always want to try to flush some dirty pages if
954			 * we encounter them, to keep the system stable.
955			 * Normally this number is small, but under extreme
956			 * pressure where there are insufficient clean pages
957			 * on the inactive queue, we may have to go all out.
958			 */
959			int swap_pageouts_ok, vfslocked = 0;
960			struct vnode *vp = NULL;
961			struct mount *mp = NULL;
962
963			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
964				swap_pageouts_ok = 1;
965			} else {
966				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
967				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
968				vm_page_count_min());
969
970			}
971
972			/*
973			 * We don't bother paging objects that are "dead".
974			 * Those objects are in a "rundown" state.
975			 */
976			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
977				vm_page_unlock(m);
978				VM_OBJECT_UNLOCK(object);
979				vm_page_requeue(m);
980				continue;
981			}
982
983			/*
984			 * Following operations may unlock
985			 * vm_page_queue_mtx, invalidating the 'next'
986			 * pointer.  To prevent an inordinate number
987			 * of restarts we use our marker to remember
988			 * our place.
989			 *
990			 */
991			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
992					   m, &marker, pageq);
993			/*
994			 * The object is already known NOT to be dead.   It
995			 * is possible for the vget() to block the whole
996			 * pageout daemon, but the new low-memory handling
997			 * code should prevent it.
998			 *
999			 * The previous code skipped locked vnodes and, worse,
1000			 * reordered pages in the queue.  This results in
1001			 * completely non-deterministic operation and, on a
1002			 * busy system, can lead to extremely non-optimal
1003			 * pageouts.  For example, it can cause clean pages
1004			 * to be freed and dirty pages to be moved to the end
1005			 * of the queue.  Since dirty pages are also moved to
1006			 * the end of the queue once-cleaned, this gives
1007			 * way too large a weighting to defering the freeing
1008			 * of dirty pages.
1009			 *
1010			 * We can't wait forever for the vnode lock, we might
1011			 * deadlock due to a vn_read() getting stuck in
1012			 * vm_wait while holding this vnode.  We skip the
1013			 * vnode if we can't get it in a reasonable amount
1014			 * of time.
1015			 */
1016			if (object->type == OBJT_VNODE) {
1017				vm_page_unlock_queues();
1018				vm_page_unlock(m);
1019				vp = object->handle;
1020				if (vp->v_type == VREG &&
1021				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1022					mp = NULL;
1023					++pageout_lock_miss;
1024					if (object->flags & OBJ_MIGHTBEDIRTY)
1025						vnodes_skipped++;
1026					vm_page_lock_queues();
1027					goto unlock_and_continue;
1028				}
1029				KASSERT(mp != NULL,
1030				    ("vp %p with NULL v_mount", vp));
1031				vm_object_reference_locked(object);
1032				VM_OBJECT_UNLOCK(object);
1033				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1034				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1035				    curthread)) {
1036					VM_OBJECT_LOCK(object);
1037					vm_page_lock_queues();
1038					++pageout_lock_miss;
1039					if (object->flags & OBJ_MIGHTBEDIRTY)
1040						vnodes_skipped++;
1041					vp = NULL;
1042					goto unlock_and_continue;
1043				}
1044				VM_OBJECT_LOCK(object);
1045				vm_page_lock(m);
1046				vm_page_lock_queues();
1047				/*
1048				 * The page might have been moved to another
1049				 * queue during potential blocking in vget()
1050				 * above.  The page might have been freed and
1051				 * reused for another vnode.
1052				 */
1053				if (m->queue != PQ_INACTIVE ||
1054				    m->object != object ||
1055				    TAILQ_NEXT(m, pageq) != &marker) {
1056					vm_page_unlock(m);
1057					if (object->flags & OBJ_MIGHTBEDIRTY)
1058						vnodes_skipped++;
1059					goto unlock_and_continue;
1060				}
1061
1062				/*
1063				 * The page may have been busied during the
1064				 * blocking in vget().  We don't move the
1065				 * page back onto the end of the queue so that
1066				 * statistics are more correct if we don't.
