vm_pageout.c revision 209651
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 209651 2010-07-02 20:56:22Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218static void
219vm_pageout_init_marker(vm_page_t marker, u_short queue)
220{
221
222	bzero(marker, sizeof(*marker));
223	marker->flags = PG_FICTITIOUS | PG_MARKER;
224	marker->oflags = VPO_BUSY;
225	marker->queue = queue;
226	marker->wire_count = 1;
227}
228
229/*
230 * vm_pageout_fallback_object_lock:
231 *
232 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233 * known to have failed and page queue must be either PQ_ACTIVE or
234 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235 * while locking the vm object.  Use marker page to detect page queue
236 * changes and maintain notion of next page on page queue.  Return
237 * TRUE if no changes were detected, FALSE otherwise.  vm object is
238 * locked on return.
239 *
240 * This function depends on both the lock portion of struct vm_object
241 * and normal struct vm_page being type stable.
242 */
243boolean_t
244vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245{
246	struct vm_page marker;
247	boolean_t unchanged;
248	u_short queue;
249	vm_object_t object;
250
251	queue = m->queue;
252	vm_pageout_init_marker(&marker, queue);
253	object = m->object;
254
255	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256			   m, &marker, pageq);
257	vm_page_unlock_queues();
258	vm_page_unlock(m);
259	VM_OBJECT_LOCK(object);
260	vm_page_lock(m);
261	vm_page_lock_queues();
262
263	/* Page queue might have changed. */
264	*next = TAILQ_NEXT(&marker, pageq);
265	unchanged = (m->queue == queue &&
266		     m->object == object &&
267		     &marker == TAILQ_NEXT(m, pageq));
268	TAILQ_REMOVE(&vm_page_queues[queue].pl,
269		     &marker, pageq);
270	return (unchanged);
271}
272
273/*
274 * Lock the page while holding the page queue lock.  Use marker page
275 * to detect page queue changes and maintain notion of next page on
276 * page queue.  Return TRUE if no changes were detected, FALSE
277 * otherwise.  The page is locked on return. The page queue lock might
278 * be dropped and reacquired.
279 *
280 * This function depends on normal struct vm_page being type stable.
281 */
282boolean_t
283vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284{
285	struct vm_page marker;
286	boolean_t unchanged;
287	u_short queue;
288
289	vm_page_lock_assert(m, MA_NOTOWNED);
290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292	if (vm_page_trylock(m))
293		return (TRUE);
294
295	queue = m->queue;
296	vm_pageout_init_marker(&marker, queue);
297
298	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299	vm_page_unlock_queues();
300	vm_page_lock(m);
301	vm_page_lock_queues();
302
303	/* Page queue might have changed. */
304	*next = TAILQ_NEXT(&marker, pageq);
305	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307	return (unchanged);
308}
309
310/*
311 * vm_pageout_clean:
312 *
313 * Clean the page and remove it from the laundry.
314 *
315 * We set the busy bit to cause potential page faults on this page to
316 * block.  Note the careful timing, however, the busy bit isn't set till
317 * late and we cannot do anything that will mess with the page.
318 */
319static int
320vm_pageout_clean(vm_page_t m)
321{
322	vm_object_t object;
323	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
324	int pageout_count;
325	int ib, is, page_base;
326	vm_pindex_t pindex = m->pindex;
327
328	vm_page_lock_assert(m, MA_OWNED);
329	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
330
331	/*
332	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
333	 * with the new swapper, but we could have serious problems paging
334	 * out other object types if there is insufficient memory.
335	 *
336	 * Unfortunately, checking free memory here is far too late, so the
337	 * check has been moved up a procedural level.
338	 */
339
340	/*
341	 * Can't clean the page if it's busy or held.
342	 */
343	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
344	    ("vm_pageout_clean: page %p is busy", m));
345	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
346
347	mc[vm_pageout_page_count] = pb = ps = m;
348	pageout_count = 1;
349	page_base = vm_pageout_page_count;
350	ib = 1;
351	is = 1;
352
353	/*
354	 * Scan object for clusterable pages.
355	 *
356	 * We can cluster ONLY if: ->> the page is NOT
357	 * clean, wired, busy, held, or mapped into a
358	 * buffer, and one of the following:
359	 * 1) The page is inactive, or a seldom used
360	 *    active page.
361	 * -or-
362	 * 2) we force the issue.
363	 *
364	 * During heavy mmap/modification loads the pageout
365	 * daemon can really fragment the underlying file
366	 * due to flushing pages out of order and not trying
367	 * align the clusters (which leave sporatic out-of-order
368	 * holes).  To solve this problem we do the reverse scan
369	 * first and attempt to align our cluster, then do a
370	 * forward scan if room remains.
371	 */
372	object = m->object;
373more:
374	while (ib && pageout_count < vm_pageout_page_count) {
375		vm_page_t p;
376
377		if (ib > pindex) {
378			ib = 0;
379			break;
380		}
381
382		if ((p = vm_page_prev(pb)) == NULL ||
383		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
384			ib = 0;
385			break;
386		}
387		vm_page_lock(p);
388		vm_page_test_dirty(p);
389		if (p->dirty == 0 ||
390		    p->queue != PQ_INACTIVE ||
391		    p->hold_count != 0) {	/* may be undergoing I/O */
392			vm_page_unlock(p);
393			ib = 0;
394			break;
395		}
396		vm_page_unlock(p);
397		mc[--page_base] = pb = p;
398		++pageout_count;
399		++ib;
400		/*
401		 * alignment boundry, stop here and switch directions.  Do
402		 * not clear ib.
403		 */
404		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
405			break;
406	}
407
408	while (pageout_count < vm_pageout_page_count &&
409	    pindex + is < object->size) {
410		vm_page_t p;
411
412		if ((p = vm_page_next(ps)) == NULL ||
413		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
414			break;
415		vm_page_lock(p);
416		vm_page_test_dirty(p);
417		if (p->dirty == 0 ||
418		    p->queue != PQ_INACTIVE ||
419		    p->hold_count != 0) {	/* may be undergoing I/O */
420			vm_page_unlock(p);
421			break;
422		}
423		vm_page_unlock(p);
424		mc[page_base + pageout_count] = ps = p;
425		++pageout_count;
426		++is;
427	}
428
429	/*
430	 * If we exhausted our forward scan, continue with the reverse scan
431	 * when possible, even past a page boundry.  This catches boundry
432	 * conditions.
