vm_pageout.c revision 215471
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 215471 2010-11-18 21:09:02Z kib $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218static void
219vm_pageout_init_marker(vm_page_t marker, u_short queue)
220{
221
222	bzero(marker, sizeof(*marker));
223	marker->flags = PG_FICTITIOUS | PG_MARKER;
224	marker->oflags = VPO_BUSY;
225	marker->queue = queue;
226	marker->wire_count = 1;
227}
228
229/*
230 * vm_pageout_fallback_object_lock:
231 *
232 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233 * known to have failed and page queue must be either PQ_ACTIVE or
234 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235 * while locking the vm object.  Use marker page to detect page queue
236 * changes and maintain notion of next page on page queue.  Return
237 * TRUE if no changes were detected, FALSE otherwise.  vm object is
238 * locked on return.
239 *
240 * This function depends on both the lock portion of struct vm_object
241 * and normal struct vm_page being type stable.
242 */
243boolean_t
244vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245{
246	struct vm_page marker;
247	boolean_t unchanged;
248	u_short queue;
249	vm_object_t object;
250
251	queue = m->queue;
252	vm_pageout_init_marker(&marker, queue);
253	object = m->object;
254
255	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256			   m, &marker, pageq);
257	vm_page_unlock_queues();
258	vm_page_unlock(m);
259	VM_OBJECT_LOCK(object);
260	vm_page_lock(m);
261	vm_page_lock_queues();
262
263	/* Page queue might have changed. */
264	*next = TAILQ_NEXT(&marker, pageq);
265	unchanged = (m->queue == queue &&
266		     m->object == object &&
267		     &marker == TAILQ_NEXT(m, pageq));
268	TAILQ_REMOVE(&vm_page_queues[queue].pl,
269		     &marker, pageq);
270	return (unchanged);
271}
272
273/*
274 * Lock the page while holding the page queue lock.  Use marker page
275 * to detect page queue changes and maintain notion of next page on
276 * page queue.  Return TRUE if no changes were detected, FALSE
277 * otherwise.  The page is locked on return. The page queue lock might
278 * be dropped and reacquired.
279 *
280 * This function depends on normal struct vm_page being type stable.
281 */
282boolean_t
283vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284{
285	struct vm_page marker;
286	boolean_t unchanged;
287	u_short queue;
288
289	vm_page_lock_assert(m, MA_NOTOWNED);
290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292	if (vm_page_trylock(m))
293		return (TRUE);
294
295	queue = m->queue;
296	vm_pageout_init_marker(&marker, queue);
297
298	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299	vm_page_unlock_queues();
300	vm_page_lock(m);
301	vm_page_lock_queues();
302
303	/* Page queue might have changed. */
304	*next = TAILQ_NEXT(&marker, pageq);
305	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307	return (unchanged);
308}
309
310/*
311 * vm_pageout_clean:
312 *
313 * Clean the page and remove it from the laundry.
314 *
315 * We set the busy bit to cause potential page faults on this page to
316 * block.  Note the careful timing, however, the busy bit isn't set till
317 * late and we cannot do anything that will mess with the page.
318 */
319static int
320vm_pageout_clean(vm_page_t m)
321{
322	vm_object_t object;
323	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
324	int pageout_count;
325	int ib, is, page_base;
326	vm_pindex_t pindex = m->pindex;
327
328	vm_page_lock_assert(m, MA_OWNED);
329	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
330
331	/*
332	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
333	 * with the new swapper, but we could have serious problems paging
334	 * out other object types if there is insufficient memory.
335	 *
336	 * Unfortunately, checking free memory here is far too late, so the
337	 * check has been moved up a procedural level.
338	 */
339
340	/*
341	 * Can't clean the page if it's busy or held.
342	 */
343	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
344	    ("vm_pageout_clean: page %p is busy", m));
345	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
346
347	mc[vm_pageout_page_count] = pb = ps = m;
348	pageout_count = 1;
349	page_base = vm_pageout_page_count;
350	ib = 1;
351	is = 1;
352
353	/*
354	 * Scan object for clusterable pages.
355	 *
356	 * We can cluster ONLY if: ->> the page is NOT
357	 * clean, wired, busy, held, or mapped into a
358	 * buffer, and one of the following:
359	 * 1) The page is inactive, or a seldom used
360	 *    active page.
361	 * -or-
362	 * 2) we force the issue.
363	 *
364	 * During heavy mmap/modification loads the pageout
365	 * daemon can really fragment the underlying file
366	 * due to flushing pages out of order and not trying
367	 * align the clusters (which leave sporatic out-of-order
368	 * holes).  To solve this problem we do the reverse scan
369	 * first and attempt to align our cluster, then do a
370	 * forward scan if room remains.
371	 */
372	object = m->object;
373more:
374	while (ib && pageout_count < vm_pageout_page_count) {
375		vm_page_t p;
376
377		if (ib > pindex) {
378			ib = 0;
379			break;
380		}
381
382		if ((p = vm_page_prev(pb)) == NULL ||
383		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
384			ib = 0;
385			break;
386		}
387		vm_page_lock(p);
388		vm_page_test_dirty(p);
389		if (p->dirty == 0 ||
390		    p->queue != PQ_INACTIVE ||
391		    p->hold_count != 0) {	/* may be undergoing I/O */
392			vm_page_unlock(p);
393			ib = 0;
394			break;
395		}
396		vm_page_unlock(p);
397		mc[--page_base] = pb = p;
398		++pageout_count;
399		++ib;
400		/*
401		 * alignment boundry, stop here and switch directions.  Do
402		 * not clear ib.
403		 */
404		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
405			break;
406	}
407
408	while (pageout_count < vm_pageout_page_count &&
409	    pindex + is < object->size) {
410		vm_page_t p;
411
412		if ((p = vm_page_next(ps)) == NULL ||
413		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
414			break;
415		vm_page_lock(p);
416		vm_page_test_dirty(p);
417		if (p->dirty == 0 ||
418		    p->queue != PQ_INACTIVE ||
419		    p->hold_count != 0) {	/* may be undergoing I/O */
420			vm_page_unlock(p);
421			break;
422		}
423		vm_page_unlock(p);
424		mc[page_base + pageout_count] = ps = p;
425		++pageout_count;
426		++is;
427	}
428
429	/*
430	 * If we exhausted our forward scan, continue with the reverse scan
431	 * when possible, even past a page boundry.  This catches boundry
432	 * conditions.
