vm_pageout.c revision 207796
1169718Skan/*-
2169718Skan * Copyright (c) 1991 Regents of the University of California.
3169718Skan * All rights reserved.
4169718Skan * Copyright (c) 1994 John S. Dyson
5169718Skan * All rights reserved.
6169718Skan * Copyright (c) 1994 David Greenman
7169718Skan * All rights reserved.
8169718Skan * Copyright (c) 2005 Yahoo! Technologies Norway AS
9169718Skan * All rights reserved.
10169718Skan *
11169718Skan * This code is derived from software contributed to Berkeley by
12169718Skan * The Mach Operating System project at Carnegie-Mellon University.
13169718Skan *
14169718Skan * Redistribution and use in source and binary forms, with or without
15169718Skan * modification, are permitted provided that the following conditions
16169718Skan * are met:
17169718Skan * 1. Redistributions of source code must retain the above copyright
18169718Skan *    notice, this list of conditions and the following disclaimer.
19169718Skan * 2. Redistributions in binary form must reproduce the above copyright
20169718Skan *    notice, this list of conditions and the following disclaimer in the
21169718Skan *    documentation and/or other materials provided with the distribution.
22169718Skan * 3. All advertising materials mentioning features or use of this software
23169718Skan *    must display the following acknowledgement:
24169718Skan *	This product includes software developed by the University of
25169718Skan *	California, Berkeley and its contributors.
26169718Skan * 4. Neither the name of the University nor the names of its contributors
27169718Skan *    may be used to endorse or promote products derived from this software
28169718Skan *    without specific prior written permission.
29169718Skan *
30169718Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31169718Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32169718Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33169718Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34169718Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35169718Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36169718Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37169718Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38169718Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39169718Skan * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40169718Skan * SUCH DAMAGE.
41169718Skan *
42169718Skan *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43169718Skan *
44169718Skan *
45169718Skan * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46169718Skan * All rights reserved.
47169718Skan *
48169718Skan * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49169718Skan *
50169718Skan * Permission to use, copy, modify and distribute this software and
51169718Skan * its documentation is hereby granted, provided that both the copyright
52169718Skan * notice and this permission notice appear in all copies of the
53169718Skan * software, derivative works or modified versions, and any portions
54169718Skan * thereof, and that both notices appear in supporting documentation.
55169718Skan *
56169718Skan * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57169718Skan * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58169718Skan * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59169718Skan *
60169718Skan * Carnegie Mellon requests users of this software to return to
61169718Skan *
62169718Skan *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63169718Skan *  School of Computer Science
64169718Skan *  Carnegie Mellon University
65169718Skan *  Pittsburgh PA 15213-3890
66169718Skan *
67169718Skan * any improvements or extensions that they make and grant Carnegie the
68169718Skan * rights to redistribute these changes.
69169718Skan */
70169718Skan
71169718Skan/*
72169718Skan *	The proverbial page-out daemon.
73169718Skan */
74169718Skan
75169718Skan#include <sys/cdefs.h>
76169718Skan__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 207796 2010-05-08 20:34:01Z alc $");
77169718Skan
78169718Skan#include "opt_vm.h"
79169718Skan#include <sys/param.h>
80169718Skan#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218static void
219vm_pageout_init_marker(vm_page_t marker, u_short queue)
220{
221
222	bzero(marker, sizeof(*marker));
223	marker->flags = PG_FICTITIOUS | PG_MARKER;
224	marker->oflags = VPO_BUSY;
225	marker->queue = queue;
226	marker->wire_count = 1;
227}
228
229/*
230 * vm_pageout_fallback_object_lock:
231 *
232 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233 * known to have failed and page queue must be either PQ_ACTIVE or
234 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235 * while locking the vm object.  Use marker page to detect page queue
236 * changes and maintain notion of next page on page queue.  Return
237 * TRUE if no changes were detected, FALSE otherwise.  vm object is
238 * locked on return.
239 *
240 * This function depends on both the lock portion of struct vm_object
241 * and normal struct vm_page being type stable.
242 */
243boolean_t
244vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245{
246	struct vm_page marker;
247	boolean_t unchanged;
248	u_short queue;
249	vm_object_t object;
250
251	queue = m->queue;
252	vm_pageout_init_marker(&marker, queue);
253	object = m->object;
254
255	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256			   m, &marker, pageq);
257	vm_page_unlock_queues();
258	vm_page_unlock(m);
259	VM_OBJECT_LOCK(object);
260	vm_page_lock(m);
261	vm_page_lock_queues();
262
263	/* Page queue might have changed. */
264	*next = TAILQ_NEXT(&marker, pageq);
265	unchanged = (m->queue == queue &&
266		     m->object == object &&
267		     &marker == TAILQ_NEXT(m, pageq));
268	TAILQ_REMOVE(&vm_page_queues[queue].pl,
269		     &marker, pageq);
270	return (unchanged);
271}
272
273/*
274 * Lock the page while holding the page queue lock.  Use marker page
275 * to detect page queue changes and maintain notion of next page on
276 * page queue.  Return TRUE if no changes were detected, FALSE
277 * otherwise.  The page is locked on return. The page queue lock might
278 * be dropped and reacquired.
279 *
280 * This function depends on normal struct vm_page being type stable.
281 */
282boolean_t
283vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284{
285	struct vm_page marker;
286	boolean_t unchanged;
287	u_short queue;
288
289	vm_page_lock_assert(m, MA_NOTOWNED);
290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292	if (vm_page_trylock(m))
293		return (TRUE);
294
295	queue = m->queue;
296	vm_pageout_init_marker(&marker, queue);
297
298	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299	vm_page_unlock_queues();
300	vm_page_lock(m);
301	vm_page_lock_queues();
302
303	/* Page queue might have changed. */
304	*next = TAILQ_NEXT(&marker, pageq);
305	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307	return (unchanged);
308}
309
310/*
311 * vm_pageout_clean:
312 *
313 * Clean the page and remove it from the laundry.
314 *
315 * We set the busy bit to cause potential page faults on this page to
316 * block.  Note the careful timing, however, the busy bit isn't set till
317 * late and we cannot do anything that will mess with the page.
318 */
319static int
320vm_pageout_clean(vm_page_t m)
321{
322	vm_object_t object;
323	vm_page_t mc[2*vm_pageout_page_count];
324	int pageout_count;
325	int ib, is, page_base;
326	vm_pindex_t pindex = m->pindex;
327
328	vm_page_lock_assert(m, MA_NOTOWNED);
329	vm_page_lock(m);
330	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
331
332	/*
333	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
334	 * with the new swapper, but we could have serious problems paging
335	 * out other object types if there is insufficient memory.