433	 */
434	if (ib && pageout_count < vm_pageout_page_count)
435		goto more;
436
437	vm_page_unlock(m);
438	/*
439	 * we allow reads during pageouts...
440	 */
441	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
442}
443
444/*
445 * vm_pageout_flush() - launder the given pages
446 *
447 *	The given pages are laundered.  Note that we setup for the start of
448 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
449 *	reference count all in here rather then in the parent.  If we want
450 *	the parent to do more sophisticated things we may have to change
451 *	the ordering.
452 */
453int
454vm_pageout_flush(vm_page_t *mc, int count, int flags)
455{
456	vm_object_t object = mc[0]->object;
457	int pageout_status[count];
458	int numpagedout = 0;
459	int i;
460
461	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
462	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
463
464	/*
465	 * Initiate I/O.  Bump the vm_page_t->busy counter and
466	 * mark the pages read-only.
467	 *
468	 * We do not have to fixup the clean/dirty bits here... we can
469	 * allow the pager to do it after the I/O completes.
470	 *
471	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
472	 * edge case with file fragments.
473	 */
474	for (i = 0; i < count; i++) {
475		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
476		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
477			mc[i], i, count));
478		vm_page_io_start(mc[i]);
479		pmap_remove_write(mc[i]);
480	}
481	vm_object_pip_add(object, count);
482
483	vm_pager_put_pages(object, mc, count, flags, pageout_status);
484
485	for (i = 0; i < count; i++) {
486		vm_page_t mt = mc[i];
487
488		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
489		    (mt->flags & PG_WRITEABLE) == 0,
490		    ("vm_pageout_flush: page %p is not write protected", mt));
491		switch (pageout_status[i]) {
492		case VM_PAGER_OK:
493		case VM_PAGER_PEND:
494			numpagedout++;
495			break;
496		case VM_PAGER_BAD:
497			/*
498			 * Page outside of range of object. Right now we
499			 * essentially lose the changes by pretending it
500			 * worked.
501			 */
502			vm_page_undirty(mt);
503			break;
504		case VM_PAGER_ERROR:
505		case VM_PAGER_FAIL:
506			/*
507			 * If page couldn't be paged out, then reactivate the
508			 * page so it doesn't clog the inactive list.  (We
509			 * will try paging out it again later).
510			 */
511			vm_page_lock(mt);
512			vm_page_activate(mt);
513			vm_page_unlock(mt);
514			break;
515		case VM_PAGER_AGAIN:
516			break;
517		}
518
519		/*
520		 * If the operation is still going, leave the page busy to
521		 * block all other accesses. Also, leave the paging in
522		 * progress indicator set so that we don't attempt an object
523		 * collapse.
524		 */
525		if (pageout_status[i] != VM_PAGER_PEND) {
526			vm_object_pip_wakeup(object);
527			vm_page_io_finish(mt);
528			if (vm_page_count_severe()) {
529				vm_page_lock(mt);
530				vm_page_try_to_cache(mt);
531				vm_page_unlock(mt);
532			}
533		}
534	}
535	return (numpagedout);
536}
537
538#if !defined(NO_SWAPPING)
539/*
540 *	vm_pageout_object_deactivate_pages
541 *
542 *	Deactivate enough pages to satisfy the inactive target
543 *	requirements.
544 *
545 *	The object and map must be locked.
546 */
547static void
548vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
549    long desired)
550{
551	vm_object_t backing_object, object;
552	vm_page_t p;
553	int actcount, remove_mode;
554
555	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
556	if (first_object->type == OBJT_DEVICE ||
557	    first_object->type == OBJT_SG)
558		return;
559	for (object = first_object;; object = backing_object) {
560		if (pmap_resident_count(pmap) <= desired)
561			goto unlock_return;
562		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
563		if (object->type == OBJT_PHYS || object->paging_in_progress)
564			goto unlock_return;
565
566		remove_mode = 0;
567		if (object->shadow_count > 1)
568			remove_mode = 1;
569		/*
570		 * Scan the object's entire memory queue.
571		 */
572		TAILQ_FOREACH(p, &object->memq, listq) {
573			if (pmap_resident_count(pmap) <= desired)
574				goto unlock_return;
575			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
576				continue;
577			PCPU_INC(cnt.v_pdpages);
578			vm_page_lock(p);
579			if (p->wire_count != 0 || p->hold_count != 0 ||
580			    !pmap_page_exists_quick(pmap, p)) {
581				vm_page_unlock(p);
582				continue;
583			}
584			actcount = pmap_ts_referenced(p);
585			if ((p->flags & PG_REFERENCED) != 0) {
586				if (actcount == 0)
587					actcount = 1;
588				vm_page_lock_queues();
589				vm_page_flag_clear(p, PG_REFERENCED);
590				vm_page_unlock_queues();
591			}
592			if (p->queue != PQ_ACTIVE && actcount != 0) {
593				vm_page_activate(p);
594				p->act_count += actcount;
595			} else if (p->queue == PQ_ACTIVE) {
596				if (actcount == 0) {
597					p->act_count -= min(p->act_count,
598					    ACT_DECLINE);
599					if (!remove_mode &&
600					    (vm_pageout_algorithm ||
601					    p->act_count == 0)) {
602						pmap_remove_all(p);
603						vm_page_deactivate(p);
604					} else {
605						vm_page_lock_queues();
606						vm_page_requeue(p);
607						vm_page_unlock_queues();
608					}
609				} else {
610					vm_page_activate(p);
611					if (p->act_count < ACT_MAX -
612					    ACT_ADVANCE)
613						p->act_count += ACT_ADVANCE;
614					vm_page_lock_queues();
615					vm_page_requeue(p);
616					vm_page_unlock_queues();
617				}
618			} else if (p->queue == PQ_INACTIVE)
619				pmap_remove_all(p);
620			vm_page_unlock(p);
621		}
622		if ((backing_object = object->backing_object) == NULL)
623			goto unlock_return;
624		VM_OBJECT_LOCK(backing_object);
625		if (object != first_object)
626			VM_OBJECT_UNLOCK(object);
627	}
628unlock_return:
629	if (object != first_object)
630		VM_OBJECT_UNLOCK(object);
631}
632
633/*
634 * deactivate some number of pages in a map, try to do it fairly, but
635 * that is really hard to do.