1067				 */
1068				if (m->busy || (m->oflags & VPO_BUSY)) {
1069					vm_page_unlock(m);
1070					goto unlock_and_continue;
1071				}
1072
1073				/*
1074				 * If the page has become held it might
1075				 * be undergoing I/O, so skip it
1076				 */
1077				if (m->hold_count) {
1078					vm_page_unlock(m);
1079					vm_page_requeue(m);
1080					if (object->flags & OBJ_MIGHTBEDIRTY)
1081						vnodes_skipped++;
1082					goto unlock_and_continue;
1083				}
1084			}
1085
1086			/*
1087			 * If a page is dirty, then it is either being washed
1088			 * (but not yet cleaned) or it is still in the
1089			 * laundry.  If it is still in the laundry, then we
1090			 * start the cleaning operation.
1091			 *
1092			 * decrement page_shortage on success to account for
1093			 * the (future) cleaned page.  Otherwise we could wind
1094			 * up laundering or cleaning too many pages.
1095			 */
1096			vm_page_unlock_queues();
1097			if (vm_pageout_clean(m) != 0) {
1098				--page_shortage;
1099				--maxlaunder;
1100			}
1101			vm_page_lock_queues();
1102unlock_and_continue:
1103			vm_page_lock_assert(m, MA_NOTOWNED);
1104			VM_OBJECT_UNLOCK(object);
1105			if (mp != NULL) {
1106				vm_page_unlock_queues();
1107				if (vp != NULL)
1108					vput(vp);
1109				VFS_UNLOCK_GIANT(vfslocked);
1110				vm_object_deallocate(object);
1111				vn_finished_write(mp);
1112				vm_page_lock_queues();
1113			}
1114			next = TAILQ_NEXT(&marker, pageq);
1115			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1116				     &marker, pageq);
1117			vm_page_lock_assert(m, MA_NOTOWNED);
1118			continue;
1119		}
1120		vm_page_unlock(m);
1121		VM_OBJECT_UNLOCK(object);
1122	}
1123
1124	/*
1125	 * Compute the number of pages we want to try to move from the
1126	 * active queue to the inactive queue.
1127	 */
1128	page_shortage = vm_paging_target() +
1129		cnt.v_inactive_target - cnt.v_inactive_count;
1130	page_shortage += addl_page_shortage;
1131
1132	/*
1133	 * Scan the active queue for things we can deactivate. We nominally
1134	 * track the per-page activity counter and use it to locate
1135	 * deactivation candidates.
1136	 */
1137	pcount = cnt.v_active_count;
1138	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1139	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1140
1141	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1142
1143		KASSERT(m->queue == PQ_ACTIVE,
1144		    ("vm_pageout_scan: page %p isn't active", m));
1145
1146		next = TAILQ_NEXT(m, pageq);
1147		if ((m->flags & PG_MARKER) != 0) {
1148			m = next;
1149			continue;
1150		}
1151		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1152		    ("Fictitious page %p cannot be in active queue", m));
1153		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1154		    ("Unmanaged page %p cannot be in active queue", m));
1155		if (!vm_pageout_page_lock(m, &next)) {
1156			vm_page_unlock(m);
1157			m = next;
1158			continue;
1159		}
1160		object = m->object;
1161		if (!VM_OBJECT_TRYLOCK(object) &&
1162		    !vm_pageout_fallback_object_lock(m, &next)) {
1163			VM_OBJECT_UNLOCK(object);
1164			vm_page_unlock(m);
1165			m = next;
1166			continue;
1167		}
1168
1169		/*
1170		 * Don't deactivate pages that are busy.
1171		 */
1172		if ((m->busy != 0) ||
1173		    (m->oflags & VPO_BUSY) ||
1174		    (m->hold_count != 0)) {
1175			vm_page_unlock(m);
1176			VM_OBJECT_UNLOCK(object);
1177			vm_page_requeue(m);
1178			m = next;
1179			continue;
1180		}
1181
1182		/*
1183		 * The count for pagedaemon pages is done after checking the
1184		 * page for eligibility...