336	 *
337	 * Unfortunately, checking free memory here is far too late, so the
338	 * check has been moved up a procedural level.
339	 */
340
341	/*
342	 * Can't clean the page if it's busy or held.
343	 */
344	if ((m->hold_count != 0) ||
345	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
346		vm_page_unlock(m);
347		return 0;
348	}
349
350	mc[vm_pageout_page_count] = m;
351	pageout_count = 1;
352	page_base = vm_pageout_page_count;
353	ib = 1;
354	is = 1;
355
356	/*
357	 * Scan object for clusterable pages.
358	 *
359	 * We can cluster ONLY if: ->> the page is NOT
360	 * clean, wired, busy, held, or mapped into a
361	 * buffer, and one of the following:
362	 * 1) The page is inactive, or a seldom used
363	 *    active page.
364	 * -or-
365	 * 2) we force the issue.
366	 *
367	 * During heavy mmap/modification loads the pageout
368	 * daemon can really fragment the underlying file
369	 * due to flushing pages out of order and not trying
370	 * align the clusters (which leave sporatic out-of-order
371	 * holes).  To solve this problem we do the reverse scan
372	 * first and attempt to align our cluster, then do a
373	 * forward scan if room remains.
374	 */
375	object = m->object;
376more:
377	while (ib && pageout_count < vm_pageout_page_count) {
378		vm_page_t p;
379
380		if (ib > pindex) {
381			ib = 0;
382			break;
383		}
384
385		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
386			ib = 0;
387			break;
388		}
389		if ((p->oflags & VPO_BUSY) || p->busy) {
390			ib = 0;
391			break;
392		}
393		vm_page_lock(p);
394		vm_page_lock_queues();
395		vm_page_test_dirty(p);
396		if (p->dirty == 0 ||
397		    p->queue != PQ_INACTIVE ||
398		    p->hold_count != 0) {	/* may be undergoing I/O */
399			vm_page_unlock(p);
400			vm_page_unlock_queues();
401			ib = 0;
402			break;
403		}
404		vm_page_unlock_queues();
405		vm_page_unlock(p);
406		mc[--page_base] = p;
407		++pageout_count;
408		++ib;
409		/*
410		 * alignment boundry, stop here and switch directions.  Do
411		 * not clear ib.
412		 */
413		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
414			break;
415	}
416
417	while (pageout_count < vm_pageout_page_count &&
418	    pindex + is < object->size) {
419		vm_page_t p;
420
421		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
422			break;
423		if ((p->oflags & VPO_BUSY) || p->busy) {
424			break;
425		}
426		vm_page_lock(p);
427		vm_page_lock_queues();
428		vm_page_test_dirty(p);
429		if (p->dirty == 0 ||
430		    p->queue != PQ_INACTIVE ||
431		    p->hold_count != 0) {	/* may be undergoing I/O */
432			vm_page_unlock_queues();
433			vm_page_unlock(p);
434			break;
435		}
436		vm_page_unlock_queues();
437		vm_page_unlock(p);
438		mc[page_base + pageout_count] = p;
439		++pageout_count;
440		++is;
441	}
442
443	/*
444	 * If we exhausted our forward scan, continue with the reverse scan
445	 * when possible, even past a page boundry.  This catches boundry
446	 * conditions.
447	 */
448	if (ib && pageout_count < vm_pageout_page_count)
449		goto more;
450
451	vm_page_unlock(m);
452	/*
453	 * we allow reads during pageouts...
454	 */
455	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
456}
457
458/*
459 * vm_pageout_flush() - launder the given pages
460 *
461 *	The given pages are laundered.  Note that we setup for the start of
462 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
463 *	reference count all in here rather then in the parent.  If we want
464 *	the parent to do more sophisticated things we may have to change
465 *	the ordering.
466 */
467int
468vm_pageout_flush(vm_page_t *mc, int count, int flags)
469{
470	vm_object_t object = mc[0]->object;
471	int pageout_status[count];
472	int numpagedout = 0;
473	int i;
474
475	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478	/*
479	 * Initiate I/O.  Bump the vm_page_t->busy counter and
480	 * mark the pages read-only.
481	 *
482	 * We do not have to fixup the clean/dirty bits here... we can
483	 * allow the pager to do it after the I/O completes.
484	 *
485	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
486	 * edge case with file fragments.
487	 */
488	for (i = 0; i < count; i++) {
489		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
491			mc[i], i, count));
492		vm_page_io_start(mc[i]);
493		pmap_remove_write(mc[i]);
494	}
495	vm_object_pip_add(object, count);
496
497	vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499	for (i = 0; i < count; i++) {
500		vm_page_t mt = mc[i];
501
502		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
503		    (mt->flags & PG_WRITEABLE) == 0,
504		    ("vm_pageout_flush: page %p is not write protected", mt));
505		switch (pageout_status[i]) {
506		case VM_PAGER_OK:
507		case VM_PAGER_PEND:
508			numpagedout++;
509			break;
510		case VM_PAGER_BAD:
511			/*
512			 * Page outside of range of object. Right now we
513			 * essentially lose the changes by pretending it
514			 * worked.
515			 */
516			vm_page_undirty(mt);
517			break;
518		case VM_PAGER_ERROR:
519		case VM_PAGER_FAIL:
520			/*
521			 * If page couldn't be paged out, then reactivate the
522			 * page so it doesn't clog the inactive list.  (We
523			 * will try paging out it again later).
524			 */
525			vm_page_lock(mt);
526			vm_page_activate(mt);
527			vm_page_unlock(mt);
528			break;
529		case VM_PAGER_AGAIN:
530			break;
531		}
532
533		/*
534		 * If the operation is still going, leave the page busy to
535		 * block all other accesses. Also, leave the paging in
536		 * progress indicator set so that we don't attempt an object
537		 * collapse.
538		 */
539		if (pageout_status[i] != VM_PAGER_PEND) {
540			vm_object_pip_wakeup(object);
541			vm_page_io_finish(mt);
542			if (vm_page_count_severe()) {
543				vm_page_lock(mt);
544				vm_page_try_to_cache(mt);
545				vm_page_unlock(mt);
546			}
547		}
548	}
549	return (numpagedout);
550}
551
552#if !defined(NO_SWAPPING)
553/*
554 *	vm_pageout_object_deactivate_pages
555 *
556 *	deactivate enough pages to satisfy the inactive target
557 *	requirements or if vm_page_proc_limit is set, then
558 *	deactivate all of the pages in the object and its
559 *	backing_objects.