433	 */
434	if (ib && pageout_count < vm_pageout_page_count)
435		goto more;
436
437	vm_page_unlock(m);
438	/*
439	 * we allow reads during pageouts...
440	 */
441	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
442}
443
444/*
445 * vm_pageout_flush() - launder the given pages
446 *
447 *	The given pages are laundered.  Note that we setup for the start of
448 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
449 *	reference count all in here rather then in the parent.  If we want
450 *	the parent to do more sophisticated things we may have to change
451 *	the ordering.
452 *
453 *	Returned runlen is the count of pages between mreq and first
454 *	page after mreq with status VM_PAGER_AGAIN.
455 */
456int
457vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
458{
459	vm_object_t object = mc[0]->object;
460	int pageout_status[count];
461	int numpagedout = 0;
462	int i, runlen;
463
464	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
465	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
466
467	/*
468	 * Initiate I/O.  Bump the vm_page_t->busy counter and
469	 * mark the pages read-only.
470	 *
471	 * We do not have to fixup the clean/dirty bits here... we can
472	 * allow the pager to do it after the I/O completes.
473	 *
474	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
475	 * edge case with file fragments.
476	 */
477	for (i = 0; i < count; i++) {
478		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
479		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
480			mc[i], i, count));
481		vm_page_io_start(mc[i]);
482		pmap_remove_write(mc[i]);
483	}
484	vm_object_pip_add(object, count);
485
486	vm_pager_put_pages(object, mc, count, flags, pageout_status);
487
488	runlen = count - mreq;
489	for (i = 0; i < count; i++) {
490		vm_page_t mt = mc[i];
491
492		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
493		    (mt->flags & PG_WRITEABLE) == 0,
494		    ("vm_pageout_flush: page %p is not write protected", mt));
495		switch (pageout_status[i]) {
496		case VM_PAGER_OK:
497		case VM_PAGER_PEND:
498			numpagedout++;
499			break;
500		case VM_PAGER_BAD:
501			/*
502			 * Page outside of range of object. Right now we
503			 * essentially lose the changes by pretending it
504			 * worked.
505			 */
506			vm_page_undirty(mt);
507			break;
508		case VM_PAGER_ERROR:
509		case VM_PAGER_FAIL:
510			/*
511			 * If page couldn't be paged out, then reactivate the
512			 * page so it doesn't clog the inactive list.  (We
513			 * will try paging out it again later).
514			 */
515			vm_page_lock(mt);
516			vm_page_activate(mt);
517			vm_page_unlock(mt);
518			break;
519		case VM_PAGER_AGAIN:
520			if (i >= mreq && i - mreq < runlen)
521				runlen = i - mreq;
522			break;
523		}
524
525		/*
526		 * If the operation is still going, leave the page busy to
527		 * block all other accesses. Also, leave the paging in
528		 * progress indicator set so that we don't attempt an object
529		 * collapse.
530		 */
531		if (pageout_status[i] != VM_PAGER_PEND) {
532			vm_object_pip_wakeup(object);
533			vm_page_io_finish(mt);
534			if (vm_page_count_severe()) {
535				vm_page_lock(mt);
536				vm_page_try_to_cache(mt);
537				vm_page_unlock(mt);
538			}
539		}
540	}
541	if (prunlen != NULL)
542		*prunlen = runlen;
543	return (numpagedout);
544}
545
546#if !defined(NO_SWAPPING)
547/*
548 *	vm_pageout_object_deactivate_pages
549 *
550 *	Deactivate enough pages to satisfy the inactive target
551 *	requirements.
552 *
553 *	The object and map must be locked.
554 */
555static void
556vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
557    long desired)
558{
559	vm_object_t backing_object, object;
560	vm_page_t p;
561	int actcount, remove_mode;
562
563	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
564	if (first_object->type == OBJT_DEVICE ||
565	    first_object->type == OBJT_SG)
566		return;
567	for (object = first_object;; object = backing_object) {
568		if (pmap_resident_count(pmap) <= desired)
569			goto unlock_return;
570		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
571		if (object->type == OBJT_PHYS || object->paging_in_progress)
572			goto unlock_return;
573
574		remove_mode = 0;
575		if (object->shadow_count > 1)
576			remove_mode = 1;
577		/*
578		 * Scan the object's entire memory queue.
579		 */
580		TAILQ_FOREACH(p, &object->memq, listq) {
581			if (pmap_resident_count(pmap) <= desired)
582				goto unlock_return;
583			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
584				continue;
585			PCPU_INC(cnt.v_pdpages);
586			vm_page_lock(p);
587			if (p->wire_count != 0 || p->hold_count != 0 ||
588			    !pmap_page_exists_quick(pmap, p)) {
589				vm_page_unlock(p);
590				continue;
591			}
592			actcount = pmap_ts_referenced(p);
593			if ((p->flags & PG_REFERENCED) != 0) {
594				if (actcount == 0)
595					actcount = 1;
596				vm_page_lock_queues();
597				vm_page_flag_clear(p, PG_REFERENCED);
598				vm_page_unlock_queues();
599			}
600			if (p->queue != PQ_ACTIVE && actcount != 0) {
601				vm_page_activate(p);
602				p->act_count += actcount;
603			} else if (p->queue == PQ_ACTIVE) {
604				if (actcount == 0) {
605					p->act_count -= min(p->act_count,
606					    ACT_DECLINE);
607					if (!remove_mode &&
608					    (vm_pageout_algorithm ||
609					    p->act_count == 0)) {
610						pmap_remove_all(p);
611						vm_page_deactivate(p);
612					} else {
613						vm_page_lock_queues();
614						vm_page_requeue(p);
615						vm_page_unlock_queues();
616					}
617				} else {
618					vm_page_activate(p);
619					if (p->act_count < ACT_MAX -
620					    ACT_ADVANCE)
621						p->act_count += ACT_ADVANCE;
622					vm_page_lock_queues();
623					vm_page_requeue(p);
624					vm_page_unlock_queues();
625				}
626			} else if (p->queue == PQ_INACTIVE)
627				pmap_remove_all(p);
628			vm_page_unlock(p);
629		}
630		if ((backing_object = object->backing_object) == NULL)
631			goto unlock_return;
632		VM_OBJECT_LOCK(backing_object);
633		if (object != first_object)
634			VM_OBJECT_UNLOCK(object);
635	}
636unlock_return:
637	if (object != first_object)
638		VM_OBJECT_UNLOCK(object);
639}
640
641/*
642 * deactivate some number of pages in a map, try to do it fairly, but
643 * that is really hard to do.