636 */
637static void
638vm_pageout_map_deactivate_pages(map, desired)
639	vm_map_t map;
640	long desired;
641{
642	vm_map_entry_t tmpe;
643	vm_object_t obj, bigobj;
644	int nothingwired;
645
646	if (!vm_map_trylock(map))
647		return;
648
649	bigobj = NULL;
650	nothingwired = TRUE;
651
652	/*
653	 * first, search out the biggest object, and try to free pages from
654	 * that.
655	 */
656	tmpe = map->header.next;
657	while (tmpe != &map->header) {
658		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
659			obj = tmpe->object.vm_object;
660			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
661				if (obj->shadow_count <= 1 &&
662				    (bigobj == NULL ||
663				     bigobj->resident_page_count < obj->resident_page_count)) {
664					if (bigobj != NULL)
665						VM_OBJECT_UNLOCK(bigobj);
666					bigobj = obj;
667				} else
668					VM_OBJECT_UNLOCK(obj);
669			}
670		}
671		if (tmpe->wired_count > 0)
672			nothingwired = FALSE;
673		tmpe = tmpe->next;
674	}
675
676	if (bigobj != NULL) {
677		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
678		VM_OBJECT_UNLOCK(bigobj);
679	}
680	/*
681	 * Next, hunt around for other pages to deactivate.  We actually
682	 * do this search sort of wrong -- .text first is not the best idea.
683	 */
684	tmpe = map->header.next;
685	while (tmpe != &map->header) {
686		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
687			break;
688		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
689			obj = tmpe->object.vm_object;
690			if (obj != NULL) {
691				VM_OBJECT_LOCK(obj);
692				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
693				VM_OBJECT_UNLOCK(obj);
694			}
695		}
696		tmpe = tmpe->next;
697	}
698
699	/*
700	 * Remove all mappings if a process is swapped out, this will free page
701	 * table pages.
702	 */
703	if (desired == 0 && nothingwired) {
704		pmap_remove(vm_map_pmap(map), vm_map_min(map),
705		    vm_map_max(map));
706	}
707	vm_map_unlock(map);
708}
709#endif		/* !defined(NO_SWAPPING) */
710
711/*
712 *	vm_pageout_scan does the dirty work for the pageout daemon.
713 */
714static void
715vm_pageout_scan(int pass)
716{
717	vm_page_t m, next;
718	struct vm_page marker;
719	int page_shortage, maxscan, pcount;
720	int addl_page_shortage, addl_page_shortage_init;
721	vm_object_t object;
722	int actcount;
723	int vnodes_skipped = 0;
724	int maxlaunder;
725
726	/*
727	 * Decrease registered cache sizes.
728	 */
729	EVENTHANDLER_INVOKE(vm_lowmem, 0);
730	/*
731	 * We do this explicitly after the caches have been drained above.
732	 */
733	uma_reclaim();
734
735	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
736
737	/*
738	 * Calculate the number of pages we want to either free or move
739	 * to the cache.
740	 */
741	page_shortage = vm_paging_target() + addl_page_shortage_init;
742
743	vm_pageout_init_marker(&marker, PQ_INACTIVE);
744
745	/*
746	 * Start scanning the inactive queue for pages we can move to the
747	 * cache or free.  The scan will stop when the target is reached or
748	 * we have scanned the entire inactive queue.  Note that m->act_count
749	 * is not used to form decisions for the inactive queue, only for the
750	 * active queue.
751	 *
752	 * maxlaunder limits the number of dirty pages we flush per scan.
753	 * For most systems a smaller value (16 or 32) is more robust under
754	 * extreme memory and disk pressure because any unnecessary writes
755	 * to disk can result in extreme performance degredation.  However,
756	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
757	 * used) will die horribly with limited laundering.  If the pageout
758	 * daemon cannot clean enough pages in the first pass, we let it go
759	 * all out in succeeding passes.
760	 */
761	if ((maxlaunder = vm_max_launder) <= 1)
762		maxlaunder = 1;
763	if (pass)
764		maxlaunder = 10000;
765	vm_page_lock_queues();
766rescan0:
767	addl_page_shortage = addl_page_shortage_init;
768	maxscan = cnt.v_inactive_count;
769
770	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
771	     m != NULL && maxscan-- > 0 && page_shortage > 0;
772	     m = next) {
773
774		cnt.v_pdpages++;
775
776		if (m->queue != PQ_INACTIVE)
777			goto rescan0;
778
779		next = TAILQ_NEXT(m, pageq);
780
781		/*
782		 * skip marker pages
783		 */
784		if (m->flags & PG_MARKER)
785			continue;
786
787		/*
788		 * Lock the page.
789		 */
790		if (!vm_pageout_page_lock(m, &next)) {
791			vm_page_unlock(m);
792			addl_page_shortage++;
793			continue;
794		}
795
796		/*
797		 * A held page may be undergoing I/O, so skip it.
798		 */
799		if (m->hold_count) {
800			vm_page_unlock(m);
801			vm_page_requeue(m);
802			addl_page_shortage++;
803			continue;
804		}
805
806		/*
807		 * Don't mess with busy pages, keep in the front of the
808		 * queue, most likely are being paged out.