560 *
561 *	The object and map must be locked.
562 */
563static void
564vm_pageout_object_deactivate_pages(pmap, first_object, desired)
565	pmap_t pmap;
566	vm_object_t first_object;
567	long desired;
568{
569	vm_object_t backing_object, object;
570	vm_page_t p, next;
571	int actcount, remove_mode;
572
573	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
574	if (first_object->type == OBJT_DEVICE ||
575	    first_object->type == OBJT_SG)
576		return;
577	for (object = first_object;; object = backing_object) {
578		if (pmap_resident_count(pmap) <= desired)
579			goto unlock_return;
580		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
581		if (object->type == OBJT_PHYS || object->paging_in_progress)
582			goto unlock_return;
583
584		remove_mode = 0;
585		if (object->shadow_count > 1)
586			remove_mode = 1;
587		/*
588		 * scan the objects entire memory queue
589		 */
590		p = TAILQ_FIRST(&object->memq);
591		while (p != NULL) {
592			if (pmap_resident_count(pmap) <= desired)
593				goto unlock_return;
594			next = TAILQ_NEXT(p, listq);
595			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
596				p = next;
597				continue;
598			}
599			vm_page_lock(p);
600			vm_page_lock_queues();
601			cnt.v_pdpages++;
602			if (p->wire_count != 0 ||
603			    p->hold_count != 0 ||
604			    !pmap_page_exists_quick(pmap, p)) {
605				vm_page_unlock_queues();
606				vm_page_unlock(p);
607				p = next;
608				continue;
609			}
610			actcount = pmap_ts_referenced(p);
611			if (actcount) {
612				vm_page_flag_set(p, PG_REFERENCED);
613			} else if (p->flags & PG_REFERENCED) {
614				actcount = 1;
615			}
616			if ((p->queue != PQ_ACTIVE) &&
617				(p->flags & PG_REFERENCED)) {
618				vm_page_activate(p);
619				p->act_count += actcount;
620				vm_page_flag_clear(p, PG_REFERENCED);
621			} else if (p->queue == PQ_ACTIVE) {
622				if ((p->flags & PG_REFERENCED) == 0) {
623					p->act_count -= min(p->act_count, ACT_DECLINE);
624					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
625						pmap_remove_all(p);
626						vm_page_deactivate(p);
627					} else {
628						vm_page_requeue(p);
629					}
630				} else {
631					vm_page_activate(p);
632					vm_page_flag_clear(p, PG_REFERENCED);
633					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
634						p->act_count += ACT_ADVANCE;
635					vm_page_requeue(p);
636				}
637			} else if (p->queue == PQ_INACTIVE) {
638				pmap_remove_all(p);
639			}
640			vm_page_unlock_queues();
641			vm_page_unlock(p);
642			p = next;
643		}
644		if ((backing_object = object->backing_object) == NULL)
645			goto unlock_return;
646		VM_OBJECT_LOCK(backing_object);
647		if (object != first_object)
648			VM_OBJECT_UNLOCK(object);
649	}
650unlock_return:
651	if (object != first_object)
652		VM_OBJECT_UNLOCK(object);
653}
654
655/*
656 * deactivate some number of pages in a map, try to do it fairly, but
657 * that is really hard to do.
658 */
659static void
660vm_pageout_map_deactivate_pages(map, desired)
661	vm_map_t map;
662	long desired;
663{
664	vm_map_entry_t tmpe;
665	vm_object_t obj, bigobj;
666	int nothingwired;
667
668	if (!vm_map_trylock(map))
669		return;
670
671	bigobj = NULL;
672	nothingwired = TRUE;
673
674	/*
675	 * first, search out the biggest object, and try to free pages from
676	 * that.
677	 */
678	tmpe = map->header.next;
679	while (tmpe != &map->header) {
680		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
681			obj = tmpe->object.vm_object;
682			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
683				if (obj->shadow_count <= 1 &&
684				    (bigobj == NULL ||
685				     bigobj->resident_page_count < obj->resident_page_count)) {
686					if (bigobj != NULL)
687						VM_OBJECT_UNLOCK(bigobj);
688					bigobj = obj;
689				} else
690					VM_OBJECT_UNLOCK(obj);
691			}
692		}
693		if (tmpe->wired_count > 0)
694			nothingwired = FALSE;
695		tmpe = tmpe->next;
696	}
697
698	if (bigobj != NULL) {
699		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
700		VM_OBJECT_UNLOCK(bigobj);
701	}
702	/*
703	 * Next, hunt around for other pages to deactivate.  We actually
704	 * do this search sort of wrong -- .text first is not the best idea.
705	 */
706	tmpe = map->header.next;
707	while (tmpe != &map->header) {
708		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
709			break;
710		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
711			obj = tmpe->object.vm_object;
712			if (obj != NULL) {
713				VM_OBJECT_LOCK(obj);
714				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
715				VM_OBJECT_UNLOCK(obj);
716			}
717		}
718		tmpe = tmpe->next;
719	}
720
721	/*
722	 * Remove all mappings if a process is swapped out, this will free page
723	 * table pages.
724	 */
725	if (desired == 0 && nothingwired) {
726		pmap_remove(vm_map_pmap(map), vm_map_min(map),
727		    vm_map_max(map));
728	}
729	vm_map_unlock(map);
730}
731#endif		/* !defined(NO_SWAPPING) */
732
733/*
734 *	vm_pageout_scan does the dirty work for the pageout daemon.
735 */
736static void
737vm_pageout_scan(int pass)
738{
739	vm_page_t m, next;
740	struct vm_page marker;
741	int page_shortage, maxscan, pcount;
742	int addl_page_shortage, addl_page_shortage_init;
743	vm_object_t object;
744	int actcount;
745	int vnodes_skipped = 0;
746	int maxlaunder;
747
748	/*
749	 * Decrease registered cache sizes.
750	 */
751	EVENTHANDLER_INVOKE(vm_lowmem, 0);
752	/*
753	 * We do this explicitly after the caches have been drained above.
754	 */
755	uma_reclaim();
756
757	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
758
759	/*
760	 * Calculate the number of pages we want to either free or move
761	 * to the cache.