644 */
645static void
646vm_pageout_map_deactivate_pages(map, desired)
647	vm_map_t map;
648	long desired;
649{
650	vm_map_entry_t tmpe;
651	vm_object_t obj, bigobj;
652	int nothingwired;
653
654	if (!vm_map_trylock(map))
655		return;
656
657	bigobj = NULL;
658	nothingwired = TRUE;
659
660	/*
661	 * first, search out the biggest object, and try to free pages from
662	 * that.
663	 */
664	tmpe = map->header.next;
665	while (tmpe != &map->header) {
666		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
667			obj = tmpe->object.vm_object;
668			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
669				if (obj->shadow_count <= 1 &&
670				    (bigobj == NULL ||
671				     bigobj->resident_page_count < obj->resident_page_count)) {
672					if (bigobj != NULL)
673						VM_OBJECT_UNLOCK(bigobj);
674					bigobj = obj;
675				} else
676					VM_OBJECT_UNLOCK(obj);
677			}
678		}
679		if (tmpe->wired_count > 0)
680			nothingwired = FALSE;
681		tmpe = tmpe->next;
682	}
683
684	if (bigobj != NULL) {
685		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
686		VM_OBJECT_UNLOCK(bigobj);
687	}
688	/*
689	 * Next, hunt around for other pages to deactivate.  We actually
690	 * do this search sort of wrong -- .text first is not the best idea.
691	 */
692	tmpe = map->header.next;
693	while (tmpe != &map->header) {
694		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
695			break;
696		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
697			obj = tmpe->object.vm_object;
698			if (obj != NULL) {
699				VM_OBJECT_LOCK(obj);
700				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
701				VM_OBJECT_UNLOCK(obj);
702			}
703		}
704		tmpe = tmpe->next;
705	}
706
707	/*
708	 * Remove all mappings if a process is swapped out, this will free page
709	 * table pages.
710	 */
711	if (desired == 0 && nothingwired) {
712		tmpe = map->header.next;
713		while (tmpe != &map->header) {
714			pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
715			tmpe = tmpe->next;
716		}
717	}
718	vm_map_unlock(map);
719}
720#endif		/* !defined(NO_SWAPPING) */
721
722/*
723 *	vm_pageout_scan does the dirty work for the pageout daemon.
724 */
725static void
726vm_pageout_scan(int pass)
727{
728	vm_page_t m, next;
729	struct vm_page marker;
730	int page_shortage, maxscan, pcount;
731	int addl_page_shortage, addl_page_shortage_init;
732	vm_object_t object;
733	int actcount;
734	int vnodes_skipped = 0;
735	int maxlaunder;
736
737	/*
738	 * Decrease registered cache sizes.
739	 */
740	EVENTHANDLER_INVOKE(vm_lowmem, 0);
741	/*
742	 * We do this explicitly after the caches have been drained above.
743	 */
744	uma_reclaim();
745
746	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
747
748	/*
749	 * Calculate the number of pages we want to either free or move
750	 * to the cache.
751	 */
752	page_shortage = vm_paging_target() + addl_page_shortage_init;
753
754	vm_pageout_init_marker(&marker, PQ_INACTIVE);
755
756	/*
757	 * Start scanning the inactive queue for pages we can move to the
758	 * cache or free.  The scan will stop when the target is reached or
759	 * we have scanned the entire inactive queue.  Note that m->act_count
760	 * is not used to form decisions for the inactive queue, only for the
761	 * active queue.
762	 *
763	 * maxlaunder limits the number of dirty pages we flush per scan.
764	 * For most systems a smaller value (16 or 32) is more robust under
765	 * extreme memory and disk pressure because any unnecessary writes
766	 * to disk can result in extreme performance degredation.  However,
767	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
768	 * used) will die horribly with limited laundering.  If the pageout
769	 * daemon cannot clean enough pages in the first pass, we let it go
770	 * all out in succeeding passes.
771	 */
772	if ((maxlaunder = vm_max_launder) <= 1)
773		maxlaunder = 1;
774	if (pass)
775		maxlaunder = 10000;
776	vm_page_lock_queues();
777rescan0:
778	addl_page_shortage = addl_page_shortage_init;
779	maxscan = cnt.v_inactive_count;
780
781	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
782	     m != NULL && maxscan-- > 0 && page_shortage > 0;
783	     m = next) {
784
785		cnt.v_pdpages++;
786
787		if (m->queue != PQ_INACTIVE)
788			goto rescan0;
789
790		next = TAILQ_NEXT(m, pageq);
791
792		/*
793		 * skip marker pages
794		 */
795		if (m->flags & PG_MARKER)
796			continue;
797
798		/*
799		 * Lock the page.
800		 */
801		if (!vm_pageout_page_lock(m, &next)) {
802			vm_page_unlock(m);
803			addl_page_shortage++;
804			continue;
805		}
806
807		/*
808		 * A held page may be undergoing I/O, so skip it.
809		 */
810		if (m->hold_count) {
811			vm_page_unlock(m);
812			vm_page_requeue(m);
813			addl_page_shortage++;
814			continue;
815		}
816
817		/*
818		 * Don't mess with busy pages, keep in the front of the
819		 * queue, most likely are being paged out.
