vm_pageout.c revision 207452
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 207452 2010-04-30 22:31:37Z kmacy $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218/*
219 * vm_pageout_fallback_object_lock:
220 *
221 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222 * known to have failed and page queue must be either PQ_ACTIVE or
223 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224 * while locking the vm object.  Use marker page to detect page queue
225 * changes and maintain notion of next page on page queue.  Return
226 * TRUE if no changes were detected, FALSE otherwise.  vm object is
227 * locked on return.
228 *
229 * This function depends on both the lock portion of struct vm_object
230 * and normal struct vm_page being type stable.
231 */
232boolean_t
233vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234{
235	struct vm_page marker;
236	boolean_t unchanged;
237	u_short queue;
238	vm_object_t object;
239
240	/*
241	 * Initialize our marker
242	 */
243	bzero(&marker, sizeof(marker));
244	marker.flags = PG_FICTITIOUS | PG_MARKER;
245	marker.oflags = VPO_BUSY;
246	marker.queue = m->queue;
247	marker.wire_count = 1;
248
249	queue = m->queue;
250	object = m->object;
251
252	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253			   m, &marker, pageq);
254	vm_page_unlock_queues();
255	vm_page_unlock(m);
256	VM_OBJECT_LOCK(object);
257	vm_page_lock(m);
258	vm_page_lock_queues();
259
260	/* Page queue might have changed. */
261	*next = TAILQ_NEXT(&marker, pageq);
262	unchanged = (m->queue == queue &&
263		     m->object == object &&
264		     &marker == TAILQ_NEXT(m, pageq));
265	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266		     &marker, pageq);
267	return (unchanged);
268}
269
270/*
271 * vm_pageout_clean:
272 *
273 * Clean the page and remove it from the laundry.
274 *
275 * We set the busy bit to cause potential page faults on this page to
276 * block.  Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
278 */
279static int
280vm_pageout_clean(vm_page_t m)
281{
282	vm_object_t object;
283	vm_page_t mc[2*vm_pageout_page_count];
284	int pageout_count;
285	int ib, is, page_base;
286	vm_pindex_t pindex = m->pindex;
287
288	vm_page_lock_assert(m, MA_NOTOWNED);
289	vm_page_lock(m);
290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292	/*
293	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294	 * with the new swapper, but we could have serious problems paging
295	 * out other object types if there is insufficient memory.
296	 *
297	 * Unfortunately, checking free memory here is far too late, so the
298	 * check has been moved up a procedural level.
299	 */
300
301	/*
302	 * Can't clean the page if it's busy or held.
303	 */
304	if ((m->hold_count != 0) ||
305	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306		vm_page_unlock(m);
307		return 0;
308	}
309
310	mc[vm_pageout_page_count] = m;
311	pageout_count = 1;
312	page_base = vm_pageout_page_count;
313	ib = 1;
314	is = 1;
315
316	/*
317	 * Scan object for clusterable pages.
318	 *
319	 * We can cluster ONLY if: ->> the page is NOT
320	 * clean, wired, busy, held, or mapped into a
321	 * buffer, and one of the following:
322	 * 1) The page is inactive, or a seldom used
323	 *    active page.
324	 * -or-
325	 * 2) we force the issue.
326	 *
327	 * During heavy mmap/modification loads the pageout
328	 * daemon can really fragment the underlying file
329	 * due to flushing pages out of order and not trying
330	 * align the clusters (which leave sporatic out-of-order
331	 * holes).  To solve this problem we do the reverse scan
332	 * first and attempt to align our cluster, then do a
333	 * forward scan if room remains.
334	 */
335	object = m->object;
336more:
337	while (ib && pageout_count < vm_pageout_page_count) {
338		vm_page_t p;
339
340		if (ib > pindex) {
341			ib = 0;
342			break;
343		}
344
345		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
346			ib = 0;
347			break;
348		}
349		if ((p->oflags & VPO_BUSY) || p->busy) {
350			ib = 0;
351			break;
352		}
353		vm_page_lock(p);
354		vm_page_lock_queues();
355		vm_page_test_dirty(p);
356		if (p->dirty == 0 ||
357		    p->queue != PQ_INACTIVE ||
358		    p->hold_count != 0) {	/* may be undergoing I/O */
359			vm_page_unlock(p);
360			vm_page_unlock_queues();
361			ib = 0;
362			break;
363		}
364		vm_page_unlock_queues();
365		vm_page_unlock(p);
366		mc[--page_base] = p;
367		++pageout_count;
368		++ib;
369		/*
370		 * alignment boundry, stop here and switch directions.  Do
371		 * not clear ib.
