vm_pageout.c revision 21530
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.89 1997/01/03 17:02:28 dyson Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/malloc.h>
81#include <sys/kernel.h>
82#include <sys/signalvar.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85#include <sys/sysctl.h>
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <vm/lock.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_pager.h>
97#include <vm/swap_pager.h>
98#include <vm/vm_extern.h>
99
100/*
101 * System initialization
102 */
103
104/* the kernel process "vm_pageout"*/
105static void vm_pageout __P((void));
106static int vm_pageout_clean __P((vm_page_t, int));
107static int vm_pageout_scan __P((void));
108static int vm_pageout_free_page_calc __P((vm_size_t count));
109struct proc *pageproc;
110
111static struct kproc_desc page_kp = {
112	"pagedaemon",
113	vm_pageout,
114	&pageproc
115};
116SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117
118#if !defined(NO_SWAPPING)
119/* the kernel process "vm_daemon"*/
120static void vm_daemon __P((void));
121static struct	proc *vmproc;
122
123static struct kproc_desc vm_kp = {
124	"vmdaemon",
125	vm_daemon,
126	&vmproc
127};
128SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129#endif
130
131
132int vm_pages_needed;		/* Event on which pageout daemon sleeps */
133
134int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
135
136extern int npendingio;
137#if !defined(NO_SWAPPING)
138static int vm_pageout_req_swapout;	/* XXX */
139static int vm_daemon_needed;
140#endif
141extern int nswiodone;
142extern int vm_swap_size;
143extern int vfs_update_wakeup;
144int vm_pageout_algorithm_lru=0;
145#if defined(NO_SWAPPING)
146int vm_swapping_enabled=0;
147#else
148int vm_swapping_enabled=1;
149#endif
150
151SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
152	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
153
154#if defined(NO_SWAPPING)
155SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled,
156	CTLFLAG_RD, &vm_swapping_enabled, 0, "");
157#else
158SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled,
159	CTLFLAG_RW, &vm_swapping_enabled, 0, "");
160#endif
161
162#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
163
164#define VM_PAGEOUT_PAGE_COUNT 16
165int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
166
167int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
168
169#if !defined(NO_SWAPPING)
170typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
171static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
172static freeer_fcn_t vm_pageout_object_deactivate_pages;
173static void vm_req_vmdaemon __P((void));
174#endif
175
176/*
177 * vm_pageout_clean:
178 *
179 * Clean the page and remove it from the laundry.
180 *
181 * We set the busy bit to cause potential page faults on this page to
182 * block.
183 *
184 * And we set pageout-in-progress to keep the object from disappearing
185 * during pageout.  This guarantees that the page won't move from the
186 * inactive queue.  (However, any other page on the inactive queue may
187 * move!)
188 */
189static int
190vm_pageout_clean(m, sync)
191	vm_page_t m;
192	int sync;
193{
194	register vm_object_t object;
195	vm_page_t mc[2*vm_pageout_page_count];
196	int pageout_count;
197	int i, forward_okay, backward_okay, page_base;
198	vm_pindex_t pindex = m->pindex;
199
200	object = m->object;
201
202	/*
203	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
204	 * Try to avoid the deadlock.
205	 */
206	if ((sync != VM_PAGEOUT_FORCE) &&
207	    (object->type == OBJT_DEFAULT) &&
208	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
209		return 0;
210
211	/*
212	 * Don't mess with the page if it's busy.
213	 */
214	if ((!sync && m->hold_count != 0) ||
215	    ((m->busy != 0) || (m->flags & PG_BUSY)))
216		return 0;
217
218	/*
219	 * Try collapsing before it's too late.
220	 */
221	if (!sync && object->backing_object) {
222		vm_object_collapse(object);
223	}
224
225	mc[vm_pageout_page_count] = m;
226	pageout_count = 1;
227	page_base = vm_pageout_page_count;
228	forward_okay = TRUE;
229	if (pindex != 0)
230		backward_okay = TRUE;
231	else
232		backward_okay = FALSE;
233	/*
234	 * Scan object for clusterable pages.