1185		 */
1186		cnt.v_pdpages++;
1187
1188		/*
1189		 * Check to see "how much" the page has been used.
1190		 */
1191		actcount = 0;
1192		if (object->ref_count != 0) {
1193			if (m->aflags & PGA_REFERENCED) {
1194				actcount += 1;
1195			}
1196			actcount += pmap_ts_referenced(m);
1197			if (actcount) {
1198				m->act_count += ACT_ADVANCE + actcount;
1199				if (m->act_count > ACT_MAX)
1200					m->act_count = ACT_MAX;
1201			}
1202		}
1203
1204		/*
1205		 * Since we have "tested" this bit, we need to clear it now.
1206		 */
1207		vm_page_aflag_clear(m, PGA_REFERENCED);
1208
1209		/*
1210		 * Only if an object is currently being used, do we use the
1211		 * page activation count stats.
1212		 */
1213		if (actcount && (object->ref_count != 0)) {
1214			vm_page_requeue(m);
1215		} else {
1216			m->act_count -= min(m->act_count, ACT_DECLINE);
1217			if (vm_pageout_algorithm ||
1218			    object->ref_count == 0 ||
1219			    m->act_count == 0) {
1220				page_shortage--;
1221				if (object->ref_count == 0) {
1222					KASSERT(!pmap_page_is_mapped(m),
1223				    ("vm_pageout_scan: page %p is mapped", m));
1224					if (m->dirty == 0)
1225						vm_page_cache(m);
1226					else
1227						vm_page_deactivate(m);
1228				} else {
1229					vm_page_deactivate(m);
1230				}
1231			} else {
1232				vm_page_requeue(m);
1233			}
1234		}
1235		vm_page_unlock(m);
1236		VM_OBJECT_UNLOCK(object);
1237		m = next;
1238	}
1239	vm_page_unlock_queues();
1240#if !defined(NO_SWAPPING)
1241	/*
1242	 * Idle process swapout -- run once per second.
1243	 */
1244	if (vm_swap_idle_enabled) {
1245		static long lsec;
1246		if (time_second != lsec) {
1247			vm_req_vmdaemon(VM_SWAP_IDLE);
1248			lsec = time_second;
1249		}
1250	}
1251#endif
1252
1253	/*
1254	 * If we didn't get enough free pages, and we have skipped a vnode
1255	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1256	 * if we did not get enough free pages.
1257	 */
1258	if (vm_paging_target() > 0) {
1259		if (vnodes_skipped && vm_page_count_min())
1260			(void) speedup_syncer();
1261#if !defined(NO_SWAPPING)
1262		if (vm_swap_enabled && vm_page_count_target())
1263			vm_req_vmdaemon(VM_SWAP_NORMAL);
1264#endif
1265	}
1266
1267	/*
1268	 * If we are critically low on one of RAM or swap and low on
1269	 * the other, kill the largest process.  However, we avoid
1270	 * doing this on the first pass in order to give ourselves a
1271	 * chance to flush out dirty vnode-backed pages and to allow
1272	 * active pages to be moved to the inactive queue and reclaimed.
1273	 */
1274	if (pass != 0 &&
1275	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1276	     (swap_pager_full && vm_paging_target() > 0)))
1277		vm_pageout_oom(VM_OOM_MEM);
1278}
1279
1280
1281void
1282vm_pageout_oom(int shortage)
1283{
1284	struct proc *p, *bigproc;
1285	vm_offset_t size, bigsize;
1286	struct thread *td;
1287	struct vmspace *vm;
1288
1289	/*
1290	 * We keep the process bigproc locked once we find it to keep anyone
1291	 * from messing with it; however, there is a possibility of
1292	 * deadlock if process B is bigproc and one of it's child processes
1293	 * attempts to propagate a signal to B while we are waiting for A's
1294	 * lock while walking this list.  To avoid this, we don't block on
1295	 * the process lock but just skip a process if it is already locked.