372		 */
373		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
374			break;
375	}
376
377	while (pageout_count < vm_pageout_page_count &&
378	    pindex + is < object->size) {
379		vm_page_t p;
380
381		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
382			break;
383		if ((p->oflags & VPO_BUSY) || p->busy) {
384			break;
385		}
386		vm_page_lock(p);
387		vm_page_lock_queues();
388		vm_page_test_dirty(p);
389		if (p->dirty == 0 ||
390		    p->queue != PQ_INACTIVE ||
391		    p->hold_count != 0) {	/* may be undergoing I/O */
392			vm_page_unlock_queues();
393			vm_page_unlock(p);
394			break;
395		}
396		vm_page_unlock_queues();
397		vm_page_unlock(p);
398		mc[page_base + pageout_count] = p;
399		++pageout_count;
400		++is;
401	}
402
403	/*
404	 * If we exhausted our forward scan, continue with the reverse scan
405	 * when possible, even past a page boundry.  This catches boundry
406	 * conditions.
407	 */
408	if (ib && pageout_count < vm_pageout_page_count)
409		goto more;
410
411	vm_page_unlock(m);
412	/*
413	 * we allow reads during pageouts...
414	 */
415	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
416}
417
418/*
419 * vm_pageout_flush() - launder the given pages
420 *
421 *	The given pages are laundered.  Note that we setup for the start of
422 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
423 *	reference count all in here rather then in the parent.  If we want
424 *	the parent to do more sophisticated things we may have to change
425 *	the ordering.
426 */
427int
428vm_pageout_flush(vm_page_t *mc, int count, int flags)
429{
430	vm_object_t object = mc[0]->object;
431	int pageout_status[count];
432	int numpagedout = 0;
433	int i;
434
435	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
436	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
437
438	/*
439	 * Initiate I/O.  Bump the vm_page_t->busy counter and
440	 * mark the pages read-only.
441	 *
442	 * We do not have to fixup the clean/dirty bits here... we can
443	 * allow the pager to do it after the I/O completes.
444	 *
445	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
446	 * edge case with file fragments.
447	 */
448	for (i = 0; i < count; i++) {
449		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
450		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
451			mc[i], i, count));
452		vm_page_io_start(mc[i]);
453		vm_page_lock(mc[i]);
454		vm_page_lock_queues();
455		pmap_remove_write(mc[i]);
456		vm_page_unlock(mc[i]);
457		vm_page_unlock_queues();
458	}
459	vm_object_pip_add(object, count);
460
461	vm_pager_put_pages(object, mc, count, flags, pageout_status);
462
463	for (i = 0; i < count; i++) {
464		vm_page_t mt = mc[i];
465
466		vm_page_lock(mt);
467		vm_page_lock_queues();
468		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
469		    (mt->flags & PG_WRITEABLE) == 0,
470		    ("vm_pageout_flush: page %p is not write protected", mt));
471		switch (pageout_status[i]) {
472		case VM_PAGER_OK:
473		case VM_PAGER_PEND:
474			numpagedout++;
475			break;
476		case VM_PAGER_BAD:
477			/*
478			 * Page outside of range of object. Right now we
479			 * essentially lose the changes by pretending it
480			 * worked.
481			 */
482			vm_page_undirty(mt);
483			break;
484		case VM_PAGER_ERROR:
485		case VM_PAGER_FAIL:
486			/*
487			 * If page couldn't be paged out, then reactivate the
488			 * page so it doesn't clog the inactive list.  (We
489			 * will try paging out it again later).
490			 */
491			vm_page_activate(mt);
492			break;
493		case VM_PAGER_AGAIN:
494			break;
495		}
496
497		/*
498		 * If the operation is still going, leave the page busy to
499		 * block all other accesses. Also, leave the paging in
500		 * progress indicator set so that we don't attempt an object
501		 * collapse.
502		 */
503		if (pageout_status[i] != VM_PAGER_PEND) {
504			vm_object_pip_wakeup(object);
505			vm_page_io_finish(mt);
506			if (vm_page_count_severe())
507				vm_page_try_to_cache(mt);
508		}
509		vm_page_unlock_queues();
510		vm_page_unlock(mt);
511	}
512	return numpagedout;
513}
514
515#if !defined(NO_SWAPPING)
516/*
517 *	vm_pageout_object_deactivate_pages
518 *
519 *	deactivate enough pages to satisfy the inactive target
520 *	requirements or if vm_page_proc_limit is set, then
521 *	deactivate all of the pages in the object and its
522 *	backing_objects.