235	 *
236	 * We can cluster ONLY if: ->> the page is NOT
237	 * clean, wired, busy, held, or mapped into a
238	 * buffer, and one of the following:
239	 * 1) The page is inactive, or a seldom used
240	 *    active page.
241	 * -or-
242	 * 2) we force the issue.
243	 */
244	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
245		vm_page_t p;
246
247		/*
248		 * See if forward page is clusterable.
249		 */
250		if (forward_okay) {
251			/*
252			 * Stop forward scan at end of object.
253			 */
254			if ((pindex + i) > object->size) {
255				forward_okay = FALSE;
256				goto do_backward;
257			}
258			p = vm_page_lookup(object, pindex + i);
259			if (p) {
260				if (((p->queue - p->pc) == PQ_CACHE) ||
261					(p->flags & PG_BUSY) || p->busy) {
262					forward_okay = FALSE;
263					goto do_backward;
264				}
265				vm_page_test_dirty(p);
266				if ((p->dirty & p->valid) != 0 &&
267				    ((p->queue == PQ_INACTIVE) ||
268				     (sync == VM_PAGEOUT_FORCE)) &&
269				    (p->wire_count == 0) &&
270				    (p->hold_count == 0)) {
271					mc[vm_pageout_page_count + i] = p;
272					pageout_count++;
273					if (pageout_count == vm_pageout_page_count)
274						break;
275				} else {
276					forward_okay = FALSE;
277				}
278			} else {
279				forward_okay = FALSE;
280			}
281		}
282do_backward:
283		/*
284		 * See if backward page is clusterable.
285		 */
286		if (backward_okay) {
287			/*
288			 * Stop backward scan at beginning of object.
289			 */
290			if ((pindex - i) == 0) {
291				backward_okay = FALSE;
292			}
293			p = vm_page_lookup(object, pindex - i);
294			if (p) {
295				if (((p->queue - p->pc) == PQ_CACHE) ||
296					(p->flags & PG_BUSY) || p->busy) {
297					backward_okay = FALSE;
298					continue;
299				}
300				vm_page_test_dirty(p);
301				if ((p->dirty & p->valid) != 0 &&
302				    ((p->queue == PQ_INACTIVE) ||
303				     (sync == VM_PAGEOUT_FORCE)) &&
304				    (p->wire_count == 0) &&
305				    (p->hold_count == 0)) {
306					mc[vm_pageout_page_count - i] = p;
307					pageout_count++;
308					page_base--;
309					if (pageout_count == vm_pageout_page_count)
310						break;
311				} else {
312					backward_okay = FALSE;
313				}
314			} else {
315				backward_okay = FALSE;
316			}
317		}
318	}
319
320	/*
321	 * we allow reads during pageouts...
322	 */
323	for (i = page_base; i < (page_base + pageout_count); i++) {
324		mc[i]->flags |= PG_BUSY;
325		vm_page_protect(mc[i], VM_PROT_READ);
326	}
327
328	return vm_pageout_flush(&mc[page_base], pageout_count, sync);
329}
330
331int
332vm_pageout_flush(mc, count, sync)
333	vm_page_t *mc;
334	int count;
335	int sync;
336{
337	register vm_object_t object;
338	int pageout_status[count];
339	int anyok = 0;
340	int i;
341
342	object = mc[0]->object;
343	object->paging_in_progress += count;
344
345	vm_pager_put_pages(object, mc, count,
346	    ((sync || (object == kernel_object)) ? TRUE : FALSE),
347	    pageout_status);
348
349	for (i = 0; i < count; i++) {
350		vm_page_t mt = mc[i];
351
352		switch (pageout_status[i]) {
353		case VM_PAGER_OK:
354			++anyok;
355			break;
356		case VM_PAGER_PEND:
357			++anyok;
358			break;
359		case VM_PAGER_BAD:
360			/*
361			 * Page outside of range of object. Right now we
362			 * essentially lose the changes by pretending it
363			 * worked.
364			 */
365			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
366			mt->dirty = 0;
367			break;
368		case VM_PAGER_ERROR:
369		case VM_PAGER_FAIL:
370			/*
371			 * If page couldn't be paged out, then reactivate the
372			 * page so it doesn't clog the inactive list.  (We
373			 * will try paging out it again later).