762	 */
763	page_shortage = vm_paging_target() + addl_page_shortage_init;
764
765	vm_pageout_init_marker(&marker, PQ_INACTIVE);
766
767	/*
768	 * Start scanning the inactive queue for pages we can move to the
769	 * cache or free.  The scan will stop when the target is reached or
770	 * we have scanned the entire inactive queue.  Note that m->act_count
771	 * is not used to form decisions for the inactive queue, only for the
772	 * active queue.
773	 *
774	 * maxlaunder limits the number of dirty pages we flush per scan.
775	 * For most systems a smaller value (16 or 32) is more robust under
776	 * extreme memory and disk pressure because any unnecessary writes
777	 * to disk can result in extreme performance degredation.  However,
778	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
779	 * used) will die horribly with limited laundering.  If the pageout
780	 * daemon cannot clean enough pages in the first pass, we let it go
781	 * all out in succeeding passes.
782	 */
783	if ((maxlaunder = vm_max_launder) <= 1)
784		maxlaunder = 1;
785	if (pass)
786		maxlaunder = 10000;
787	vm_page_lock_queues();
788rescan0:
789	addl_page_shortage = addl_page_shortage_init;
790	maxscan = cnt.v_inactive_count;
791
792	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
793	     m != NULL && maxscan-- > 0 && page_shortage > 0;
794	     m = next) {
795
796		cnt.v_pdpages++;
797
798		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
799			goto rescan0;
800		}
801
802		next = TAILQ_NEXT(m, pageq);
803
804		/*
805		 * skip marker pages
806		 */
807		if (m->flags & PG_MARKER)
808			continue;
809
810		/*
811		 * Lock the page.
812		 */
813		if (!vm_pageout_page_lock(m, &next)) {
814			vm_page_unlock(m);
815			addl_page_shortage++;
816			continue;
817		}
818
819		/*
820		 * A held page may be undergoing I/O, so skip it.
821		 */
822		if (m->hold_count || (object = m->object) == NULL) {
823			vm_page_unlock(m);
824			vm_page_requeue(m);
825			addl_page_shortage++;
826			continue;
827		}
828
829		/*
830		 * Don't mess with busy pages, keep in the front of the
831		 * queue, most likely are being paged out.
832		 */
833		if (!VM_OBJECT_TRYLOCK(object) &&
834		    (!vm_pageout_fallback_object_lock(m, &next) ||
835			m->hold_count != 0)) {
836			VM_OBJECT_UNLOCK(object);
837			vm_page_unlock(m);
838			addl_page_shortage++;
839			continue;
840		}
841		if (m->busy || (m->oflags & VPO_BUSY)) {
842			vm_page_unlock(m);
843			VM_OBJECT_UNLOCK(object);
844			addl_page_shortage++;
845			continue;
846		}
847
848		/*
849		 * If the object is not being used, we ignore previous
850		 * references.
851		 */
852		if (object->ref_count == 0) {
853			vm_page_flag_clear(m, PG_REFERENCED);
854			KASSERT(!pmap_page_is_mapped(m),
855			    ("vm_pageout_scan: page %p is mapped", m));
856
857		/*
858		 * Otherwise, if the page has been referenced while in the
859		 * inactive queue, we bump the "activation count" upwards,
860		 * making it less likely that the page will be added back to
861		 * the inactive queue prematurely again.  Here we check the
862		 * page tables (or emulated bits, if any), given the upper
863		 * level VM system not knowing anything about existing
864		 * references.
865		 */
866		} else if (((m->flags & PG_REFERENCED) == 0) &&
867			(actcount = pmap_ts_referenced(m))) {
868			vm_page_activate(m);
869			VM_OBJECT_UNLOCK(object);
870			m->act_count += (actcount + ACT_ADVANCE);
871			vm_page_unlock(m);
872			continue;
873		}
874
875		/*
876		 * If the upper level VM system knows about any page
877		 * references, we activate the page.  We also set the
878		 * "activation count" higher than normal so that we will less
879		 * likely place pages back onto the inactive queue again.
880		 */
881		if ((m->flags & PG_REFERENCED) != 0) {
882			vm_page_flag_clear(m, PG_REFERENCED);
883			actcount = pmap_ts_referenced(m);
884			vm_page_activate(m);
885			VM_OBJECT_UNLOCK(object);
886			m->act_count += (actcount + ACT_ADVANCE + 1);
887			vm_page_unlock(m);
888			continue;
889		}
890
891		/*
892		 * If the upper level VM system does not believe that the page
893		 * is fully dirty, but it is mapped for write access, then we
894		 * consult the pmap to see if the page's dirty status should
895		 * be updated.
896		 */
897		if (m->dirty != VM_PAGE_BITS_ALL &&
898		    (m->flags & PG_WRITEABLE) != 0) {
899			/*
900			 * Avoid a race condition: Unless write access is
901			 * removed from the page, another processor could
902			 * modify it before all access is removed by the call
903			 * to vm_page_cache() below.  If vm_page_cache() finds
904			 * that the page has been modified when it removes all
905			 * access, it panics because it cannot cache dirty
906			 * pages.  In principle, we could eliminate just write
907			 * access here rather than all access.  In the expected
908			 * case, when there are no last instant modifications
909			 * to the page, removing all access will be cheaper
910			 * overall.
911			 */
912			if (pmap_is_modified(m))
913				vm_page_dirty(m);
914			else if (m->dirty == 0)
915				pmap_remove_all(m);
916		}
917
918		if (m->valid == 0) {
919			/*
920			 * Invalid pages can be easily freed
921			 */
922			vm_page_free(m);
923			cnt.v_dfree++;
924			--page_shortage;
925		} else if (m->dirty == 0) {
926			/*
927			 * Clean pages can be placed onto the cache queue.
928			 * This effectively frees them.
929			 */
930			vm_page_cache(m);
931			--page_shortage;
932		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
933			/*
934			 * Dirty pages need to be paged out, but flushing
935			 * a page is extremely expensive verses freeing
936			 * a clean page.  Rather then artificially limiting
937			 * the number of pages we can flush, we instead give
938			 * dirty pages extra priority on the inactive queue
939			 * by forcing them to be cycled through the queue
940			 * twice before being flushed, after which the
941			 * (now clean) page will cycle through once more
942			 * before being freed.  This significantly extends
943			 * the thrash point for a heavily loaded machine.
944			 */
945			vm_page_flag_set(m, PG_WINATCFLS);
946			vm_page_requeue(m);
947		} else if (maxlaunder > 0) {
948			/*
949			 * We always want to try to flush some dirty pages if
950			 * we encounter them, to keep the system stable.