820		 */
821		object = m->object;
822		if (!VM_OBJECT_TRYLOCK(object) &&
823		    (!vm_pageout_fallback_object_lock(m, &next) ||
824			m->hold_count != 0)) {
825			VM_OBJECT_UNLOCK(object);
826			vm_page_unlock(m);
827			addl_page_shortage++;
828			continue;
829		}
830		if (m->busy || (m->oflags & VPO_BUSY)) {
831			vm_page_unlock(m);
832			VM_OBJECT_UNLOCK(object);
833			addl_page_shortage++;
834			continue;
835		}
836
837		/*
838		 * If the object is not being used, we ignore previous
839		 * references.
840		 */
841		if (object->ref_count == 0) {
842			vm_page_flag_clear(m, PG_REFERENCED);
843			KASSERT(!pmap_page_is_mapped(m),
844			    ("vm_pageout_scan: page %p is mapped", m));
845
846		/*
847		 * Otherwise, if the page has been referenced while in the
848		 * inactive queue, we bump the "activation count" upwards,
849		 * making it less likely that the page will be added back to
850		 * the inactive queue prematurely again.  Here we check the
851		 * page tables (or emulated bits, if any), given the upper
852		 * level VM system not knowing anything about existing
853		 * references.
854		 */
855		} else if (((m->flags & PG_REFERENCED) == 0) &&
856			(actcount = pmap_ts_referenced(m))) {
857			vm_page_activate(m);
858			VM_OBJECT_UNLOCK(object);
859			m->act_count += (actcount + ACT_ADVANCE);
860			vm_page_unlock(m);
861			continue;
862		}
863
864		/*
865		 * If the upper level VM system knows about any page
866		 * references, we activate the page.  We also set the
867		 * "activation count" higher than normal so that we will less
868		 * likely place pages back onto the inactive queue again.
869		 */
870		if ((m->flags & PG_REFERENCED) != 0) {
871			vm_page_flag_clear(m, PG_REFERENCED);
872			actcount = pmap_ts_referenced(m);
873			vm_page_activate(m);
874			VM_OBJECT_UNLOCK(object);
875			m->act_count += (actcount + ACT_ADVANCE + 1);
876			vm_page_unlock(m);
877			continue;
878		}
879
880		/*
881		 * If the upper level VM system does not believe that the page
882		 * is fully dirty, but it is mapped for write access, then we
883		 * consult the pmap to see if the page's dirty status should
884		 * be updated.
885		 */
886		if (m->dirty != VM_PAGE_BITS_ALL &&
887		    (m->flags & PG_WRITEABLE) != 0) {
888			/*
889			 * Avoid a race condition: Unless write access is
890			 * removed from the page, another processor could
891			 * modify it before all access is removed by the call
892			 * to vm_page_cache() below.  If vm_page_cache() finds
893			 * that the page has been modified when it removes all
894			 * access, it panics because it cannot cache dirty
895			 * pages.  In principle, we could eliminate just write
896			 * access here rather than all access.  In the expected
897			 * case, when there are no last instant modifications
898			 * to the page, removing all access will be cheaper
899			 * overall.
900			 */
901			if (pmap_is_modified(m))
902				vm_page_dirty(m);
903			else if (m->dirty == 0)
904				pmap_remove_all(m);
905		}
906
907		if (m->valid == 0) {
908			/*
909			 * Invalid pages can be easily freed
910			 */
911			vm_page_free(m);
912			cnt.v_dfree++;
913			--page_shortage;
914		} else if (m->dirty == 0) {
915			/*
916			 * Clean pages can be placed onto the cache queue.
917			 * This effectively frees them.
918			 */
919			vm_page_cache(m);
920			--page_shortage;
921		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
922			/*
923			 * Dirty pages need to be paged out, but flushing
924			 * a page is extremely expensive verses freeing
925			 * a clean page.  Rather then artificially limiting
926			 * the number of pages we can flush, we instead give
927			 * dirty pages extra priority on the inactive queue
928			 * by forcing them to be cycled through the queue
929			 * twice before being flushed, after which the
930			 * (now clean) page will cycle through once more
931			 * before being freed.  This significantly extends
932			 * the thrash point for a heavily loaded machine.
933			 */
934			vm_page_flag_set(m, PG_WINATCFLS);
935			vm_page_requeue(m);
936		} else if (maxlaunder > 0) {
937			/*
938			 * We always want to try to flush some dirty pages if
939			 * we encounter them, to keep the system stable.
940			 * Normally this number is small, but under extreme
941			 * pressure where there are insufficient clean pages
942			 * on the inactive queue, we may have to go all out.
943			 */
944			int swap_pageouts_ok, vfslocked = 0;
945			struct vnode *vp = NULL;
946			struct mount *mp = NULL;
947
948			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
949				swap_pageouts_ok = 1;
950			} else {
951				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
952				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
953				vm_page_count_min());
954
955			}
956
957			/*
958			 * We don't bother paging objects that are "dead".
959			 * Those objects are in a "rundown" state.
960			 */
961			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
962				vm_page_unlock(m);
963				VM_OBJECT_UNLOCK(object);
964				vm_page_requeue(m);
965				continue;
966			}
967
968			/*
969			 * Following operations may unlock
970			 * vm_page_queue_mtx, invalidating the 'next'
971			 * pointer.  To prevent an inordinate number
972			 * of restarts we use our marker to remember
973			 * our place.
974			 *
975			 */
976			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
977					   m, &marker, pageq);
978			/*
979			 * The object is already known NOT to be dead.   It
980			 * is possible for the vget() to block the whole
981			 * pageout daemon, but the new low-memory handling
982			 * code should prevent it.
983			 *
984			 * The previous code skipped locked vnodes and, worse,
985			 * reordered pages in the queue.  This results in
986			 * completely non-deterministic operation and, on a
987			 * busy system, can lead to extremely non-optimal
988			 * pageouts.  For example, it can cause clean pages
989			 * to be freed and dirty pages to be moved to the end
990			 * of the queue.  Since dirty pages are also moved to
991			 * the end of the queue once-cleaned, this gives
992			 * way too large a weighting to defering the freeing
993			 * of dirty pages.