523 *
524 *	The object and map must be locked.
525 */
526static void
527vm_pageout_object_deactivate_pages(pmap, first_object, desired)
528	pmap_t pmap;
529	vm_object_t first_object;
530	long desired;
531{
532	vm_object_t backing_object, object;
533	vm_page_t p, next;
534	int actcount, remove_mode;
535
536	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
537	if (first_object->type == OBJT_DEVICE ||
538	    first_object->type == OBJT_SG)
539		return;
540	for (object = first_object;; object = backing_object) {
541		if (pmap_resident_count(pmap) <= desired)
542			goto unlock_return;
543		if (object->type == OBJT_PHYS || object->paging_in_progress)
544			goto unlock_return;
545
546		remove_mode = 0;
547		if (object->shadow_count > 1)
548			remove_mode = 1;
549		/*
550		 * scan the objects entire memory queue
551		 */
552		p = TAILQ_FIRST(&object->memq);
553		while (p != NULL) {
554			vm_page_lock(p);
555			vm_page_lock_queues();
556			if (pmap_resident_count(pmap) <= desired) {
557				vm_page_unlock_queues();
558				vm_page_unlock(p);
559				goto unlock_return;
560			}
561			next = TAILQ_NEXT(p, listq);
562			cnt.v_pdpages++;
563			if (p->wire_count != 0 ||
564			    p->hold_count != 0 ||
565			    p->busy != 0 ||
566			    (p->oflags & VPO_BUSY) ||
567			    !pmap_page_exists_quick(pmap, p)) {
568				vm_page_unlock_queues();
569				vm_page_unlock(p);
570				p = next;
571				continue;
572			}
573			actcount = pmap_ts_referenced(p);
574			if (actcount) {
575				vm_page_flag_set(p, PG_REFERENCED);
576			} else if (p->flags & PG_REFERENCED) {
577				actcount = 1;
578			}
579			if ((p->queue != PQ_ACTIVE) &&
580				(p->flags & PG_REFERENCED)) {
581				vm_page_activate(p);
582				p->act_count += actcount;
583				vm_page_flag_clear(p, PG_REFERENCED);
584			} else if (p->queue == PQ_ACTIVE) {
585				if ((p->flags & PG_REFERENCED) == 0) {
586					p->act_count -= min(p->act_count, ACT_DECLINE);
587					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
588						pmap_remove_all(p);
589						vm_page_deactivate(p);
590					} else {
591						vm_page_requeue(p);
592					}
593				} else {
594					vm_page_activate(p);
595					vm_page_flag_clear(p, PG_REFERENCED);
596					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
597						p->act_count += ACT_ADVANCE;
598					vm_page_requeue(p);
599				}
600			} else if (p->queue == PQ_INACTIVE) {
601				pmap_remove_all(p);
602			}
603			vm_page_unlock_queues();
604			vm_page_unlock(p);
605			p = next;
606		}
607		if ((backing_object = object->backing_object) == NULL)
608			goto unlock_return;
609		VM_OBJECT_LOCK(backing_object);
610		if (object != first_object)
611			VM_OBJECT_UNLOCK(object);
612	}
613unlock_return:
614	if (object != first_object)
615		VM_OBJECT_UNLOCK(object);
616}
617
618/*
619 * deactivate some number of pages in a map, try to do it fairly, but
620 * that is really hard to do.
621 */
622static void
623vm_pageout_map_deactivate_pages(map, desired)
624	vm_map_t map;
625	long desired;
626{
627	vm_map_entry_t tmpe;
628	vm_object_t obj, bigobj;
629	int nothingwired;
630
631	if (!vm_map_trylock(map))
632		return;
633
634	bigobj = NULL;
635	nothingwired = TRUE;
636
637	/*
638	 * first, search out the biggest object, and try to free pages from
639	 * that.
640	 */
641	tmpe = map->header.next;
642	while (tmpe != &map->header) {
643		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
644			obj = tmpe->object.vm_object;
645			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
646				if (obj->shadow_count <= 1 &&
647				    (bigobj == NULL ||
648				     bigobj->resident_page_count < obj->resident_page_count)) {
649					if (bigobj != NULL)
650						VM_OBJECT_UNLOCK(bigobj);
651					bigobj = obj;
652				} else
653					VM_OBJECT_UNLOCK(obj);
654			}
655		}
656		if (tmpe->wired_count > 0)
657			nothingwired = FALSE;
658		tmpe = tmpe->next;
659	}
660
661	if (bigobj != NULL) {
662		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
663		VM_OBJECT_UNLOCK(bigobj);
664	}
665	/*
666	 * Next, hunt around for other pages to deactivate.  We actually
667	 * do this search sort of wrong -- .text first is not the best idea.