809		 */
810		object = m->object;
811		if (!VM_OBJECT_TRYLOCK(object) &&
812		    (!vm_pageout_fallback_object_lock(m, &next) ||
813			m->hold_count != 0)) {
814			VM_OBJECT_UNLOCK(object);
815			vm_page_unlock(m);
816			addl_page_shortage++;
817			continue;
818		}
819		if (m->busy || (m->oflags & VPO_BUSY)) {
820			vm_page_unlock(m);
821			VM_OBJECT_UNLOCK(object);
822			addl_page_shortage++;
823			continue;
824		}
825
826		/*
827		 * If the object is not being used, we ignore previous
828		 * references.
829		 */
830		if (object->ref_count == 0) {
831			vm_page_flag_clear(m, PG_REFERENCED);
832			KASSERT(!pmap_page_is_mapped(m),
833			    ("vm_pageout_scan: page %p is mapped", m));
834
835		/*
836		 * Otherwise, if the page has been referenced while in the
837		 * inactive queue, we bump the "activation count" upwards,
838		 * making it less likely that the page will be added back to
839		 * the inactive queue prematurely again.  Here we check the
840		 * page tables (or emulated bits, if any), given the upper
841		 * level VM system not knowing anything about existing
842		 * references.
843		 */
844		} else if (((m->flags & PG_REFERENCED) == 0) &&
845			(actcount = pmap_ts_referenced(m))) {
846			vm_page_activate(m);
847			VM_OBJECT_UNLOCK(object);
848			m->act_count += (actcount + ACT_ADVANCE);
849			vm_page_unlock(m);
850			continue;
851		}
852
853		/*
854		 * If the upper level VM system knows about any page
855		 * references, we activate the page.  We also set the
856		 * "activation count" higher than normal so that we will less
857		 * likely place pages back onto the inactive queue again.
858		 */
859		if ((m->flags & PG_REFERENCED) != 0) {
860			vm_page_flag_clear(m, PG_REFERENCED);
861			actcount = pmap_ts_referenced(m);
862			vm_page_activate(m);
863			VM_OBJECT_UNLOCK(object);
864			m->act_count += (actcount + ACT_ADVANCE + 1);
865			vm_page_unlock(m);
866			continue;
867		}
868
869		/*
870		 * If the upper level VM system does not believe that the page
871		 * is fully dirty, but it is mapped for write access, then we
872		 * consult the pmap to see if the page's dirty status should
873		 * be updated.
874		 */
875		if (m->dirty != VM_PAGE_BITS_ALL &&
876		    (m->flags & PG_WRITEABLE) != 0) {
877			/*
878			 * Avoid a race condition: Unless write access is
879			 * removed from the page, another processor could
880			 * modify it before all access is removed by the call
881			 * to vm_page_cache() below.  If vm_page_cache() finds
882			 * that the page has been modified when it removes all
883			 * access, it panics because it cannot cache dirty
884			 * pages.  In principle, we could eliminate just write
885			 * access here rather than all access.  In the expected
886			 * case, when there are no last instant modifications
887			 * to the page, removing all access will be cheaper
888			 * overall.
889			 */
890			if (pmap_is_modified(m))
891				vm_page_dirty(m);
892			else if (m->dirty == 0)
893				pmap_remove_all(m);
894		}
895
896		if (m->valid == 0) {
897			/*
898			 * Invalid pages can be easily freed
899			 */
900			vm_page_free(m);
901			cnt.v_dfree++;
902			--page_shortage;
903		} else if (m->dirty == 0) {
904			/*
905			 * Clean pages can be placed onto the cache queue.
906			 * This effectively frees them.
907			 */
908			vm_page_cache(m);
909			--page_shortage;
910		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
911			/*
912			 * Dirty pages need to be paged out, but flushing
913			 * a page is extremely expensive verses freeing
914			 * a clean page.  Rather then artificially limiting
915			 * the number of pages we can flush, we instead give
916			 * dirty pages extra priority on the inactive queue
917			 * by forcing them to be cycled through the queue
918			 * twice before being flushed, after which the
919			 * (now clean) page will cycle through once more
920			 * before being freed.  This significantly extends
921			 * the thrash point for a heavily loaded machine.
922			 */
923			vm_page_flag_set(m, PG_WINATCFLS);
924			vm_page_requeue(m);
925		} else if (maxlaunder > 0) {
926			/*
927			 * We always want to try to flush some dirty pages if
928			 * we encounter them, to keep the system stable.
929			 * Normally this number is small, but under extreme
930			 * pressure where there are insufficient clean pages
931			 * on the inactive queue, we may have to go all out.
932			 */
933			int swap_pageouts_ok, vfslocked = 0;
934			struct vnode *vp = NULL;
935			struct mount *mp = NULL;
936
937			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
938				swap_pageouts_ok = 1;
939			} else {
940				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
941				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
942				vm_page_count_min());
943
944			}
945
946			/*
947			 * We don't bother paging objects that are "dead".
948			 * Those objects are in a "rundown" state.
949			 */
950			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
951				vm_page_unlock(m);
952				VM_OBJECT_UNLOCK(object);
953				vm_page_requeue(m);
954				continue;
955			}
956
957			/*
958			 * Following operations may unlock
959			 * vm_page_queue_mtx, invalidating the 'next'
960			 * pointer.  To prevent an inordinate number
961			 * of restarts we use our marker to remember
962			 * our place.
963			 *
964			 */
965			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
966					   m, &marker, pageq);
967			/*
968			 * The object is already known NOT to be dead.   It
969			 * is possible for the vget() to block the whole
970			 * pageout daemon, but the new low-memory handling
971			 * code should prevent it.
972			 *
973			 * The previous code skipped locked vnodes and, worse,
974			 * reordered pages in the queue.  This results in
975			 * completely non-deterministic operation and, on a
976			 * busy system, can lead to extremely non-optimal
977			 * pageouts.  For example, it can cause clean pages
978			 * to be freed and dirty pages to be moved to the end
979			 * of the queue.  Since dirty pages are also moved to
980			 * the end of the queue once-cleaned, this gives
981			 * way too large a weighting to defering the freeing
982			 * of dirty pages.