994			 *
995			 * We can't wait forever for the vnode lock, we might
996			 * deadlock due to a vn_read() getting stuck in
997			 * vm_wait while holding this vnode.  We skip the
998			 * vnode if we can't get it in a reasonable amount
999			 * of time.
1000			 */
1001			if (object->type == OBJT_VNODE) {
1002				vm_page_unlock_queues();
1003				vm_page_unlock(m);
1004				vp = object->handle;
1005				if (vp->v_type == VREG &&
1006				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1007					mp = NULL;
1008					++pageout_lock_miss;
1009					if (object->flags & OBJ_MIGHTBEDIRTY)
1010						vnodes_skipped++;
1011					vm_page_lock_queues();
1012					goto unlock_and_continue;
1013				}
1014				KASSERT(mp != NULL,
1015				    ("vp %p with NULL v_mount", vp));
1016				vm_object_reference_locked(object);
1017				VM_OBJECT_UNLOCK(object);
1018				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1019				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1020				    curthread)) {
1021					VM_OBJECT_LOCK(object);
1022					vm_page_lock_queues();
1023					++pageout_lock_miss;
1024					if (object->flags & OBJ_MIGHTBEDIRTY)
1025						vnodes_skipped++;
1026					vp = NULL;
1027					goto unlock_and_continue;
1028				}
1029				VM_OBJECT_LOCK(object);
1030				vm_page_lock(m);
1031				vm_page_lock_queues();
1032				/*
1033				 * The page might have been moved to another
1034				 * queue during potential blocking in vget()
1035				 * above.  The page might have been freed and
1036				 * reused for another vnode.
1037				 */
1038				if (m->queue != PQ_INACTIVE ||
1039				    m->object != object ||
1040				    TAILQ_NEXT(m, pageq) != &marker) {
1041					vm_page_unlock(m);
1042					if (object->flags & OBJ_MIGHTBEDIRTY)
1043						vnodes_skipped++;
1044					goto unlock_and_continue;
1045				}
1046
1047				/*
1048				 * The page may have been busied during the
1049				 * blocking in vget().  We don't move the
1050				 * page back onto the end of the queue so that
1051				 * statistics are more correct if we don't.
1052				 */
1053				if (m->busy || (m->oflags & VPO_BUSY)) {
1054					vm_page_unlock(m);
1055					goto unlock_and_continue;
1056				}
1057
1058				/*
1059				 * If the page has become held it might
1060				 * be undergoing I/O, so skip it
1061				 */
1062				if (m->hold_count) {
1063					vm_page_unlock(m);
1064					vm_page_requeue(m);
1065					if (object->flags & OBJ_MIGHTBEDIRTY)
1066						vnodes_skipped++;
1067					goto unlock_and_continue;
1068				}
1069			}
1070
1071			/*
1072			 * If a page is dirty, then it is either being washed
1073			 * (but not yet cleaned) or it is still in the
1074			 * laundry.  If it is still in the laundry, then we
1075			 * start the cleaning operation.
1076			 *
1077			 * decrement page_shortage on success to account for
1078			 * the (future) cleaned page.  Otherwise we could wind
1079			 * up laundering or cleaning too many pages.
1080			 */
1081			vm_page_unlock_queues();
1082			if (vm_pageout_clean(m) != 0) {
1083				--page_shortage;
1084				--maxlaunder;
1085			}
1086			vm_page_lock_queues();
1087unlock_and_continue:
1088			vm_page_lock_assert(m, MA_NOTOWNED);
1089			VM_OBJECT_UNLOCK(object);
1090			if (mp != NULL) {
1091				vm_page_unlock_queues();
1092				if (vp != NULL)
1093					vput(vp);
1094				VFS_UNLOCK_GIANT(vfslocked);
1095				vm_object_deallocate(object);
1096				vn_finished_write(mp);
1097				vm_page_lock_queues();
1098			}
1099			next = TAILQ_NEXT(&marker, pageq);
1100			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1101				     &marker, pageq);
1102			vm_page_lock_assert(m, MA_NOTOWNED);
1103			continue;
1104		}
1105		vm_page_unlock(m);
1106		VM_OBJECT_UNLOCK(object);
1107	}
1108
1109	/*
1110	 * Compute the number of pages we want to try to move from the
1111	 * active queue to the inactive queue.
1112	 */
1113	page_shortage = vm_paging_target() +
1114		cnt.v_inactive_target - cnt.v_inactive_count;
1115	page_shortage += addl_page_shortage;
1116
1117	/*
1118	 * Scan the active queue for things we can deactivate. We nominally
1119	 * track the per-page activity counter and use it to locate
1120	 * deactivation candidates.
1121	 */
1122	pcount = cnt.v_active_count;
1123	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1124	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1125
1126	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1127
1128		KASSERT(m->queue == PQ_ACTIVE,
1129		    ("vm_pageout_scan: page %p isn't active", m));
1130
1131		next = TAILQ_NEXT(m, pageq);
1132		if ((m->flags & PG_MARKER) != 0) {
1133			m = next;
1134			continue;
1135		}
1136		if (!vm_pageout_page_lock(m, &next)) {
1137			vm_page_unlock(m);
1138			m = next;
1139			continue;
1140		}
1141		object = m->object;
1142		if (!VM_OBJECT_TRYLOCK(object) &&
1143		    !vm_pageout_fallback_object_lock(m, &next)) {
1144			VM_OBJECT_UNLOCK(object);
1145			vm_page_unlock(m);
1146			m = next;
1147			continue;
1148		}
1149
1150		/*
1151		 * Don't deactivate pages that are busy.
1152		 */
1153		if ((m->busy != 0) ||
1154		    (m->oflags & VPO_BUSY) ||
1155		    (m->hold_count != 0)) {
1156			vm_page_unlock(m);
1157			VM_OBJECT_UNLOCK(object);
1158			vm_page_requeue(m);
1159			m = next;
1160			continue;
1161		}
1162
1163		/*
1164		 * The count for pagedaemon pages is done after checking the
1165		 * page for eligibility...