1296	 */
1297	bigproc = NULL;
1298	bigsize = 0;
1299	sx_slock(&allproc_lock);
1300	FOREACH_PROC_IN_SYSTEM(p) {
1301		int breakout;
1302
1303		if (PROC_TRYLOCK(p) == 0)
1304			continue;
1305		/*
1306		 * If this is a system, protected or killed process, skip it.
1307		 */
1308		if (p->p_state != PRS_NORMAL ||
1309		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1310		    (p->p_pid == 1) || P_KILLED(p) ||
1311		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1312			PROC_UNLOCK(p);
1313			continue;
1314		}
1315		/*
1316		 * If the process is in a non-running type state,
1317		 * don't touch it.  Check all the threads individually.
1318		 */
1319		breakout = 0;
1320		FOREACH_THREAD_IN_PROC(p, td) {
1321			thread_lock(td);
1322			if (!TD_ON_RUNQ(td) &&
1323			    !TD_IS_RUNNING(td) &&
1324			    !TD_IS_SLEEPING(td) &&
1325			    !TD_IS_SUSPENDED(td)) {
1326				thread_unlock(td);
1327				breakout = 1;
1328				break;
1329			}
1330			thread_unlock(td);
1331		}
1332		if (breakout) {
1333			PROC_UNLOCK(p);
1334			continue;
1335		}
1336		/*
1337		 * get the process size
1338		 */
1339		vm = vmspace_acquire_ref(p);
1340		if (vm == NULL) {
1341			PROC_UNLOCK(p);
1342			continue;
1343		}
1344		if (!vm_map_trylock_read(&vm->vm_map)) {
1345			vmspace_free(vm);
1346			PROC_UNLOCK(p);
1347			continue;
1348		}
1349		size = vmspace_swap_count(vm);
1350		vm_map_unlock_read(&vm->vm_map);
1351		if (shortage == VM_OOM_MEM)
1352			size += vmspace_resident_count(vm);
1353		vmspace_free(vm);
1354		/*
1355		 * if the this process is bigger than the biggest one
1356		 * remember it.
1357		 */
1358		if (size > bigsize) {
1359			if (bigproc != NULL)
1360				PROC_UNLOCK(bigproc);
1361			bigproc = p;
1362			bigsize = size;
1363		} else
1364			PROC_UNLOCK(p);
1365	}
1366	sx_sunlock(&allproc_lock);
1367	if (bigproc != NULL) {
1368		killproc(bigproc, "out of swap space");
1369		sched_nice(bigproc, PRIO_MIN);
1370		PROC_UNLOCK(bigproc);
1371		wakeup(&cnt.v_free_count);
1372	}
1373}
1374
1375/*
1376 * This routine tries to maintain the pseudo LRU active queue,
1377 * so that during long periods of time where there is no paging,
1378 * that some statistic accumulation still occurs.  This code
1379 * helps the situation where paging just starts to occur.
1380 */
1381static void
1382vm_pageout_page_stats()
1383{
1384	vm_object_t object;
1385	vm_page_t m,next;
1386	int pcount,tpcount;		/* Number of pages to check */
1387	static int fullintervalcount = 0;
1388	int page_shortage;
1389
1390	page_shortage =
1391	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1392	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1393
1394	if (page_shortage <= 0)
1395		return;
1396
1397	vm_page_lock_queues();
1398	pcount = cnt.v_active_count;
1399	fullintervalcount += vm_pageout_stats_interval;
1400	if (fullintervalcount < vm_pageout_full_stats_interval) {
1401		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1402		    cnt.v_page_count;
1403		if (pcount > tpcount)
1404			pcount = tpcount;
1405	} else {
1406		fullintervalcount = 0;
1407	}
1408
1409	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1410	while ((m != NULL) && (pcount-- > 0)) {
1411		int actcount;
1412
1413		KASSERT(m->queue == PQ_ACTIVE,
1414		    ("vm_pageout_page_stats: page %p isn't active", m));
1415
1416		next = TAILQ_NEXT(m, pageq);
1417		if ((m->flags & PG_MARKER) != 0) {
1418			m = next;
1419			continue;
1420		}
1421		vm_page_lock_assert(m, MA_NOTOWNED);
1422		if (!vm_pageout_page_lock(m, &next)) {
1423			vm_page_unlock(m);
1424			m = next;
1425			continue;
1426		}
1427		object = m->object;
1428		if (!VM_OBJECT_TRYLOCK(object) &&
1429		    !vm_pageout_fallback_object_lock(m, &next)) {
1430			VM_OBJECT_UNLOCK(object);
1431			vm_page_unlock(m);
1432			m = next;
1433			continue;
1434		}
1435
1436		/*
1437		 * Don't deactivate pages that are busy.