374			 */
375			if (mt->queue == PQ_INACTIVE)
376				vm_page_activate(mt);
377			break;
378		case VM_PAGER_AGAIN:
379			break;
380		}
381
382
383		/*
384		 * If the operation is still going, leave the page busy to
385		 * block all other accesses. Also, leave the paging in
386		 * progress indicator set so that we don't attempt an object
387		 * collapse.
388		 */
389		if (pageout_status[i] != VM_PAGER_PEND) {
390			vm_object_pip_wakeup(object);
391			PAGE_WAKEUP(mt);
392		}
393	}
394	return anyok;
395}
396
397#if !defined(NO_SWAPPING)
398/*
399 *	vm_pageout_object_deactivate_pages
400 *
401 *	deactivate enough pages to satisfy the inactive target
402 *	requirements or if vm_page_proc_limit is set, then
403 *	deactivate all of the pages in the object and its
404 *	backing_objects.
405 *
406 *	The object and map must be locked.
407 */
408static void
409vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
410	vm_map_t map;
411	vm_object_t object;
412	vm_pindex_t desired;
413	int map_remove_only;
414{
415	register vm_page_t p, next;
416	int rcount;
417	int remove_mode;
418	int s;
419
420	if (object->type == OBJT_DEVICE)
421		return;
422
423	while (object) {
424		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
425			return;
426		if (object->paging_in_progress)
427			return;
428
429		remove_mode = map_remove_only;
430		if (object->shadow_count > 1)
431			remove_mode = 1;
432	/*
433	 * scan the objects entire memory queue
434	 */
435		rcount = object->resident_page_count;
436		p = TAILQ_FIRST(&object->memq);
437		while (p && (rcount-- > 0)) {
438			int refcount;
439			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
440				return;
441			next = TAILQ_NEXT(p, listq);
442			cnt.v_pdpages++;
443			if (p->wire_count != 0 ||
444			    p->hold_count != 0 ||
445			    p->busy != 0 ||
446			    (p->flags & PG_BUSY) ||
447			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
448				p = next;
449				continue;
450			}
451
452			refcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
453			if (refcount) {
454				p->flags |= PG_REFERENCED;
455			} else if (p->flags & PG_REFERENCED) {
456				refcount = 1;
457			}
458
459			if ((p->queue != PQ_ACTIVE) &&
460				(p->flags & PG_REFERENCED)) {
461				vm_page_activate(p);
462				p->act_count += refcount;
463				p->flags &= ~PG_REFERENCED;
464			} else if (p->queue == PQ_ACTIVE) {
465				if ((p->flags & PG_REFERENCED) == 0) {
466					p->act_count -= min(p->act_count, ACT_DECLINE);
467					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
468						vm_page_protect(p, VM_PROT_NONE);
469						vm_page_deactivate(p);
470					} else {
471						s = splvm();
472						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
473						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
474						splx(s);
475					}
476				} else {
477					p->flags &= ~PG_REFERENCED;
478					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
479						p->act_count += ACT_ADVANCE;
480					s = splvm();
481					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
482					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
483					splx(s);
484				}
485			} else if (p->queue == PQ_INACTIVE) {
486				vm_page_protect(p, VM_PROT_NONE);
487			}
488			p = next;
489		}
490		object = object->backing_object;
491	}
492	return;
493}
494
495/*
496 * deactivate some number of pages in a map, try to do it fairly, but
497 * that is really hard to do.
498 */
499static void
500vm_pageout_map_deactivate_pages(map, desired)
501	vm_map_t map;
502	vm_pindex_t desired;
503{
504	vm_map_entry_t tmpe;
505	vm_object_t obj, bigobj;
506
507	vm_map_reference(map);
508	if (!lock_try_write(&map->lock)) {
509		vm_map_deallocate(map);
510		return;
511	}
512
513	bigobj = NULL;
514
515	/*
516	 * first, search out the biggest object, and try to free pages from
517	 * that.