1166		 */
1167		cnt.v_pdpages++;
1168
1169		/*
1170		 * Check to see "how much" the page has been used.
1171		 */
1172		actcount = 0;
1173		if (object->ref_count != 0) {
1174			if (m->flags & PG_REFERENCED) {
1175				actcount += 1;
1176			}
1177			actcount += pmap_ts_referenced(m);
1178			if (actcount) {
1179				m->act_count += ACT_ADVANCE + actcount;
1180				if (m->act_count > ACT_MAX)
1181					m->act_count = ACT_MAX;
1182			}
1183		}
1184
1185		/*
1186		 * Since we have "tested" this bit, we need to clear it now.
1187		 */
1188		vm_page_flag_clear(m, PG_REFERENCED);
1189
1190		/*
1191		 * Only if an object is currently being used, do we use the
1192		 * page activation count stats.
1193		 */
1194		if (actcount && (object->ref_count != 0)) {
1195			vm_page_requeue(m);
1196		} else {
1197			m->act_count -= min(m->act_count, ACT_DECLINE);
1198			if (vm_pageout_algorithm ||
1199			    object->ref_count == 0 ||
1200			    m->act_count == 0) {
1201				page_shortage--;
1202				if (object->ref_count == 0) {
1203					KASSERT(!pmap_page_is_mapped(m),
1204				    ("vm_pageout_scan: page %p is mapped", m));
1205					if (m->dirty == 0)
1206						vm_page_cache(m);
1207					else
1208						vm_page_deactivate(m);
1209				} else {
1210					vm_page_deactivate(m);
1211				}
1212			} else {
1213				vm_page_requeue(m);
1214			}
1215		}
1216		vm_page_unlock(m);
1217		VM_OBJECT_UNLOCK(object);
1218		m = next;
1219	}
1220	vm_page_unlock_queues();
1221#if !defined(NO_SWAPPING)
1222	/*
1223	 * Idle process swapout -- run once per second.
1224	 */
1225	if (vm_swap_idle_enabled) {
1226		static long lsec;
1227		if (time_second != lsec) {
1228			vm_req_vmdaemon(VM_SWAP_IDLE);
1229			lsec = time_second;
1230		}
1231	}
1232#endif
1233
1234	/*
1235	 * If we didn't get enough free pages, and we have skipped a vnode
1236	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1237	 * if we did not get enough free pages.
1238	 */
1239	if (vm_paging_target() > 0) {
1240		if (vnodes_skipped && vm_page_count_min())
1241			(void) speedup_syncer();
1242#if !defined(NO_SWAPPING)
1243		if (vm_swap_enabled && vm_page_count_target())
1244			vm_req_vmdaemon(VM_SWAP_NORMAL);
1245#endif
1246	}
1247
1248	/*
1249	 * If we are critically low on one of RAM or swap and low on
1250	 * the other, kill the largest process.  However, we avoid
1251	 * doing this on the first pass in order to give ourselves a
1252	 * chance to flush out dirty vnode-backed pages and to allow
1253	 * active pages to be moved to the inactive queue and reclaimed.
1254	 */
1255	if (pass != 0 &&
1256	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1257	     (swap_pager_full && vm_paging_target() > 0)))
1258		vm_pageout_oom(VM_OOM_MEM);
1259}
1260
1261
1262void
1263vm_pageout_oom(int shortage)
1264{
1265	struct proc *p, *bigproc;
1266	vm_offset_t size, bigsize;
1267	struct thread *td;
1268	struct vmspace *vm;
1269
1270	/*
1271	 * We keep the process bigproc locked once we find it to keep anyone
1272	 * from messing with it; however, there is a possibility of
1273	 * deadlock if process B is bigproc and one of it's child processes
1274	 * attempts to propagate a signal to B while we are waiting for A's
1275	 * lock while walking this list.  To avoid this, we don't block on
1276	 * the process lock but just skip a process if it is already locked.
1277	 */
1278	bigproc = NULL;
1279	bigsize = 0;
1280	sx_slock(&allproc_lock);
1281	FOREACH_PROC_IN_SYSTEM(p) {
1282		int breakout;
1283
1284		if (PROC_TRYLOCK(p) == 0)
1285			continue;
1286		/*
1287		 * If this is a system, protected or killed process, skip it.
1288		 */
1289		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1290		    (p->p_pid == 1) || P_KILLED(p) ||
1291		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1292			PROC_UNLOCK(p);
1293			continue;
1294		}
1295		/*
1296		 * If the process is in a non-running type state,
1297		 * don't touch it.  Check all the threads individually.
1298		 */
1299		breakout = 0;
1300		FOREACH_THREAD_IN_PROC(p, td) {
1301			thread_lock(td);
1302			if (!TD_ON_RUNQ(td) &&
1303			    !TD_IS_RUNNING(td) &&
1304			    !TD_IS_SLEEPING(td)) {
1305				thread_unlock(td);
1306				breakout = 1;
1307				break;
1308			}
1309			thread_unlock(td);
1310		}
1311		if (breakout) {
1312			PROC_UNLOCK(p);
1313			continue;
1314		}
1315		/*
1316		 * get the process size
1317		 */
1318		vm = vmspace_acquire_ref(p);
1319		if (vm == NULL) {
1320			PROC_UNLOCK(p);
1321			continue;
1322		}
1323		if (!vm_map_trylock_read(&vm->vm_map)) {
1324			vmspace_free(vm);
1325			PROC_UNLOCK(p);
1326			continue;
1327		}
1328		size = vmspace_swap_count(vm);
1329		vm_map_unlock_read(&vm->vm_map);
1330		if (shortage == VM_OOM_MEM)
1331			size += vmspace_resident_count(vm);
1332		vmspace_free(vm);
1333		/*
1334		 * if the this process is bigger than the biggest one
1335		 * remember it.