1438		 */
1439		if ((m->busy != 0) ||
1440		    (m->oflags & VPO_BUSY) ||
1441		    (m->hold_count != 0)) {
1442			vm_page_unlock(m);
1443			VM_OBJECT_UNLOCK(object);
1444			vm_page_requeue(m);
1445			m = next;
1446			continue;
1447		}
1448
1449		actcount = 0;
1450		if (m->aflags & PGA_REFERENCED) {
1451			vm_page_aflag_clear(m, PGA_REFERENCED);
1452			actcount += 1;
1453		}
1454
1455		actcount += pmap_ts_referenced(m);
1456		if (actcount) {
1457			m->act_count += ACT_ADVANCE + actcount;
1458			if (m->act_count > ACT_MAX)
1459				m->act_count = ACT_MAX;
1460			vm_page_requeue(m);
1461		} else {
1462			if (m->act_count == 0) {
1463				/*
1464				 * We turn off page access, so that we have
1465				 * more accurate RSS stats.  We don't do this
1466				 * in the normal page deactivation when the
1467				 * system is loaded VM wise, because the
1468				 * cost of the large number of page protect
1469				 * operations would be higher than the value
1470				 * of doing the operation.
1471				 */
1472				pmap_remove_all(m);
1473				vm_page_deactivate(m);
1474			} else {
1475				m->act_count -= min(m->act_count, ACT_DECLINE);
1476				vm_page_requeue(m);
1477			}
1478		}
1479		vm_page_unlock(m);
1480		VM_OBJECT_UNLOCK(object);
1481		m = next;
1482	}
1483	vm_page_unlock_queues();
1484}
1485
1486/*
1487 *	vm_pageout is the high level pageout daemon.
1488 */
1489static void
1490vm_pageout()
1491{
1492	int error, pass;
1493
1494	/*
1495	 * Initialize some paging parameters.
1496	 */
1497	cnt.v_interrupt_free_min = 2;
1498	if (cnt.v_page_count < 2000)
1499		vm_pageout_page_count = 8;
1500
1501	/*
1502	 * v_free_reserved needs to include enough for the largest
1503	 * swap pager structures plus enough for any pv_entry structs
1504	 * when paging.
1505	 */
1506	if (cnt.v_page_count > 1024)
1507		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1508	else
1509		cnt.v_free_min = 4;
1510	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1511	    cnt.v_interrupt_free_min;
1512	cnt.v_free_reserved = vm_pageout_page_count +
1513	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1514	cnt.v_free_severe = cnt.v_free_min / 2;
1515	cnt.v_free_min += cnt.v_free_reserved;
1516	cnt.v_free_severe += cnt.v_free_reserved;
1517
1518	/*
1519	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1520	 * that these are more a measure of the VM cache queue hysteresis
1521	 * then the VM free queue.  Specifically, v_free_target is the
1522	 * high water mark (free+cache pages).
1523	 *
1524	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1525	 * low water mark, while v_free_min is the stop.  v_cache_min must
1526	 * be big enough to handle memory needs while the pageout daemon
1527	 * is signalled and run to free more pages.