518	 */
519	tmpe = map->header.next;
520	while (tmpe != &map->header) {
521		if ((tmpe->is_sub_map == 0) && (tmpe->is_a_map == 0)) {
522			obj = tmpe->object.vm_object;
523			if ((obj != NULL) && (obj->shadow_count <= 1) &&
524				((bigobj == NULL) ||
525				 (bigobj->resident_page_count < obj->resident_page_count))) {
526				bigobj = obj;
527			}
528		}
529		tmpe = tmpe->next;
530	}
531
532	if (bigobj)
533		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
534
535	/*
536	 * Next, hunt around for other pages to deactivate.  We actually
537	 * do this search sort of wrong -- .text first is not the best idea.
538	 */
539	tmpe = map->header.next;
540	while (tmpe != &map->header) {
541		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
542			break;
543		if ((tmpe->is_sub_map == 0) && (tmpe->is_a_map == 0)) {
544			obj = tmpe->object.vm_object;
545			if (obj)
546				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
547		}
548		tmpe = tmpe->next;
549	};
550
551	/*
552	 * Remove all mappings if a process is swapped out, this will free page
553	 * table pages.
554	 */
555	if (desired == 0)
556		pmap_remove(vm_map_pmap(map),
557			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
558	vm_map_unlock(map);
559	vm_map_deallocate(map);
560	return;
561}
562#endif
563
564/*
565 *	vm_pageout_scan does the dirty work for the pageout daemon.
566 */
567static int
568vm_pageout_scan()
569{
570	vm_page_t m, next;
571	int page_shortage, addl_page_shortage, maxscan, maxlaunder, pcount;
572	int pages_freed;
573	struct proc *p, *bigproc;
574	vm_offset_t size, bigsize;
575	vm_object_t object;
576	int force_wakeup = 0;
577	int vnodes_skipped = 0;
578	int s;
579
580	/*
581	 * Start scanning the inactive queue for pages we can free. We keep
582	 * scanning until we have enough free pages or we have scanned through
583	 * the entire queue.  If we encounter dirty pages, we start cleaning
584	 * them.
585	 */
586
587	pages_freed = 0;
588	addl_page_shortage = 0;
589
590	maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
591	    MAXLAUNDER : cnt.v_inactive_target;
592rescan0:
593	maxscan = cnt.v_inactive_count;
594	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
595
596		(m != NULL) && (maxscan-- > 0) &&
597			((cnt.v_cache_count + cnt.v_free_count) <
598			(cnt.v_cache_min + cnt.v_free_target));
599
600		m = next) {
601
602		cnt.v_pdpages++;
603
604		if (m->queue != PQ_INACTIVE) {
605			goto rescan0;
606		}
607
608		next = TAILQ_NEXT(m, pageq);
609
610		if (m->hold_count) {
611			s = splvm();
612			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
613			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
614			splx(s);
615			addl_page_shortage++;
616			continue;
617		}
618		/*
619		 * Dont mess with busy pages, keep in the front of the
620		 * queue, most likely are being paged out.
621		 */
622		if (m->busy || (m->flags & PG_BUSY)) {
623			addl_page_shortage++;
624			continue;
625		}
626
627		if (m->object->ref_count == 0) {
628			m->flags &= ~PG_REFERENCED;
629			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
630		} else if (((m->flags & PG_REFERENCED) == 0) &&
631			pmap_ts_referenced(VM_PAGE_TO_PHYS(m))) {
632			vm_page_activate(m);
633			continue;
634		}
635
636		if ((m->flags & PG_REFERENCED) != 0) {
637			m->flags &= ~PG_REFERENCED;
638			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
639			vm_page_activate(m);
640			continue;
641		}
642
643		if (m->dirty == 0) {
644			vm_page_test_dirty(m);
645		} else if (m->dirty != 0) {
646			m->dirty = VM_PAGE_BITS_ALL;
647		}
648
649		if (m->valid == 0) {
650			vm_page_protect(m, VM_PROT_NONE);
651			vm_page_free(m);
652			cnt.v_dfree++;
653			++pages_freed;
654		} else if (m->dirty == 0) {
655			vm_page_cache(m);
656			++pages_freed;
657		} else if (maxlaunder > 0) {
658			int written;
659			struct vnode *vp = NULL;
660
661			object = m->object;
662			if (object->flags & OBJ_DEAD) {
663				s = splvm();
664				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
665				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
666				splx(s);
667				continue;
668			}
669
670			if (object->type == OBJT_VNODE) {
671				vp = object->handle;
672				if (VOP_ISLOCKED(vp) || vget(vp, 1)) {
673					if ((m->queue == PQ_INACTIVE) &&
674						(m->hold_count == 0) &&
675						(m->busy == 0) &&
676						(m->flags & PG_BUSY) == 0) {
677						s = splvm();
678						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
679						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
680						splx(s);
681					}
682					if (object->flags & OBJ_MIGHTBEDIRTY)
683						++vnodes_skipped;
684					continue;
685				}
686
687				/*
688				 * The page might have been moved to another queue
689				 * during potential blocking in vget() above.