983			 *
984			 * We can't wait forever for the vnode lock, we might
985			 * deadlock due to a vn_read() getting stuck in
986			 * vm_wait while holding this vnode.  We skip the
987			 * vnode if we can't get it in a reasonable amount
988			 * of time.
989			 */
990			if (object->type == OBJT_VNODE) {
991				vm_page_unlock_queues();
992				vm_page_unlock(m);
993				vp = object->handle;
994				if (vp->v_type == VREG &&
995				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
996					mp = NULL;
997					++pageout_lock_miss;
998					if (object->flags & OBJ_MIGHTBEDIRTY)
999						vnodes_skipped++;
1000					vm_page_lock_queues();
1001					goto unlock_and_continue;
1002				}
1003				KASSERT(mp != NULL,
1004				    ("vp %p with NULL v_mount", vp));
1005				vm_object_reference_locked(object);
1006				VM_OBJECT_UNLOCK(object);
1007				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1008				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1009				    curthread)) {
1010					VM_OBJECT_LOCK(object);
1011					vm_page_lock_queues();
1012					++pageout_lock_miss;
1013					if (object->flags & OBJ_MIGHTBEDIRTY)
1014						vnodes_skipped++;
1015					vp = NULL;
1016					goto unlock_and_continue;
1017				}
1018				VM_OBJECT_LOCK(object);
1019				vm_page_lock(m);
1020				vm_page_lock_queues();
1021				/*
1022				 * The page might have been moved to another
1023				 * queue during potential blocking in vget()
1024				 * above.  The page might have been freed and
1025				 * reused for another vnode.
1026				 */
1027				if (m->queue != PQ_INACTIVE ||
1028				    m->object != object ||
1029				    TAILQ_NEXT(m, pageq) != &marker) {
1030					vm_page_unlock(m);
1031					if (object->flags & OBJ_MIGHTBEDIRTY)
1032						vnodes_skipped++;
1033					goto unlock_and_continue;
1034				}
1035
1036				/*
1037				 * The page may have been busied during the
1038				 * blocking in vget().  We don't move the
1039				 * page back onto the end of the queue so that
1040				 * statistics are more correct if we don't.
1041				 */
1042				if (m->busy || (m->oflags & VPO_BUSY)) {
1043					vm_page_unlock(m);
1044					goto unlock_and_continue;
1045				}
1046
1047				/*
1048				 * If the page has become held it might
1049				 * be undergoing I/O, so skip it
1050				 */
1051				if (m->hold_count) {
1052					vm_page_unlock(m);
1053					vm_page_requeue(m);
1054					if (object->flags & OBJ_MIGHTBEDIRTY)
1055						vnodes_skipped++;
1056					goto unlock_and_continue;
1057				}
1058			}
1059
1060			/*
1061			 * If a page is dirty, then it is either being washed
1062			 * (but not yet cleaned) or it is still in the
1063			 * laundry.  If it is still in the laundry, then we
1064			 * start the cleaning operation.
1065			 *
1066			 * decrement page_shortage on success to account for
1067			 * the (future) cleaned page.  Otherwise we could wind
1068			 * up laundering or cleaning too many pages.
1069			 */
1070			vm_page_unlock_queues();
1071			if (vm_pageout_clean(m) != 0) {
1072				--page_shortage;
1073				--maxlaunder;
1074			}
1075			vm_page_lock_queues();
1076unlock_and_continue:
1077			vm_page_lock_assert(m, MA_NOTOWNED);
1078			VM_OBJECT_UNLOCK(object);
1079			if (mp != NULL) {
1080				vm_page_unlock_queues();
1081				if (vp != NULL)
1082					vput(vp);
1083				VFS_UNLOCK_GIANT(vfslocked);
1084				vm_object_deallocate(object);
1085				vn_finished_write(mp);
1086				vm_page_lock_queues();
1087			}
1088			next = TAILQ_NEXT(&marker, pageq);
1089			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1090				     &marker, pageq);
1091			vm_page_lock_assert(m, MA_NOTOWNED);
1092			continue;
1093		}
1094		vm_page_unlock(m);
1095		VM_OBJECT_UNLOCK(object);
1096	}
1097
1098	/*
1099	 * Compute the number of pages we want to try to move from the
1100	 * active queue to the inactive queue.
1101	 */
1102	page_shortage = vm_paging_target() +
1103		cnt.v_inactive_target - cnt.v_inactive_count;
1104	page_shortage += addl_page_shortage;
1105
1106	/*
1107	 * Scan the active queue for things we can deactivate. We nominally
1108	 * track the per-page activity counter and use it to locate
1109	 * deactivation candidates.
1110	 */
1111	pcount = cnt.v_active_count;
1112	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1113	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1114
1115	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1116
1117		KASSERT(m->queue == PQ_ACTIVE,
1118		    ("vm_pageout_scan: page %p isn't active", m));
1119
1120		next = TAILQ_NEXT(m, pageq);
1121		if ((m->flags & PG_MARKER) != 0) {
1122			m = next;
1123			continue;
1124		}
1125		if (!vm_pageout_page_lock(m, &next)) {
1126			vm_page_unlock(m);
1127			m = next;
1128			continue;
1129		}
1130		object = m->object;
1131		if (!VM_OBJECT_TRYLOCK(object) &&
1132		    !vm_pageout_fallback_object_lock(m, &next)) {
1133			VM_OBJECT_UNLOCK(object);
1134			vm_page_unlock(m);
1135			m = next;
1136			continue;
1137		}
1138
1139		/*
1140		 * Don't deactivate pages that are busy.
1141		 */
1142		if ((m->busy != 0) ||
1143		    (m->oflags & VPO_BUSY) ||
1144		    (m->hold_count != 0)) {
1145			vm_page_unlock(m);
1146			VM_OBJECT_UNLOCK(object);
1147			vm_page_requeue(m);
1148			m = next;
1149			continue;
1150		}
1151
1152		/*
1153		 * The count for pagedaemon pages is done after checking the
1154		 * page for eligibility...
1155		 */
1156		cnt.v_pdpages++;
1157
1158		/*
1159		 * Check to see "how much" the page has been used.