668	 */
669	tmpe = map->header.next;
670	while (tmpe != &map->header) {
671		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
672			break;
673		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
674			obj = tmpe->object.vm_object;
675			if (obj != NULL) {
676				VM_OBJECT_LOCK(obj);
677				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
678				VM_OBJECT_UNLOCK(obj);
679			}
680		}
681		tmpe = tmpe->next;
682	}
683
684	/*
685	 * Remove all mappings if a process is swapped out, this will free page
686	 * table pages.
687	 */
688	if (desired == 0 && nothingwired) {
689		pmap_remove(vm_map_pmap(map), vm_map_min(map),
690		    vm_map_max(map));
691	}
692	vm_map_unlock(map);
693}
694#endif		/* !defined(NO_SWAPPING) */
695
696/*
697 *	vm_pageout_scan does the dirty work for the pageout daemon.
698 */
699static void
700vm_pageout_scan(int pass)
701{
702	vm_page_t m, next;
703	struct vm_page marker;
704	int page_shortage, maxscan, pcount;
705	int addl_page_shortage, addl_page_shortage_init;
706	vm_object_t object;
707	int actcount;
708	int vnodes_skipped = 0;
709	int maxlaunder;
710
711	/*
712	 * Decrease registered cache sizes.
713	 */
714	EVENTHANDLER_INVOKE(vm_lowmem, 0);
715	/*
716	 * We do this explicitly after the caches have been drained above.
717	 */
718	uma_reclaim();
719
720	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
721
722	/*
723	 * Calculate the number of pages we want to either free or move
724	 * to the cache.
725	 */
726	page_shortage = vm_paging_target() + addl_page_shortage_init;
727
728	/*
729	 * Initialize our marker
730	 */
731	bzero(&marker, sizeof(marker));
732	marker.flags = PG_FICTITIOUS | PG_MARKER;
733	marker.oflags = VPO_BUSY;
734	marker.queue = PQ_INACTIVE;
735	marker.wire_count = 1;
736
737	/*
738	 * Start scanning the inactive queue for pages we can move to the
739	 * cache or free.  The scan will stop when the target is reached or
740	 * we have scanned the entire inactive queue.  Note that m->act_count
741	 * is not used to form decisions for the inactive queue, only for the
742	 * active queue.
743	 *
744	 * maxlaunder limits the number of dirty pages we flush per scan.
745	 * For most systems a smaller value (16 or 32) is more robust under
746	 * extreme memory and disk pressure because any unnecessary writes
747	 * to disk can result in extreme performance degredation.  However,
748	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
749	 * used) will die horribly with limited laundering.  If the pageout
750	 * daemon cannot clean enough pages in the first pass, we let it go
751	 * all out in succeeding passes.
752	 */
753	if ((maxlaunder = vm_max_launder) <= 1)
754		maxlaunder = 1;
755	if (pass)
756		maxlaunder = 10000;
757	vm_page_lock_queues();
758rescan0:
759	addl_page_shortage = addl_page_shortage_init;
760	maxscan = cnt.v_inactive_count;
761
762	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
763	     m != NULL && maxscan-- > 0 && page_shortage > 0;
764	     m = next) {
765
766		cnt.v_pdpages++;
767
768		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
769			goto rescan0;
770		}
771
772		next = TAILQ_NEXT(m, pageq);
773
774		/*
775		 * skip marker pages
776		 */
777		if (m->flags & PG_MARKER)
778			continue;
779
780		if (!vm_page_trylock(m)) {
781			addl_page_shortage++;
782			continue;
783		}
784
785		/*
786		 * A held page may be undergoing I/O, so skip it.
787		 */
788		if (m->hold_count || (object = m->object) == NULL) {
789			vm_page_unlock(m);
790			vm_page_requeue(m);
791			addl_page_shortage++;
792			continue;
793		}
794
795		/*
796		 * Don't mess with busy pages, keep in the front of the
797		 * queue, most likely are being paged out.