951			 * Normally this number is small, but under extreme
952			 * pressure where there are insufficient clean pages
953			 * on the inactive queue, we may have to go all out.
954			 */
955			int swap_pageouts_ok, vfslocked = 0;
956			struct vnode *vp = NULL;
957			struct mount *mp = NULL;
958
959			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
960				swap_pageouts_ok = 1;
961			} else {
962				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
963				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
964				vm_page_count_min());
965
966			}
967
968			/*
969			 * We don't bother paging objects that are "dead".
970			 * Those objects are in a "rundown" state.
971			 */
972			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
973				vm_page_unlock(m);
974				VM_OBJECT_UNLOCK(object);
975				vm_page_requeue(m);
976				continue;
977			}
978
979			/*
980			 * Following operations may unlock
981			 * vm_page_queue_mtx, invalidating the 'next'
982			 * pointer.  To prevent an inordinate number
983			 * of restarts we use our marker to remember
984			 * our place.
985			 *
986			 */
987			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
988					   m, &marker, pageq);
989			/*
990			 * The object is already known NOT to be dead.   It
991			 * is possible for the vget() to block the whole
992			 * pageout daemon, but the new low-memory handling
993			 * code should prevent it.
994			 *
995			 * The previous code skipped locked vnodes and, worse,
996			 * reordered pages in the queue.  This results in
997			 * completely non-deterministic operation and, on a
998			 * busy system, can lead to extremely non-optimal
999			 * pageouts.  For example, it can cause clean pages
1000			 * to be freed and dirty pages to be moved to the end
1001			 * of the queue.  Since dirty pages are also moved to
1002			 * the end of the queue once-cleaned, this gives
1003			 * way too large a weighting to defering the freeing
1004			 * of dirty pages.
1005			 *
1006			 * We can't wait forever for the vnode lock, we might
1007			 * deadlock due to a vn_read() getting stuck in
1008			 * vm_wait while holding this vnode.  We skip the
1009			 * vnode if we can't get it in a reasonable amount
1010			 * of time.
1011			 */
1012			if (object->type == OBJT_VNODE) {
1013				vm_page_unlock_queues();
1014				vm_page_unlock(m);
1015				vp = object->handle;
1016				if (vp->v_type == VREG &&
1017				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1018					mp = NULL;
1019					++pageout_lock_miss;
1020					if (object->flags & OBJ_MIGHTBEDIRTY)
1021						vnodes_skipped++;
1022					vm_page_lock_queues();
1023					goto unlock_and_continue;
1024				}
1025				KASSERT(mp != NULL,
1026				    ("vp %p with NULL v_mount", vp));
1027				vm_object_reference_locked(object);
1028				VM_OBJECT_UNLOCK(object);
1029				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1030				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1031				    curthread)) {
1032					VM_OBJECT_LOCK(object);
1033					vm_page_lock_queues();
1034					++pageout_lock_miss;
1035					if (object->flags & OBJ_MIGHTBEDIRTY)
1036						vnodes_skipped++;
1037					vp = NULL;
1038					goto unlock_and_continue;
1039				}
1040				VM_OBJECT_LOCK(object);
1041				vm_page_lock(m);
1042				vm_page_lock_queues();
1043				/*
1044				 * The page might have been moved to another
1045				 * queue during potential blocking in vget()
1046				 * above.  The page might have been freed and
1047				 * reused for another vnode.
1048				 */
1049				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
1050				    m->object != object ||
1051				    TAILQ_NEXT(m, pageq) != &marker) {
1052					vm_page_unlock(m);
1053					if (object->flags & OBJ_MIGHTBEDIRTY)
1054						vnodes_skipped++;
1055					goto unlock_and_continue;
1056				}
1057
1058				/*
1059				 * The page may have been busied during the
1060				 * blocking in vget().  We don't move the
1061				 * page back onto the end of the queue so that
1062				 * statistics are more correct if we don't.
1063				 */
1064				if (m->busy || (m->oflags & VPO_BUSY)) {
1065					vm_page_unlock(m);
1066					goto unlock_and_continue;
1067				}
1068
1069				/*
1070				 * If the page has become held it might
1071				 * be undergoing I/O, so skip it
1072				 */
1073				if (m->hold_count) {
1074					vm_page_unlock(m);
1075					vm_page_requeue(m);
1076					if (object->flags & OBJ_MIGHTBEDIRTY)
1077						vnodes_skipped++;
1078					goto unlock_and_continue;
1079				}
1080			}
1081			vm_page_unlock(m);
1082
1083			/*
1084			 * If a page is dirty, then it is either being washed
1085			 * (but not yet cleaned) or it is still in the
1086			 * laundry.  If it is still in the laundry, then we
1087			 * start the cleaning operation.
1088			 *
1089			 * decrement page_shortage on success to account for
1090			 * the (future) cleaned page.  Otherwise we could wind
1091			 * up laundering or cleaning too many pages.
1092			 */
1093			vm_page_unlock_queues();
1094			if (vm_pageout_clean(m) != 0) {
1095				--page_shortage;
1096				--maxlaunder;
1097			}
1098			vm_page_lock_queues();
1099unlock_and_continue:
1100			vm_page_lock_assert(m, MA_NOTOWNED);
1101			VM_OBJECT_UNLOCK(object);
1102			if (mp != NULL) {
1103				vm_page_unlock_queues();
1104				if (vp != NULL)
1105					vput(vp);
1106				VFS_UNLOCK_GIANT(vfslocked);
1107				vm_object_deallocate(object);
1108				vn_finished_write(mp);
1109				vm_page_lock_queues();
1110			}
1111			next = TAILQ_NEXT(&marker, pageq);
1112			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1113				     &marker, pageq);
1114			vm_page_lock_assert(m, MA_NOTOWNED);
1115			continue;
1116		}
1117		vm_page_unlock(m);
1118		VM_OBJECT_UNLOCK(object);
1119	}
1120
1121	/*
1122	 * Compute the number of pages we want to try to move from the
1123	 * active queue to the inactive queue.
1124	 */
1125	page_shortage = vm_paging_target() +
1126		cnt.v_inactive_target - cnt.v_inactive_count;
1127	page_shortage += addl_page_shortage;
1128
1129	/*
1130	 * Scan the active queue for things we can deactivate. We nominally
1131	 * track the per-page activity counter and use it to locate
1132	 * deactivation candidates.