1528	 */
1529	if (cnt.v_free_count > 6144)
1530		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1531	else
1532		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1533
1534	if (cnt.v_free_count > 2048) {
1535		cnt.v_cache_min = cnt.v_free_target;
1536		cnt.v_cache_max = 2 * cnt.v_cache_min;
1537		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1538	} else {
1539		cnt.v_cache_min = 0;
1540		cnt.v_cache_max = 0;
1541		cnt.v_inactive_target = cnt.v_free_count / 4;
1542	}
1543	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1544		cnt.v_inactive_target = cnt.v_free_count / 3;
1545
1546	/* XXX does not really belong here */
1547	if (vm_page_max_wired == 0)
1548		vm_page_max_wired = cnt.v_free_count / 3;
1549
1550	if (vm_pageout_stats_max == 0)
1551		vm_pageout_stats_max = cnt.v_free_target;
1552
1553	/*
1554	 * Set interval in seconds for stats scan.
1555	 */
1556	if (vm_pageout_stats_interval == 0)
1557		vm_pageout_stats_interval = 5;
1558	if (vm_pageout_full_stats_interval == 0)
1559		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1560
1561	swap_pager_swap_init();
1562	pass = 0;
1563	/*
1564	 * The pageout daemon is never done, so loop forever.
1565	 */
1566	while (TRUE) {
1567		/*
1568		 * If we have enough free memory, wakeup waiters.  Do
1569		 * not clear vm_pages_needed until we reach our target,
1570		 * otherwise we may be woken up over and over again and
1571		 * waste a lot of cpu.
1572		 */
1573		mtx_lock(&vm_page_queue_free_mtx);
1574		if (vm_pages_needed && !vm_page_count_min()) {
1575			if (!vm_paging_needed())
1576				vm_pages_needed = 0;
1577			wakeup(&cnt.v_free_count);
1578		}
1579		if (vm_pages_needed) {
1580			/*
1581			 * Still not done, take a second pass without waiting
1582			 * (unlimited dirty cleaning), otherwise sleep a bit
1583			 * and try again.
1584			 */
1585			++pass;
1586			if (pass > 1)
1587				msleep(&vm_pages_needed,
1588				    &vm_page_queue_free_mtx, PVM, "psleep",
1589				    hz / 2);
1590		} else {
1591			/*
1592			 * Good enough, sleep & handle stats.  Prime the pass
1593			 * for the next run.
1594			 */
1595			if (pass > 1)
1596				pass = 1;
1597			else
1598				pass = 0;
1599			error = msleep(&vm_pages_needed,
1600			    &vm_page_queue_free_mtx, PVM, "psleep",
1601			    vm_pageout_stats_interval * hz);
1602			if (error && !vm_pages_needed) {
1603				mtx_unlock(&vm_page_queue_free_mtx);
1604				pass = 0;
1605				vm_pageout_page_stats();
1606				continue;
1607			}
1608		}
1609		if (vm_pages_needed)
1610			cnt.v_pdwakeups++;
1611		mtx_unlock(&vm_page_queue_free_mtx);
1612		vm_pageout_scan(pass);
1613	}
1614}
1615
1616/*
1617 * Unless the free page queue lock is held by the caller, this function
1618 * should be regarded as advisory.  Specifically, the caller should
1619 * not msleep() on &cnt.v_free_count following this function unless
1620 * the free page queue lock is held until the msleep() is performed.
1621 */
1622void
1623pagedaemon_wakeup()
1624{
1625
1626	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1627		vm_pages_needed = 1;
1628		wakeup(&vm_pages_needed);
1629	}
1630}
1631
1632#if !defined(NO_SWAPPING)
1633static void
1634vm_req_vmdaemon(int req)
1635{
1636	static int lastrun = 0;
1637
1638	mtx_lock(&vm_daemon_mtx);
1639	vm_pageout_req_swapout |= req;
1640	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1641		wakeup(&vm_daemon_needed);
1642		lastrun = ticks;
1643	}
1644	mtx_unlock(&vm_daemon_mtx);
1645}
1646
1647static void
1648vm_daemon()
1649{
1650	struct rlimit rsslim;
1651	struct proc *p;
1652	struct thread *td;
1653	struct vmspace *vm;
1654	int breakout, swapout_flags, tryagain, attempts;
1655#ifdef RACCT
1656	uint64_t rsize, ravailable;
1657#endif
1658
1659	while (TRUE) {
1660		mtx_lock(&vm_daemon_mtx);
1661#ifdef RACCT
1662		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1663#else
1664		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1665#endif
1666		swapout_flags = vm_pageout_req_swapout;
1667		vm_pageout_req_swapout = 0;
1668		mtx_unlock(&vm_daemon_mtx);
1669		if (swapout_flags)
1670			swapout_procs(swapout_flags);
1671
1672		/*
1673		 * scan the processes for exceeding their rlimits or if
1674		 * process is swapped out -- deactivate pages
1675		 */
1676		tryagain = 0;
1677		attempts = 0;
1678again:
1679		attempts++;
1680		sx_slock(&allproc_lock);
1681		FOREACH_PROC_IN_SYSTEM(p) {
1682			vm_pindex_t limit, size;
1683
1684			/*
1685			 * if this is a system process or if we have already
1686			 * looked at this process, skip it.