690				 */
691				if (m->queue != PQ_INACTIVE) {
692					if (object->flags & OBJ_MIGHTBEDIRTY)
693						++vnodes_skipped;
694					vput(vp);
695					continue;
696				}
697
698				/*
699				 * The page may have been busied during the blocking in
700				 * vput();  We don't move the page back onto the end of
701				 * the queue so that statistics are more correct if we don't.
702				 */
703				if (m->busy || (m->flags & PG_BUSY)) {
704					vput(vp);
705					continue;
706				}
707
708				/*
709				 * If the page has become held, then skip it
710				 */
711				if (m->hold_count) {
712					s = splvm();
713					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
714					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
715					splx(s);
716					if (object->flags & OBJ_MIGHTBEDIRTY)
717						++vnodes_skipped;
718					vput(vp);
719					continue;
720				}
721			}
722
723			/*
724			 * If a page is dirty, then it is either being washed
725			 * (but not yet cleaned) or it is still in the
726			 * laundry.  If it is still in the laundry, then we
727			 * start the cleaning operation.
728			 */
729			written = vm_pageout_clean(m, 0);
730
731			if (vp)
732				vput(vp);
733
734			maxlaunder -= written;
735		}
736	}
737
738	/*
739	 * Compute the page shortage.  If we are still very low on memory be
740	 * sure that we will move a minimal amount of pages from active to
741	 * inactive.
742	 */
743
744	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
745	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
746	if (page_shortage <= 0) {
747		if (pages_freed == 0) {
748			page_shortage = cnt.v_free_min - cnt.v_free_count;
749		} else {
750			page_shortage = 1;
751		}
752	}
753	if (addl_page_shortage) {
754		if (page_shortage < 0)
755			page_shortage = 0;
756		page_shortage += addl_page_shortage;
757	}
758
759	pcount = cnt.v_active_count;
760	m = TAILQ_FIRST(&vm_page_queue_active);
761	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
762		int refcount;
763
764		if (m->queue != PQ_ACTIVE) {
765			break;
766		}
767
768		next = TAILQ_NEXT(m, pageq);
769		/*
770		 * Don't deactivate pages that are busy.
771		 */
772		if ((m->busy != 0) ||
773		    (m->flags & PG_BUSY) ||
774		    (m->hold_count != 0)) {
775			s = splvm();
776			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
777			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
778			splx(s);
779			m = next;
780			continue;
781		}
782
783		/*
784		 * The count for pagedaemon pages is done after checking the
785		 * page for eligbility...
786		 */
787		cnt.v_pdpages++;
788
789		refcount = 0;
790		if (m->object->ref_count != 0) {
791			if (m->flags & PG_REFERENCED) {
792				refcount += 1;
793			}
794			refcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
795			if (refcount) {
796				m->act_count += ACT_ADVANCE + refcount;
797				if (m->act_count > ACT_MAX)
798					m->act_count = ACT_MAX;
799			}
800		}
801
802		m->flags &= ~PG_REFERENCED;
803
804		if (refcount && (m->object->ref_count != 0)) {
805			s = splvm();
806			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
807			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
808			splx(s);
809		} else {
810			m->act_count -= min(m->act_count, ACT_DECLINE);
811			if (vm_pageout_algorithm_lru ||
812				(m->object->ref_count == 0) || (m->act_count == 0)) {
813				--page_shortage;
814				if (m->object->ref_count == 0) {
815					vm_page_protect(m, VM_PROT_NONE);
816					if (m->dirty == 0)
817						vm_page_cache(m);
818					else
819						vm_page_deactivate(m);
820				} else {
821					vm_page_deactivate(m);
822				}
823			} else {
824				s = splvm();
825				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
826				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
827				splx(s);
828			}
829		}
830		m = next;
831	}
832
833	s = splvm();
834	/*
835	 * We try to maintain some *really* free pages, this allows interrupt
836	 * code to be guaranteed space.