1133	 */
1134	pcount = cnt.v_active_count;
1135	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1136	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1137
1138	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1139
1140		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1141		    ("vm_pageout_scan: page %p isn't active", m));
1142
1143		next = TAILQ_NEXT(m, pageq);
1144		object = m->object;
1145		if ((m->flags & PG_MARKER) != 0) {
1146			m = next;
1147			continue;
1148		}
1149		if (!vm_pageout_page_lock(m, &next) ||
1150		    (object = m->object) == NULL) {
1151			vm_page_unlock(m);
1152			m = next;
1153			continue;
1154		}
1155		if (!VM_OBJECT_TRYLOCK(object) &&
1156		    !vm_pageout_fallback_object_lock(m, &next)) {
1157			VM_OBJECT_UNLOCK(object);
1158			vm_page_unlock(m);
1159			m = next;
1160			continue;
1161		}
1162
1163		/*
1164		 * Don't deactivate pages that are busy.
1165		 */
1166		if ((m->busy != 0) ||
1167		    (m->oflags & VPO_BUSY) ||
1168		    (m->hold_count != 0)) {
1169			vm_page_unlock(m);
1170			VM_OBJECT_UNLOCK(object);
1171			vm_page_requeue(m);
1172			m = next;
1173			continue;
1174		}
1175
1176		/*
1177		 * The count for pagedaemon pages is done after checking the
1178		 * page for eligibility...
1179		 */
1180		cnt.v_pdpages++;
1181
1182		/*
1183		 * Check to see "how much" the page has been used.
1184		 */
1185		actcount = 0;
1186		if (object->ref_count != 0) {
1187			if (m->flags & PG_REFERENCED) {
1188				actcount += 1;
1189			}
1190			actcount += pmap_ts_referenced(m);
1191			if (actcount) {
1192				m->act_count += ACT_ADVANCE + actcount;
1193				if (m->act_count > ACT_MAX)
1194					m->act_count = ACT_MAX;
1195			}
1196		}
1197
1198		/*
1199		 * Since we have "tested" this bit, we need to clear it now.
1200		 */
1201		vm_page_flag_clear(m, PG_REFERENCED);
1202
1203		/*
1204		 * Only if an object is currently being used, do we use the
1205		 * page activation count stats.
1206		 */
1207		if (actcount && (object->ref_count != 0)) {
1208			vm_page_requeue(m);
1209		} else {
1210			m->act_count -= min(m->act_count, ACT_DECLINE);
1211			if (vm_pageout_algorithm ||
1212			    object->ref_count == 0 ||
1213			    m->act_count == 0) {
1214				page_shortage--;
1215				if (object->ref_count == 0) {
1216					KASSERT(!pmap_page_is_mapped(m),
1217				    ("vm_pageout_scan: page %p is mapped", m));
1218					if (m->dirty == 0)
1219						vm_page_cache(m);
1220					else
1221						vm_page_deactivate(m);
1222				} else {
1223					vm_page_deactivate(m);
1224				}
1225			} else {
1226				vm_page_requeue(m);
1227			}
1228		}
1229		vm_page_unlock(m);
1230		VM_OBJECT_UNLOCK(object);
1231		m = next;
1232	}
1233	vm_page_unlock_queues();
1234#if !defined(NO_SWAPPING)
1235	/*
1236	 * Idle process swapout -- run once per second.
1237	 */
1238	if (vm_swap_idle_enabled) {
1239		static long lsec;
1240		if (time_second != lsec) {
1241			vm_req_vmdaemon(VM_SWAP_IDLE);
1242			lsec = time_second;
1243		}
1244	}
1245#endif
1246
1247	/*
1248	 * If we didn't get enough free pages, and we have skipped a vnode
1249	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1250	 * if we did not get enough free pages.
1251	 */
1252	if (vm_paging_target() > 0) {
1253		if (vnodes_skipped && vm_page_count_min())
1254			(void) speedup_syncer();
1255#if !defined(NO_SWAPPING)
1256		if (vm_swap_enabled && vm_page_count_target())
1257			vm_req_vmdaemon(VM_SWAP_NORMAL);
1258#endif
1259	}
1260
1261	/*
1262	 * If we are critically low on one of RAM or swap and low on
1263	 * the other, kill the largest process.  However, we avoid
1264	 * doing this on the first pass in order to give ourselves a
1265	 * chance to flush out dirty vnode-backed pages and to allow
1266	 * active pages to be moved to the inactive queue and reclaimed.
1267	 */
1268	if (pass != 0 &&
1269	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1270	     (swap_pager_full && vm_paging_target() > 0)))
1271		vm_pageout_oom(VM_OOM_MEM);
1272}
1273
1274
1275void
1276vm_pageout_oom(int shortage)
1277{
1278	struct proc *p, *bigproc;
1279	vm_offset_t size, bigsize;
1280	struct thread *td;
1281	struct vmspace *vm;
1282
1283	/*
1284	 * We keep the process bigproc locked once we find it to keep anyone
1285	 * from messing with it; however, there is a possibility of
1286	 * deadlock if process B is bigproc and one of it's child processes
1287	 * attempts to propagate a signal to B while we are waiting for A's
1288	 * lock while walking this list.  To avoid this, we don't block on
1289	 * the process lock but just skip a process if it is already locked.
1290	 */
1291	bigproc = NULL;
1292	bigsize = 0;
1293	sx_slock(&allproc_lock);
1294	FOREACH_PROC_IN_SYSTEM(p) {
1295		int breakout;
1296
1297		if (PROC_TRYLOCK(p) == 0)
1298			continue;
1299		/*
1300		 * If this is a system, protected or killed process, skip it.
1301		 */
1302		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1303		    (p->p_pid == 1) || P_KILLED(p) ||
1304		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1305			PROC_UNLOCK(p);
1306			continue;
1307		}
1308		/*
1309		 * If the process is in a non-running type state,
1310		 * don't touch it.  Check all the threads individually.
1311		 */
1312		breakout = 0;
1313		FOREACH_THREAD_IN_PROC(p, td) {
1314			thread_lock(td);
1315			if (!TD_ON_RUNQ(td) &&
1316			    !TD_IS_RUNNING(td) &&
1317			    !TD_IS_SLEEPING(td)) {
1318				thread_unlock(td);
1319				breakout = 1;
1320				break;
1321			}
1322			thread_unlock(td);
1323		}
1324		if (breakout) {
1325			PROC_UNLOCK(p);
1326			continue;
1327		}
1328		/*
1329		 * get the process size
1330		 */
1331		vm = vmspace_acquire_ref(p);
1332		if (vm == NULL) {
1333			PROC_UNLOCK(p);
1334			continue;
1335		}
1336		if (!vm_map_trylock_read(&vm->vm_map)) {
1337			vmspace_free(vm);
1338			PROC_UNLOCK(p);
1339			continue;
1340		}
1341		size = vmspace_swap_count(vm);
1342		vm_map_unlock_read(&vm->vm_map);
1343		if (shortage == VM_OOM_MEM)
1344			size += vmspace_resident_count(vm);
1345		vmspace_free(vm);
1346		/*
1347		 * if the this process is bigger than the biggest one
1348		 * remember it.