1336		 */
1337		if (size > bigsize) {
1338			if (bigproc != NULL)
1339				PROC_UNLOCK(bigproc);
1340			bigproc = p;
1341			bigsize = size;
1342		} else
1343			PROC_UNLOCK(p);
1344	}
1345	sx_sunlock(&allproc_lock);
1346	if (bigproc != NULL) {
1347		killproc(bigproc, "out of swap space");
1348		sched_nice(bigproc, PRIO_MIN);
1349		PROC_UNLOCK(bigproc);
1350		wakeup(&cnt.v_free_count);
1351	}
1352}
1353
1354/*
1355 * This routine tries to maintain the pseudo LRU active queue,
1356 * so that during long periods of time where there is no paging,
1357 * that some statistic accumulation still occurs.  This code
1358 * helps the situation where paging just starts to occur.
1359 */
1360static void
1361vm_pageout_page_stats()
1362{
1363	vm_object_t object;
1364	vm_page_t m,next;
1365	int pcount,tpcount;		/* Number of pages to check */
1366	static int fullintervalcount = 0;
1367	int page_shortage;
1368
1369	page_shortage =
1370	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1371	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1372
1373	if (page_shortage <= 0)
1374		return;
1375
1376	vm_page_lock_queues();
1377	pcount = cnt.v_active_count;
1378	fullintervalcount += vm_pageout_stats_interval;
1379	if (fullintervalcount < vm_pageout_full_stats_interval) {
1380		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1381		    cnt.v_page_count;
1382		if (pcount > tpcount)
1383			pcount = tpcount;
1384	} else {
1385		fullintervalcount = 0;
1386	}
1387
1388	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1389	while ((m != NULL) && (pcount-- > 0)) {
1390		int actcount;
1391
1392		KASSERT(m->queue == PQ_ACTIVE,
1393		    ("vm_pageout_page_stats: page %p isn't active", m));
1394
1395		next = TAILQ_NEXT(m, pageq);
1396		if ((m->flags & PG_MARKER) != 0) {
1397			m = next;
1398			continue;
1399		}
1400		vm_page_lock_assert(m, MA_NOTOWNED);
1401		if (!vm_pageout_page_lock(m, &next)) {
1402			vm_page_unlock(m);
1403			m = next;
1404			continue;
1405		}
1406		object = m->object;
1407		if (!VM_OBJECT_TRYLOCK(object) &&
1408		    !vm_pageout_fallback_object_lock(m, &next)) {
1409			VM_OBJECT_UNLOCK(object);
1410			vm_page_unlock(m);
1411			m = next;
1412			continue;
1413		}
1414
1415		/*
1416		 * Don't deactivate pages that are busy.
1417		 */
1418		if ((m->busy != 0) ||
1419		    (m->oflags & VPO_BUSY) ||
1420		    (m->hold_count != 0)) {
1421			vm_page_unlock(m);
1422			VM_OBJECT_UNLOCK(object);
1423			vm_page_requeue(m);
1424			m = next;
1425			continue;
1426		}
1427
1428		actcount = 0;
1429		if (m->flags & PG_REFERENCED) {
1430			vm_page_flag_clear(m, PG_REFERENCED);
1431			actcount += 1;
1432		}
1433
1434		actcount += pmap_ts_referenced(m);
1435		if (actcount) {
1436			m->act_count += ACT_ADVANCE + actcount;
1437			if (m->act_count > ACT_MAX)
1438				m->act_count = ACT_MAX;
1439			vm_page_requeue(m);
1440		} else {
1441			if (m->act_count == 0) {
1442				/*
1443				 * We turn off page access, so that we have
1444				 * more accurate RSS stats.  We don't do this
1445				 * in the normal page deactivation when the
1446				 * system is loaded VM wise, because the
1447				 * cost of the large number of page protect
1448				 * operations would be higher than the value
1449				 * of doing the operation.
1450				 */
1451				pmap_remove_all(m);
1452				vm_page_deactivate(m);
1453			} else {
1454				m->act_count -= min(m->act_count, ACT_DECLINE);
1455				vm_page_requeue(m);
1456			}
1457		}
1458		vm_page_unlock(m);
1459		VM_OBJECT_UNLOCK(object);
1460		m = next;
1461	}
1462	vm_page_unlock_queues();
1463}
1464
1465/*
1466 *	vm_pageout is the high level pageout daemon.
1467 */
1468static void
1469vm_pageout()
1470{
1471	int error, pass;
1472
1473	/*
1474	 * Initialize some paging parameters.
1475	 */
1476	cnt.v_interrupt_free_min = 2;
1477	if (cnt.v_page_count < 2000)
1478		vm_pageout_page_count = 8;
1479
1480	/*
1481	 * v_free_reserved needs to include enough for the largest
1482	 * swap pager structures plus enough for any pv_entry structs
1483	 * when paging.
1484	 */
1485	if (cnt.v_page_count > 1024)
1486		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1487	else
1488		cnt.v_free_min = 4;
1489	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1490	    cnt.v_interrupt_free_min;
1491	cnt.v_free_reserved = vm_pageout_page_count +
1492	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1493	cnt.v_free_severe = cnt.v_free_min / 2;
1494	cnt.v_free_min += cnt.v_free_reserved;
1495	cnt.v_free_severe += cnt.v_free_reserved;
1496
1497	/*
1498	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1499	 * that these are more a measure of the VM cache queue hysteresis
1500	 * then the VM free queue.  Specifically, v_free_target is the
1501	 * high water mark (free+cache pages).
1502	 *
1503	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1504	 * low water mark, while v_free_min is the stop.  v_cache_min must
1505	 * be big enough to handle memory needs while the pageout daemon
1506	 * is signalled and run to free more pages.
1507	 */
1508	if (cnt.v_free_count > 6144)
1509		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1510	else
1511		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1512
1513	if (cnt.v_free_count > 2048) {
1514		cnt.v_cache_min = cnt.v_free_target;
1515		cnt.v_cache_max = 2 * cnt.v_cache_min;
1516		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1517	} else {
1518		cnt.v_cache_min = 0;
1519		cnt.v_cache_max = 0;
1520		cnt.v_inactive_target = cnt.v_free_count / 4;
1521	}
1522	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1523		cnt.v_inactive_target = cnt.v_free_count / 3;
1524
1525	/* XXX does not really belong here */
1526	if (vm_page_max_wired == 0)
1527		vm_page_max_wired = cnt.v_free_count / 3;
1528
1529	if (vm_pageout_stats_max == 0)
1530		vm_pageout_stats_max = cnt.v_free_target;
1531
1532	/*
1533	 * Set interval in seconds for stats scan.