1160		 */
1161		actcount = 0;
1162		if (object->ref_count != 0) {
1163			if (m->flags & PG_REFERENCED) {
1164				actcount += 1;
1165			}
1166			actcount += pmap_ts_referenced(m);
1167			if (actcount) {
1168				m->act_count += ACT_ADVANCE + actcount;
1169				if (m->act_count > ACT_MAX)
1170					m->act_count = ACT_MAX;
1171			}
1172		}
1173
1174		/*
1175		 * Since we have "tested" this bit, we need to clear it now.
1176		 */
1177		vm_page_flag_clear(m, PG_REFERENCED);
1178
1179		/*
1180		 * Only if an object is currently being used, do we use the
1181		 * page activation count stats.
1182		 */
1183		if (actcount && (object->ref_count != 0)) {
1184			vm_page_requeue(m);
1185		} else {
1186			m->act_count -= min(m->act_count, ACT_DECLINE);
1187			if (vm_pageout_algorithm ||
1188			    object->ref_count == 0 ||
1189			    m->act_count == 0) {
1190				page_shortage--;
1191				if (object->ref_count == 0) {
1192					KASSERT(!pmap_page_is_mapped(m),
1193				    ("vm_pageout_scan: page %p is mapped", m));
1194					if (m->dirty == 0)
1195						vm_page_cache(m);
1196					else
1197						vm_page_deactivate(m);
1198				} else {
1199					vm_page_deactivate(m);
1200				}
1201			} else {
1202				vm_page_requeue(m);
1203			}
1204		}
1205		vm_page_unlock(m);
1206		VM_OBJECT_UNLOCK(object);
1207		m = next;
1208	}
1209	vm_page_unlock_queues();
1210#if !defined(NO_SWAPPING)
1211	/*
1212	 * Idle process swapout -- run once per second.
1213	 */
1214	if (vm_swap_idle_enabled) {
1215		static long lsec;
1216		if (time_second != lsec) {
1217			vm_req_vmdaemon(VM_SWAP_IDLE);
1218			lsec = time_second;
1219		}
1220	}
1221#endif
1222
1223	/*
1224	 * If we didn't get enough free pages, and we have skipped a vnode
1225	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1226	 * if we did not get enough free pages.
1227	 */
1228	if (vm_paging_target() > 0) {
1229		if (vnodes_skipped && vm_page_count_min())
1230			(void) speedup_syncer();
1231#if !defined(NO_SWAPPING)
1232		if (vm_swap_enabled && vm_page_count_target())
1233			vm_req_vmdaemon(VM_SWAP_NORMAL);
1234#endif
1235	}
1236
1237	/*
1238	 * If we are critically low on one of RAM or swap and low on
1239	 * the other, kill the largest process.  However, we avoid
1240	 * doing this on the first pass in order to give ourselves a
1241	 * chance to flush out dirty vnode-backed pages and to allow
1242	 * active pages to be moved to the inactive queue and reclaimed.
1243	 */
1244	if (pass != 0 &&
1245	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1246	     (swap_pager_full && vm_paging_target() > 0)))
1247		vm_pageout_oom(VM_OOM_MEM);
1248}
1249
1250
1251void
1252vm_pageout_oom(int shortage)
1253{
1254	struct proc *p, *bigproc;
1255	vm_offset_t size, bigsize;
1256	struct thread *td;
1257	struct vmspace *vm;
1258
1259	/*
1260	 * We keep the process bigproc locked once we find it to keep anyone
1261	 * from messing with it; however, there is a possibility of
1262	 * deadlock if process B is bigproc and one of it's child processes
1263	 * attempts to propagate a signal to B while we are waiting for A's
1264	 * lock while walking this list.  To avoid this, we don't block on
1265	 * the process lock but just skip a process if it is already locked.
1266	 */
1267	bigproc = NULL;
1268	bigsize = 0;
1269	sx_slock(&allproc_lock);
1270	FOREACH_PROC_IN_SYSTEM(p) {
1271		int breakout;
1272
1273		if (PROC_TRYLOCK(p) == 0)
1274			continue;
1275		/*
1276		 * If this is a system, protected or killed process, skip it.
1277		 */
1278		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1279		    (p->p_pid == 1) || P_KILLED(p) ||
1280		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1281			PROC_UNLOCK(p);
1282			continue;
1283		}
1284		/*
1285		 * If the process is in a non-running type state,
1286		 * don't touch it.  Check all the threads individually.
1287		 */
1288		breakout = 0;
1289		FOREACH_THREAD_IN_PROC(p, td) {
1290			thread_lock(td);
1291			if (!TD_ON_RUNQ(td) &&
1292			    !TD_IS_RUNNING(td) &&
1293			    !TD_IS_SLEEPING(td)) {
1294				thread_unlock(td);
1295				breakout = 1;
1296				break;
1297			}
1298			thread_unlock(td);
1299		}
1300		if (breakout) {
1301			PROC_UNLOCK(p);
1302			continue;
1303		}
1304		/*
1305		 * get the process size
1306		 */
1307		vm = vmspace_acquire_ref(p);
1308		if (vm == NULL) {
1309			PROC_UNLOCK(p);
1310			continue;
1311		}
1312		if (!vm_map_trylock_read(&vm->vm_map)) {
1313			vmspace_free(vm);
1314			PROC_UNLOCK(p);
1315			continue;
1316		}
1317		size = vmspace_swap_count(vm);
1318		vm_map_unlock_read(&vm->vm_map);
1319		if (shortage == VM_OOM_MEM)
1320			size += vmspace_resident_count(vm);
1321		vmspace_free(vm);
1322		/*
1323		 * if the this process is bigger than the biggest one
1324		 * remember it.