1349		 */
1350		if (size > bigsize) {
1351			if (bigproc != NULL)
1352				PROC_UNLOCK(bigproc);
1353			bigproc = p;
1354			bigsize = size;
1355		} else
1356			PROC_UNLOCK(p);
1357	}
1358	sx_sunlock(&allproc_lock);
1359	if (bigproc != NULL) {
1360		killproc(bigproc, "out of swap space");
1361		sched_nice(bigproc, PRIO_MIN);
1362		PROC_UNLOCK(bigproc);
1363		wakeup(&cnt.v_free_count);
1364	}
1365}
1366
1367/*
1368 * This routine tries to maintain the pseudo LRU active queue,
1369 * so that during long periods of time where there is no paging,
1370 * that some statistic accumulation still occurs.  This code
1371 * helps the situation where paging just starts to occur.
1372 */
1373static void
1374vm_pageout_page_stats()
1375{
1376	vm_object_t object;
1377	vm_page_t m,next;
1378	int pcount,tpcount;		/* Number of pages to check */
1379	static int fullintervalcount = 0;
1380	int page_shortage;
1381
1382	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1383	page_shortage =
1384	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1385	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1386
1387	if (page_shortage <= 0)
1388		return;
1389
1390	pcount = cnt.v_active_count;
1391	fullintervalcount += vm_pageout_stats_interval;
1392	if (fullintervalcount < vm_pageout_full_stats_interval) {
1393		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1394		    cnt.v_page_count;
1395		if (pcount > tpcount)
1396			pcount = tpcount;
1397	} else {
1398		fullintervalcount = 0;
1399	}
1400
1401	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1402	while ((m != NULL) && (pcount-- > 0)) {
1403		int actcount;
1404
1405		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1406		    ("vm_pageout_page_stats: page %p isn't active", m));
1407
1408		next = TAILQ_NEXT(m, pageq);
1409		if ((m->flags & PG_MARKER) != 0) {
1410			m = next;
1411			continue;
1412		}
1413		vm_page_lock_assert(m, MA_NOTOWNED);
1414		if (!vm_pageout_page_lock(m, &next) ||
1415		    (object = m->object) == NULL) {
1416			vm_page_unlock(m);
1417			m = next;
1418			continue;
1419		}
1420		if (!VM_OBJECT_TRYLOCK(object) &&
1421		    !vm_pageout_fallback_object_lock(m, &next)) {
1422			VM_OBJECT_UNLOCK(object);
1423			vm_page_unlock(m);
1424			m = next;
1425			continue;
1426		}
1427
1428		/*
1429		 * Don't deactivate pages that are busy.
1430		 */
1431		if ((m->busy != 0) ||
1432		    (m->oflags & VPO_BUSY) ||
1433		    (m->hold_count != 0)) {
1434			vm_page_unlock(m);
1435			VM_OBJECT_UNLOCK(object);
1436			vm_page_requeue(m);
1437			m = next;
1438			continue;
1439		}
1440
1441		actcount = 0;
1442		if (m->flags & PG_REFERENCED) {
1443			vm_page_flag_clear(m, PG_REFERENCED);
1444			actcount += 1;
1445		}
1446
1447		actcount += pmap_ts_referenced(m);
1448		if (actcount) {
1449			m->act_count += ACT_ADVANCE + actcount;
1450			if (m->act_count > ACT_MAX)
1451				m->act_count = ACT_MAX;
1452			vm_page_requeue(m);
1453		} else {
1454			if (m->act_count == 0) {
1455				/*
1456				 * We turn off page access, so that we have
1457				 * more accurate RSS stats.  We don't do this
1458				 * in the normal page deactivation when the
1459				 * system is loaded VM wise, because the
1460				 * cost of the large number of page protect
1461				 * operations would be higher than the value
1462				 * of doing the operation.
1463				 */
1464				pmap_remove_all(m);
1465				vm_page_deactivate(m);
1466			} else {
1467				m->act_count -= min(m->act_count, ACT_DECLINE);
1468				vm_page_requeue(m);
1469			}
1470		}
1471		vm_page_unlock(m);
1472		VM_OBJECT_UNLOCK(object);
1473		m = next;
1474	}
1475}
1476
1477/*
1478 *	vm_pageout is the high level pageout daemon.
1479 */
1480static void
1481vm_pageout()
1482{
1483	int error, pass;
1484
1485	/*
1486	 * Initialize some paging parameters.
1487	 */
1488	cnt.v_interrupt_free_min = 2;
1489	if (cnt.v_page_count < 2000)
1490		vm_pageout_page_count = 8;
1491
1492	/*
1493	 * v_free_reserved needs to include enough for the largest
1494	 * swap pager structures plus enough for any pv_entry structs
1495	 * when paging.
1496	 */
1497	if (cnt.v_page_count > 1024)
1498		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1499	else
1500		cnt.v_free_min = 4;
1501	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1502	    cnt.v_interrupt_free_min;
1503	cnt.v_free_reserved = vm_pageout_page_count +
1504	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1505	cnt.v_free_severe = cnt.v_free_min / 2;
1506	cnt.v_free_min += cnt.v_free_reserved;
1507	cnt.v_free_severe += cnt.v_free_reserved;
1508
1509	/*
1510	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1511	 * that these are more a measure of the VM cache queue hysteresis
1512	 * then the VM free queue.  Specifically, v_free_target is the
1513	 * high water mark (free+cache pages).
1514	 *
1515	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1516	 * low water mark, while v_free_min is the stop.  v_cache_min must
1517	 * be big enough to handle memory needs while the pageout daemon
1518	 * is signalled and run to free more pages.