1534	 */
1535	if (vm_pageout_stats_interval == 0)
1536		vm_pageout_stats_interval = 5;
1537	if (vm_pageout_full_stats_interval == 0)
1538		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1539
1540	swap_pager_swap_init();
1541	pass = 0;
1542	/*
1543	 * The pageout daemon is never done, so loop forever.
1544	 */
1545	while (TRUE) {
1546		/*
1547		 * If we have enough free memory, wakeup waiters.  Do
1548		 * not clear vm_pages_needed until we reach our target,
1549		 * otherwise we may be woken up over and over again and
1550		 * waste a lot of cpu.
1551		 */
1552		mtx_lock(&vm_page_queue_free_mtx);
1553		if (vm_pages_needed && !vm_page_count_min()) {
1554			if (!vm_paging_needed())
1555				vm_pages_needed = 0;
1556			wakeup(&cnt.v_free_count);
1557		}
1558		if (vm_pages_needed) {
1559			/*
1560			 * Still not done, take a second pass without waiting
1561			 * (unlimited dirty cleaning), otherwise sleep a bit
1562			 * and try again.
1563			 */
1564			++pass;
1565			if (pass > 1)
1566				msleep(&vm_pages_needed,
1567				    &vm_page_queue_free_mtx, PVM, "psleep",
1568				    hz / 2);
1569		} else {
1570			/*
1571			 * Good enough, sleep & handle stats.  Prime the pass
1572			 * for the next run.
1573			 */
1574			if (pass > 1)
1575				pass = 1;
1576			else
1577				pass = 0;
1578			error = msleep(&vm_pages_needed,
1579			    &vm_page_queue_free_mtx, PVM, "psleep",
1580			    vm_pageout_stats_interval * hz);
1581			if (error && !vm_pages_needed) {
1582				mtx_unlock(&vm_page_queue_free_mtx);
1583				pass = 0;
1584				vm_pageout_page_stats();
1585				continue;
1586			}
1587		}
1588		if (vm_pages_needed)
1589			cnt.v_pdwakeups++;
1590		mtx_unlock(&vm_page_queue_free_mtx);
1591		vm_pageout_scan(pass);
1592	}
1593}
1594
1595/*
1596 * Unless the free page queue lock is held by the caller, this function
1597 * should be regarded as advisory.  Specifically, the caller should
1598 * not msleep() on &cnt.v_free_count following this function unless
1599 * the free page queue lock is held until the msleep() is performed.
1600 */
1601void
1602pagedaemon_wakeup()
1603{
1604
1605	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1606		vm_pages_needed = 1;
1607		wakeup(&vm_pages_needed);
1608	}
1609}
1610
1611#if !defined(NO_SWAPPING)
1612static void
1613vm_req_vmdaemon(int req)
1614{
1615	static int lastrun = 0;
1616
1617	mtx_lock(&vm_daemon_mtx);
1618	vm_pageout_req_swapout |= req;
1619	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1620		wakeup(&vm_daemon_needed);
1621		lastrun = ticks;
1622	}
1623	mtx_unlock(&vm_daemon_mtx);
1624}
1625
1626static void
1627vm_daemon()
1628{
1629	struct rlimit rsslim;
1630	struct proc *p;
1631	struct thread *td;
1632	struct vmspace *vm;
1633	int breakout, swapout_flags;
1634
1635	while (TRUE) {
1636		mtx_lock(&vm_daemon_mtx);
1637		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1638		swapout_flags = vm_pageout_req_swapout;
1639		vm_pageout_req_swapout = 0;
1640		mtx_unlock(&vm_daemon_mtx);
1641		if (swapout_flags)
1642			swapout_procs(swapout_flags);
1643
1644		/*
1645		 * scan the processes for exceeding their rlimits or if
1646		 * process is swapped out -- deactivate pages
1647		 */
1648		sx_slock(&allproc_lock);
1649		FOREACH_PROC_IN_SYSTEM(p) {
1650			vm_pindex_t limit, size;
1651
1652			/*
1653			 * if this is a system process or if we have already
1654			 * looked at this process, skip it.
1655			 */
1656			PROC_LOCK(p);
1657			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1658				PROC_UNLOCK(p);
1659				continue;
1660			}
1661			/*
1662			 * if the process is in a non-running type state,
1663			 * don't touch it.
1664			 */
1665			breakout = 0;
1666			FOREACH_THREAD_IN_PROC(p, td) {
1667				thread_lock(td);
1668				if (!TD_ON_RUNQ(td) &&
1669				    !TD_IS_RUNNING(td) &&
1670				    !TD_IS_SLEEPING(td)) {
1671					thread_unlock(td);
1672					breakout = 1;
1673					break;
1674				}
1675				thread_unlock(td);
1676			}
1677			if (breakout) {
1678				PROC_UNLOCK(p);
1679				continue;
1680			}
1681			/*
1682			 * get a limit
1683			 */
1684			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1685			limit = OFF_TO_IDX(
1686			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1687
1688			/*
1689			 * let processes that are swapped out really be
1690			 * swapped out set the limit to nothing (will force a
1691			 * swap-out.)
1692			 */
1693			if ((p->p_flag & P_INMEM) == 0)
1694				limit = 0;	/* XXX */
1695			vm = vmspace_acquire_ref(p);
1696			PROC_UNLOCK(p);
1697			if (vm == NULL)
1698				continue;
1699
1700			size = vmspace_resident_count(vm);
1701			if (limit >= 0 && size >= limit) {
1702				vm_pageout_map_deactivate_pages(
1703				    &vm->vm_map, limit);
1704			}
1705			vmspace_free(vm);
1706		}
1707		sx_sunlock(&allproc_lock);
1708	}
1709}
1710#endif			/* !defined(NO_SWAPPING) */
1711