1325		 */
1326		if (size > bigsize) {
1327			if (bigproc != NULL)
1328				PROC_UNLOCK(bigproc);
1329			bigproc = p;
1330			bigsize = size;
1331		} else
1332			PROC_UNLOCK(p);
1333	}
1334	sx_sunlock(&allproc_lock);
1335	if (bigproc != NULL) {
1336		killproc(bigproc, "out of swap space");
1337		sched_nice(bigproc, PRIO_MIN);
1338		PROC_UNLOCK(bigproc);
1339		wakeup(&cnt.v_free_count);
1340	}
1341}
1342
1343/*
1344 * This routine tries to maintain the pseudo LRU active queue,
1345 * so that during long periods of time where there is no paging,
1346 * that some statistic accumulation still occurs.  This code
1347 * helps the situation where paging just starts to occur.
1348 */
1349static void
1350vm_pageout_page_stats()
1351{
1352	vm_object_t object;
1353	vm_page_t m,next;
1354	int pcount,tpcount;		/* Number of pages to check */
1355	static int fullintervalcount = 0;
1356	int page_shortage;
1357
1358	page_shortage =
1359	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1360	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1361
1362	if (page_shortage <= 0)
1363		return;
1364
1365	vm_page_lock_queues();
1366	pcount = cnt.v_active_count;
1367	fullintervalcount += vm_pageout_stats_interval;
1368	if (fullintervalcount < vm_pageout_full_stats_interval) {
1369		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1370		    cnt.v_page_count;
1371		if (pcount > tpcount)
1372			pcount = tpcount;
1373	} else {
1374		fullintervalcount = 0;
1375	}
1376
1377	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1378	while ((m != NULL) && (pcount-- > 0)) {
1379		int actcount;
1380
1381		KASSERT(m->queue == PQ_ACTIVE,
1382		    ("vm_pageout_page_stats: page %p isn't active", m));
1383
1384		next = TAILQ_NEXT(m, pageq);
1385		if ((m->flags & PG_MARKER) != 0) {
1386			m = next;
1387			continue;
1388		}
1389		vm_page_lock_assert(m, MA_NOTOWNED);
1390		if (!vm_pageout_page_lock(m, &next)) {
1391			vm_page_unlock(m);
1392			m = next;
1393			continue;
1394		}
1395		object = m->object;
1396		if (!VM_OBJECT_TRYLOCK(object) &&
1397		    !vm_pageout_fallback_object_lock(m, &next)) {
1398			VM_OBJECT_UNLOCK(object);
1399			vm_page_unlock(m);
1400			m = next;
1401			continue;
1402		}
1403
1404		/*
1405		 * Don't deactivate pages that are busy.
1406		 */
1407		if ((m->busy != 0) ||
1408		    (m->oflags & VPO_BUSY) ||
1409		    (m->hold_count != 0)) {
1410			vm_page_unlock(m);
1411			VM_OBJECT_UNLOCK(object);
1412			vm_page_requeue(m);
1413			m = next;
1414			continue;
1415		}
1416
1417		actcount = 0;
1418		if (m->flags & PG_REFERENCED) {
1419			vm_page_flag_clear(m, PG_REFERENCED);
1420			actcount += 1;
1421		}
1422
1423		actcount += pmap_ts_referenced(m);
1424		if (actcount) {
1425			m->act_count += ACT_ADVANCE + actcount;
1426			if (m->act_count > ACT_MAX)
1427				m->act_count = ACT_MAX;
1428			vm_page_requeue(m);
1429		} else {
1430			if (m->act_count == 0) {
1431				/*
1432				 * We turn off page access, so that we have
1433				 * more accurate RSS stats.  We don't do this
1434				 * in the normal page deactivation when the
1435				 * system is loaded VM wise, because the
1436				 * cost of the large number of page protect
1437				 * operations would be higher than the value
1438				 * of doing the operation.
1439				 */
1440				pmap_remove_all(m);
1441				vm_page_deactivate(m);
1442			} else {
1443				m->act_count -= min(m->act_count, ACT_DECLINE);
1444				vm_page_requeue(m);
1445			}
1446		}
1447		vm_page_unlock(m);
1448		VM_OBJECT_UNLOCK(object);
1449		m = next;
1450	}
1451	vm_page_unlock_queues();
1452}
1453
1454/*
1455 *	vm_pageout is the high level pageout daemon.
1456 */
1457static void
1458vm_pageout()
1459{
1460	int error, pass;
1461
1462	/*
1463	 * Initialize some paging parameters.
1464	 */
1465	cnt.v_interrupt_free_min = 2;
1466	if (cnt.v_page_count < 2000)
1467		vm_pageout_page_count = 8;
1468
1469	/*
1470	 * v_free_reserved needs to include enough for the largest
1471	 * swap pager structures plus enough for any pv_entry structs
1472	 * when paging.
1473	 */
1474	if (cnt.v_page_count > 1024)
1475		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1476	else
1477		cnt.v_free_min = 4;
1478	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1479	    cnt.v_interrupt_free_min;
1480	cnt.v_free_reserved = vm_pageout_page_count +
1481	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1482	cnt.v_free_severe = cnt.v_free_min / 2;
1483	cnt.v_free_min += cnt.v_free_reserved;
1484	cnt.v_free_severe += cnt.v_free_reserved;
1485
1486	/*
1487	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1488	 * that these are more a measure of the VM cache queue hysteresis
1489	 * then the VM free queue.  Specifically, v_free_target is the
1490	 * high water mark (free+cache pages).
1491	 *
1492	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1493	 * low water mark, while v_free_min is the stop.  v_cache_min must
1494	 * be big enough to handle memory needs while the pageout daemon
1495	 * is signalled and run to free more pages.
1496	 */
1497	if (cnt.v_free_count > 6144)
1498		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1499	else
1500		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1501
1502	if (cnt.v_free_count > 2048) {
1503		cnt.v_cache_min = cnt.v_free_target;
1504		cnt.v_cache_max = 2 * cnt.v_cache_min;
1505		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1506	} else {
1507		cnt.v_cache_min = 0;
1508		cnt.v_cache_max = 0;
1509		cnt.v_inactive_target = cnt.v_free_count / 4;
1510	}
1511	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1512		cnt.v_inactive_target = cnt.v_free_count / 3;
1513
1514	/* XXX does not really belong here */
1515	if (vm_page_max_wired == 0)
1516		vm_page_max_wired = cnt.v_free_count / 3;
1517
1518	if (vm_pageout_stats_max == 0)
1519		vm_pageout_stats_max = cnt.v_free_target;
1520
1521	/*
1522	 * Set interval in seconds for stats scan.