1519	 */
1520	if (cnt.v_free_count > 6144)
1521		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1522	else
1523		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1524
1525	if (cnt.v_free_count > 2048) {
1526		cnt.v_cache_min = cnt.v_free_target;
1527		cnt.v_cache_max = 2 * cnt.v_cache_min;
1528		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1529	} else {
1530		cnt.v_cache_min = 0;
1531		cnt.v_cache_max = 0;
1532		cnt.v_inactive_target = cnt.v_free_count / 4;
1533	}
1534	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1535		cnt.v_inactive_target = cnt.v_free_count / 3;
1536
1537	/* XXX does not really belong here */
1538	if (vm_page_max_wired == 0)
1539		vm_page_max_wired = cnt.v_free_count / 3;
1540
1541	if (vm_pageout_stats_max == 0)
1542		vm_pageout_stats_max = cnt.v_free_target;
1543
1544	/*
1545	 * Set interval in seconds for stats scan.
1546	 */
1547	if (vm_pageout_stats_interval == 0)
1548		vm_pageout_stats_interval = 5;
1549	if (vm_pageout_full_stats_interval == 0)
1550		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1551
1552	swap_pager_swap_init();
1553	pass = 0;
1554	/*
1555	 * The pageout daemon is never done, so loop forever.
1556	 */
1557	while (TRUE) {
1558		/*
1559		 * If we have enough free memory, wakeup waiters.  Do
1560		 * not clear vm_pages_needed until we reach our target,
1561		 * otherwise we may be woken up over and over again and
1562		 * waste a lot of cpu.
1563		 */
1564		mtx_lock(&vm_page_queue_free_mtx);
1565		if (vm_pages_needed && !vm_page_count_min()) {
1566			if (!vm_paging_needed())
1567				vm_pages_needed = 0;
1568			wakeup(&cnt.v_free_count);
1569		}
1570		if (vm_pages_needed) {
1571			/*
1572			 * Still not done, take a second pass without waiting
1573			 * (unlimited dirty cleaning), otherwise sleep a bit
1574			 * and try again.
1575			 */
1576			++pass;
1577			if (pass > 1)
1578				msleep(&vm_pages_needed,
1579				    &vm_page_queue_free_mtx, PVM, "psleep",
1580				    hz / 2);
1581		} else {
1582			/*
1583			 * Good enough, sleep & handle stats.  Prime the pass
1584			 * for the next run.
1585			 */
1586			if (pass > 1)
1587				pass = 1;
1588			else
1589				pass = 0;
1590			error = msleep(&vm_pages_needed,
1591			    &vm_page_queue_free_mtx, PVM, "psleep",
1592			    vm_pageout_stats_interval * hz);
1593			if (error && !vm_pages_needed) {
1594				mtx_unlock(&vm_page_queue_free_mtx);
1595				pass = 0;
1596				vm_page_lock_queues();
1597				vm_pageout_page_stats();
1598				vm_page_unlock_queues();
1599				continue;
1600			}
1601		}
1602		if (vm_pages_needed)
1603			cnt.v_pdwakeups++;
1604		mtx_unlock(&vm_page_queue_free_mtx);
1605		vm_pageout_scan(pass);
1606	}
1607}
1608
1609/*
1610 * Unless the free page queue lock is held by the caller, this function
1611 * should be regarded as advisory.  Specifically, the caller should
1612 * not msleep() on &cnt.v_free_count following this function unless
1613 * the free page queue lock is held until the msleep() is performed.
1614 */
1615void
1616pagedaemon_wakeup()
1617{
1618
1619	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1620		vm_pages_needed = 1;
1621		wakeup(&vm_pages_needed);
1622	}
1623}
1624
1625#if !defined(NO_SWAPPING)
1626static void
1627vm_req_vmdaemon(int req)
1628{
1629	static int lastrun = 0;
1630
1631	mtx_lock(&vm_daemon_mtx);
1632	vm_pageout_req_swapout |= req;
1633	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1634		wakeup(&vm_daemon_needed);
1635		lastrun = ticks;
1636	}
1637	mtx_unlock(&vm_daemon_mtx);
1638}
1639
1640static void
1641vm_daemon()
1642{
1643	struct rlimit rsslim;
1644	struct proc *p;
1645	struct thread *td;
1646	struct vmspace *vm;
1647	int breakout, swapout_flags;
1648
1649	while (TRUE) {
1650		mtx_lock(&vm_daemon_mtx);
1651		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1652		swapout_flags = vm_pageout_req_swapout;
1653		vm_pageout_req_swapout = 0;
1654		mtx_unlock(&vm_daemon_mtx);
1655		if (swapout_flags)
1656			swapout_procs(swapout_flags);
1657
1658		/*
1659		 * scan the processes for exceeding their rlimits or if
1660		 * process is swapped out -- deactivate pages
1661		 */
1662		sx_slock(&allproc_lock);
1663		FOREACH_PROC_IN_SYSTEM(p) {
1664			vm_pindex_t limit, size;
1665
1666			/*
1667			 * if this is a system process or if we have already
1668			 * looked at this process, skip it.
1669			 */
1670			PROC_LOCK(p);
1671			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1672				PROC_UNLOCK(p);
1673				continue;
1674			}
1675			/*
1676			 * if the process is in a non-running type state,
1677			 * don't touch it.
1678			 */
1679			breakout = 0;
1680			FOREACH_THREAD_IN_PROC(p, td) {
1681				thread_lock(td);
1682				if (!TD_ON_RUNQ(td) &&
1683				    !TD_IS_RUNNING(td) &&
1684				    !TD_IS_SLEEPING(td)) {
1685					thread_unlock(td);
1686					breakout = 1;
1687					break;
1688				}
1689				thread_unlock(td);
1690			}
1691			if (breakout) {
1692				PROC_UNLOCK(p);
1693				continue;
1694			}
1695			/*
1696			 * get a limit
1697			 */
1698			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1699			limit = OFF_TO_IDX(
1700			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1701
1702			/*
1703			 * let processes that are swapped out really be
1704			 * swapped out set the limit to nothing (will force a
1705			 * swap-out.)
1706			 */
1707			if ((p->p_flag & P_INMEM) == 0)
1708				limit = 0;	/* XXX */
1709			vm = vmspace_acquire_ref(p);
1710			PROC_UNLOCK(p);
1711			if (vm == NULL)
1712				continue;
1713
1714			size = vmspace_resident_count(vm);
1715			if (limit >= 0 && size >= limit) {
1716				vm_pageout_map_deactivate_pages(
1717				    &vm->vm_map, limit);
1718			}
1719			vmspace_free(vm);
1720		}
1721		sx_sunlock(&allproc_lock);
1722	}
1723}
1724#endif			/* !defined(NO_SWAPPING) */
1725