1687			 */
1688			PROC_LOCK(p);
1689			if (p->p_state != PRS_NORMAL ||
1690			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1691				PROC_UNLOCK(p);
1692				continue;
1693			}
1694			/*
1695			 * if the process is in a non-running type state,
1696			 * don't touch it.
1697			 */
1698			breakout = 0;
1699			FOREACH_THREAD_IN_PROC(p, td) {
1700				thread_lock(td);
1701				if (!TD_ON_RUNQ(td) &&
1702				    !TD_IS_RUNNING(td) &&
1703				    !TD_IS_SLEEPING(td) &&
1704				    !TD_IS_SUSPENDED(td)) {
1705					thread_unlock(td);
1706					breakout = 1;
1707					break;
1708				}
1709				thread_unlock(td);
1710			}
1711			if (breakout) {
1712				PROC_UNLOCK(p);
1713				continue;
1714			}
1715			/*
1716			 * get a limit
1717			 */
1718			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1719			limit = OFF_TO_IDX(
1720			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1721
1722			/*
1723			 * let processes that are swapped out really be
1724			 * swapped out set the limit to nothing (will force a
1725			 * swap-out.)
1726			 */
1727			if ((p->p_flag & P_INMEM) == 0)
1728				limit = 0;	/* XXX */
1729			vm = vmspace_acquire_ref(p);
1730			PROC_UNLOCK(p);
1731			if (vm == NULL)
1732				continue;
1733
1734			size = vmspace_resident_count(vm);
1735			if (limit >= 0 && size >= limit) {
1736				vm_pageout_map_deactivate_pages(
1737				    &vm->vm_map, limit);
1738			}
1739#ifdef RACCT
1740			rsize = IDX_TO_OFF(size);
1741			PROC_LOCK(p);
1742			racct_set(p, RACCT_RSS, rsize);
1743			ravailable = racct_get_available(p, RACCT_RSS);
1744			PROC_UNLOCK(p);
1745			if (rsize > ravailable) {
1746				/*
1747				 * Don't be overly aggressive; this might be
1748				 * an innocent process, and the limit could've
1749				 * been exceeded by some memory hog.  Don't
1750				 * try to deactivate more than 1/4th of process'
1751				 * resident set size.
1752				 */
1753				if (attempts <= 8) {
1754					if (ravailable < rsize - (rsize / 4))
1755						ravailable = rsize - (rsize / 4);
1756				}
1757				vm_pageout_map_deactivate_pages(
1758				    &vm->vm_map, OFF_TO_IDX(ravailable));
1759				/* Update RSS usage after paging out. */
1760				size = vmspace_resident_count(vm);
1761				rsize = IDX_TO_OFF(size);
1762				PROC_LOCK(p);
1763				racct_set(p, RACCT_RSS, rsize);
1764				PROC_UNLOCK(p);
1765				if (rsize > ravailable)
1766					tryagain = 1;
1767			}
1768#endif
1769			vmspace_free(vm);
1770		}
1771		sx_sunlock(&allproc_lock);
1772		if (tryagain != 0 && attempts <= 10)
1773			goto again;
1774	}
1775}
1776#endif			/* !defined(NO_SWAPPING) */
1777