1523	 */
1524	if (vm_pageout_stats_interval == 0)
1525		vm_pageout_stats_interval = 5;
1526	if (vm_pageout_full_stats_interval == 0)
1527		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1528
1529	swap_pager_swap_init();
1530	pass = 0;
1531	/*
1532	 * The pageout daemon is never done, so loop forever.
1533	 */
1534	while (TRUE) {
1535		/*
1536		 * If we have enough free memory, wakeup waiters.  Do
1537		 * not clear vm_pages_needed until we reach our target,
1538		 * otherwise we may be woken up over and over again and
1539		 * waste a lot of cpu.
1540		 */
1541		mtx_lock(&vm_page_queue_free_mtx);
1542		if (vm_pages_needed && !vm_page_count_min()) {
1543			if (!vm_paging_needed())
1544				vm_pages_needed = 0;
1545			wakeup(&cnt.v_free_count);
1546		}
1547		if (vm_pages_needed) {
1548			/*
1549			 * Still not done, take a second pass without waiting
1550			 * (unlimited dirty cleaning), otherwise sleep a bit
1551			 * and try again.
1552			 */
1553			++pass;
1554			if (pass > 1)
1555				msleep(&vm_pages_needed,
1556				    &vm_page_queue_free_mtx, PVM, "psleep",
1557				    hz / 2);
1558		} else {
1559			/*
1560			 * Good enough, sleep & handle stats.  Prime the pass
1561			 * for the next run.
1562			 */
1563			if (pass > 1)
1564				pass = 1;
1565			else
1566				pass = 0;
1567			error = msleep(&vm_pages_needed,
1568			    &vm_page_queue_free_mtx, PVM, "psleep",
1569			    vm_pageout_stats_interval * hz);
1570			if (error && !vm_pages_needed) {
1571				mtx_unlock(&vm_page_queue_free_mtx);
1572				pass = 0;
1573				vm_pageout_page_stats();
1574				continue;
1575			}
1576		}
1577		if (vm_pages_needed)
1578			cnt.v_pdwakeups++;
1579		mtx_unlock(&vm_page_queue_free_mtx);
1580		vm_pageout_scan(pass);
1581	}
1582}
1583
1584/*
1585 * Unless the free page queue lock is held by the caller, this function
1586 * should be regarded as advisory.  Specifically, the caller should
1587 * not msleep() on &cnt.v_free_count following this function unless
1588 * the free page queue lock is held until the msleep() is performed.
1589 */
1590void
1591pagedaemon_wakeup()
1592{
1593
1594	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1595		vm_pages_needed = 1;
1596		wakeup(&vm_pages_needed);
1597	}
1598}
1599
1600#if !defined(NO_SWAPPING)
1601static void
1602vm_req_vmdaemon(int req)
1603{
1604	static int lastrun = 0;
1605
1606	mtx_lock(&vm_daemon_mtx);
1607	vm_pageout_req_swapout |= req;
1608	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1609		wakeup(&vm_daemon_needed);
1610		lastrun = ticks;
1611	}
1612	mtx_unlock(&vm_daemon_mtx);
1613}
1614
1615static void
1616vm_daemon()
1617{
1618	struct rlimit rsslim;
1619	struct proc *p;
1620	struct thread *td;
1621	struct vmspace *vm;
1622	int breakout, swapout_flags;
1623
1624	while (TRUE) {
1625		mtx_lock(&vm_daemon_mtx);
1626		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1627		swapout_flags = vm_pageout_req_swapout;
1628		vm_pageout_req_swapout = 0;
1629		mtx_unlock(&vm_daemon_mtx);
1630		if (swapout_flags)
1631			swapout_procs(swapout_flags);
1632
1633		/*
1634		 * scan the processes for exceeding their rlimits or if
1635		 * process is swapped out -- deactivate pages
1636		 */
1637		sx_slock(&allproc_lock);
1638		FOREACH_PROC_IN_SYSTEM(p) {
1639			vm_pindex_t limit, size;
1640
1641			/*
1642			 * if this is a system process or if we have already
1643			 * looked at this process, skip it.
1644			 */
1645			PROC_LOCK(p);
1646			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1647				PROC_UNLOCK(p);
1648				continue;
1649			}
1650			/*
1651			 * if the process is in a non-running type state,
1652			 * don't touch it.
1653			 */
1654			breakout = 0;
1655			FOREACH_THREAD_IN_PROC(p, td) {
1656				thread_lock(td);
1657				if (!TD_ON_RUNQ(td) &&
1658				    !TD_IS_RUNNING(td) &&
1659				    !TD_IS_SLEEPING(td)) {
1660					thread_unlock(td);
1661					breakout = 1;
1662					break;
1663				}
1664				thread_unlock(td);
1665			}
1666			if (breakout) {
1667				PROC_UNLOCK(p);
1668				continue;
1669			}
1670			/*
1671			 * get a limit
1672			 */
1673			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1674			limit = OFF_TO_IDX(
1675			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1676
1677			/*
1678			 * let processes that are swapped out really be
1679			 * swapped out set the limit to nothing (will force a
1680			 * swap-out.)
1681			 */
1682			if ((p->p_flag & P_INMEM) == 0)
1683				limit = 0;	/* XXX */
1684			vm = vmspace_acquire_ref(p);
1685			PROC_UNLOCK(p);
1686			if (vm == NULL)
1687				continue;
1688
1689			size = vmspace_resident_count(vm);
1690			if (limit >= 0 && size >= limit) {
1691				vm_pageout_map_deactivate_pages(
1692				    &vm->vm_map, limit);
1693			}
1694			vmspace_free(vm);
1695		}
1696		sx_sunlock(&allproc_lock);
1697	}
1698}
1699#endif			/* !defined(NO_SWAPPING) */
1700