837	 */
838	while (cnt.v_free_count < cnt.v_free_reserved) {
839		static int cache_rover = 0;
840		m = vm_page_list_find(PQ_CACHE, cache_rover);
841		if (!m)
842			break;
843		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
844		vm_page_free(m);
845		cnt.v_dfree++;
846	}
847	splx(s);
848
849	/*
850	 * If we didn't get enough free pages, and we have skipped a vnode
851	 * in a writeable object, wakeup the sync daemon.  And kick swapout
852	 * if we did not get enough free pages.
853	 */
854	if ((cnt.v_cache_count + cnt.v_free_count) <
855		(cnt.v_free_target + cnt.v_cache_min) ) {
856		if (vnodes_skipped &&
857		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
858			if (!vfs_update_wakeup) {
859				vfs_update_wakeup = 1;
860				wakeup(&vfs_update_wakeup);
861			}
862		}
863#if !defined(NO_SWAPPING)
864		if (vm_swapping_enabled &&
865			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
866			vm_req_vmdaemon();
867			vm_pageout_req_swapout = 1;
868		}
869#endif
870	}
871
872
873	/*
874	 * make sure that we have swap space -- if we are low on memory and
875	 * swap -- then kill the biggest process.
876	 */
877	if ((vm_swap_size == 0 || swap_pager_full) &&
878	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
879		bigproc = NULL;
880		bigsize = 0;
881		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
882			/*
883			 * if this is a system process, skip it
884			 */
885			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
886			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
887				continue;
888			}
889			/*
890			 * if the process is in a non-running type state,
891			 * don't touch it.
892			 */
893			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
894				continue;
895			}
896			/*
897			 * get the process size
898			 */
899			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
900			/*
901			 * if the this process is bigger than the biggest one
902			 * remember it.
903			 */
904			if (size > bigsize) {
905				bigproc = p;
906				bigsize = size;
907			}
908		}
909		if (bigproc != NULL) {
910			killproc(bigproc, "out of swap space");
911			bigproc->p_estcpu = 0;
912			bigproc->p_nice = PRIO_MIN;
913			resetpriority(bigproc);
914			wakeup(&cnt.v_free_count);
915		}
916	}
917	return force_wakeup;
918}
919
920static int
921vm_pageout_free_page_calc(count)
922vm_size_t count;
923{
924	if (count < cnt.v_page_count)
925		 return 0;
926	/*
927	 * free_reserved needs to include enough for the largest swap pager
928	 * structures plus enough for any pv_entry structs when paging.
929	 */
930	if (cnt.v_page_count > 1024)
931		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
932	else
933		cnt.v_free_min = 4;
934	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
935		cnt.v_interrupt_free_min;
936	cnt.v_free_reserved = vm_pageout_page_count +
937		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
938	cnt.v_free_min += cnt.v_free_reserved;
939	return 1;
940}
941
942
943#ifdef unused
944int
945vm_pageout_free_pages(object, add)
946vm_object_t object;
947int add;
948{
949	return vm_pageout_free_page_calc(object->size);
950}
951#endif
952
953/*
954 *	vm_pageout is the high level pageout daemon.
955 */
956static void
957vm_pageout()
958{
959	(void) spl0();
960
961	/*
962	 * Initialize some paging parameters.
963	 */
964
965	cnt.v_interrupt_free_min = 2;
966	if (cnt.v_page_count < 2000)
967		vm_pageout_page_count = 8;
968
969	vm_pageout_free_page_calc(cnt.v_page_count);
970	/*
971	 * free_reserved needs to include enough for the largest swap pager
972	 * structures plus enough for any pv_entry structs when paging.
973	 */
974	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
975
976	if (cnt.v_free_count > 1024) {
977		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
978		cnt.v_cache_min = (cnt.v_free_count - 1024) / 8;
979		cnt.v_inactive_target = 2*cnt.v_cache_min + 192;
980	} else {
981		cnt.v_cache_min = 0;
982		cnt.v_cache_max = 0;
983		cnt.v_inactive_target = cnt.v_free_count / 4;
984	}
985
986	/* XXX does not really belong here */
987	if (vm_page_max_wired == 0)
988		vm_page_max_wired = cnt.v_free_count / 3;
989
990
991	swap_pager_swap_init();
992	/*
993	 * The pageout daemon is never done, so loop forever.
994	 */
995	while (TRUE) {
996		int inactive_target;
997		int s = splvm();
998		if (!vm_pages_needed ||
999			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1000			vm_pages_needed = 0;
1001			tsleep(&vm_pages_needed, PVM, "psleep", 0);
1002		} else if (!vm_pages_needed) {
1003			tsleep(&vm_pages_needed, PVM, "psleep", hz/10);
1004		}
1005		inactive_target =
1006			(cnt.v_page_count - cnt.v_wire_count) / 4;
1007		if (inactive_target < 2*cnt.v_free_min)
1008			inactive_target = 2*cnt.v_free_min;
1009		cnt.v_inactive_target = inactive_target;
1010		if (vm_pages_needed)
1011			cnt.v_pdwakeups++;
1012		vm_pages_needed = 0;
1013		splx(s);
1014		vm_pager_sync();
1015		vm_pageout_scan();
1016		vm_pager_sync();
1017		wakeup(&cnt.v_free_count);
1018	}
1019}
1020
1021void
1022pagedaemon_wakeup()
1023{
1024	if (!vm_pages_needed && curproc != pageproc) {
1025		vm_pages_needed++;
1026		wakeup(&vm_pages_needed);
1027	}
1028}
1029
1030#if !defined(NO_SWAPPING)
1031static void
1032vm_req_vmdaemon()
1033{
1034	static int lastrun = 0;
1035
1036	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1037		wakeup(&vm_daemon_needed);
1038		lastrun = ticks;
1039	}
1040}
1041
1042static void
1043vm_daemon()
1044{
1045	vm_object_t object;
1046	struct proc *p;
1047
1048	(void) spl0();
1049
1050	while (TRUE) {
1051		tsleep(&vm_daemon_needed, PUSER, "psleep", 0);
1052		if (vm_pageout_req_swapout) {
1053			swapout_procs();
1054			vm_pageout_req_swapout = 0;
1055		}
1056		/*
1057		 * scan the processes for exceeding their rlimits or if
1058		 * process is swapped out -- deactivate pages
1059		 */
1060
1061		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1062			quad_t limit;
1063			vm_offset_t size;
1064
1065			/*
1066			 * if this is a system process or if we have already
1067			 * looked at this process, skip it.
1068			 */
1069			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1070				continue;
1071			}
1072			/*
1073			 * if the process is in a non-running type state,
1074			 * don't touch it.
1075			 */
1076			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1077				continue;
1078			}
1079			/*
1080			 * get a limit
1081			 */
1082			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1083			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1084
1085			/*
1086			 * let processes that are swapped out really be
1087			 * swapped out set the limit to nothing (will force a
1088			 * swap-out.)
1089			 */
1090			if ((p->p_flag & P_INMEM) == 0)
1091				limit = 0;	/* XXX */
1092
1093			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1094			if (limit >= 0 && size >= limit) {
1095				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1096				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1097			}
1098		}
1099
1100		/*
1101		 * we remove cached objects that have no RSS...
1102		 */
1103restart:
1104		object = TAILQ_FIRST(&vm_object_cached_list);
1105		while (object) {
1106			/*
1107			 * if there are no resident pages -- get rid of the object
1108			 */
1109			if (object->resident_page_count == 0) {
1110				vm_object_reference(object);
1111				pager_cache(object, FALSE);
1112				goto restart;
1113			}
1114			object = TAILQ_NEXT(object, cached_list);
1115		}
1116	}
1117}
1118#endif
1119