798		 */
799		if (!VM_OBJECT_TRYLOCK(object) &&
800		    (!vm_pageout_fallback_object_lock(m, &next) ||
801			m->hold_count != 0)) {
802			VM_OBJECT_UNLOCK(object);
803			vm_page_unlock(m);
804			addl_page_shortage++;
805			continue;
806		}
807		if (m->busy || (m->oflags & VPO_BUSY)) {
808			vm_page_unlock(m);
809			VM_OBJECT_UNLOCK(object);
810			addl_page_shortage++;
811			continue;
812		}
813
814		/*
815		 * If the object is not being used, we ignore previous
816		 * references.
817		 */
818		if (object->ref_count == 0) {
819			vm_page_flag_clear(m, PG_REFERENCED);
820			KASSERT(!pmap_page_is_mapped(m),
821			    ("vm_pageout_scan: page %p is mapped", m));
822
823		/*
824		 * Otherwise, if the page has been referenced while in the
825		 * inactive queue, we bump the "activation count" upwards,
826		 * making it less likely that the page will be added back to
827		 * the inactive queue prematurely again.  Here we check the
828		 * page tables (or emulated bits, if any), given the upper
829		 * level VM system not knowing anything about existing
830		 * references.
831		 */
832		} else if (((m->flags & PG_REFERENCED) == 0) &&
833			(actcount = pmap_ts_referenced(m))) {
834			vm_page_activate(m);
835			VM_OBJECT_UNLOCK(object);
836			m->act_count += (actcount + ACT_ADVANCE);
837			vm_page_unlock(m);
838			continue;
839		}
840
841		/*
842		 * If the upper level VM system knows about any page
843		 * references, we activate the page.  We also set the
844		 * "activation count" higher than normal so that we will less
845		 * likely place pages back onto the inactive queue again.
846		 */
847		if ((m->flags & PG_REFERENCED) != 0) {
848			vm_page_flag_clear(m, PG_REFERENCED);
849			actcount = pmap_ts_referenced(m);
850			vm_page_activate(m);
851			VM_OBJECT_UNLOCK(object);
852			m->act_count += (actcount + ACT_ADVANCE + 1);
853			vm_page_unlock(m);
854			continue;
855		}
856
857		/*
858		 * If the upper level VM system does not believe that the page
859		 * is fully dirty, but it is mapped for write access, then we
860		 * consult the pmap to see if the page's dirty status should
861		 * be updated.
862		 */
863		if (m->dirty != VM_PAGE_BITS_ALL &&
864		    (m->flags & PG_WRITEABLE) != 0) {
865			/*
866			 * Avoid a race condition: Unless write access is
867			 * removed from the page, another processor could
868			 * modify it before all access is removed by the call
869			 * to vm_page_cache() below.  If vm_page_cache() finds
870			 * that the page has been modified when it removes all
871			 * access, it panics because it cannot cache dirty
872			 * pages.  In principle, we could eliminate just write
873			 * access here rather than all access.  In the expected
874			 * case, when there are no last instant modifications
875			 * to the page, removing all access will be cheaper
876			 * overall.
877			 */
878			if (pmap_is_modified(m))
879				vm_page_dirty(m);
880			else if (m->dirty == 0)
881				pmap_remove_all(m);
882		}
883
884		if (m->valid == 0) {
885			/*
886			 * Invalid pages can be easily freed
887			 */
888			vm_page_free(m);
889			cnt.v_dfree++;
890			--page_shortage;
891		} else if (m->dirty == 0) {
892			/*
893			 * Clean pages can be placed onto the cache queue.
894			 * This effectively frees them.
895			 */
896			vm_page_cache(m);
897			--page_shortage;
898		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
899			/*
900			 * Dirty pages need to be paged out, but flushing
901			 * a page is extremely expensive verses freeing
902			 * a clean page.  Rather then artificially limiting
903			 * the number of pages we can flush, we instead give
904			 * dirty pages extra priority on the inactive queue
905			 * by forcing them to be cycled through the queue
906			 * twice before being flushed, after which the
907			 * (now clean) page will cycle through once more
908			 * before being freed.  This significantly extends
909			 * the thrash point for a heavily loaded machine.
910			 */
911			vm_page_flag_set(m, PG_WINATCFLS);
912			vm_page_requeue(m);
913		} else if (maxlaunder > 0) {
914			/*
915			 * We always want to try to flush some dirty pages if
916			 * we encounter them, to keep the system stable.
917			 * Normally this number is small, but under extreme
918			 * pressure where there are insufficient clean pages
919			 * on the inactive queue, we may have to go all out.
920			 */
921			int swap_pageouts_ok, vfslocked = 0;
922			struct vnode *vp = NULL;
923			struct mount *mp = NULL;
924
925			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
926				swap_pageouts_ok = 1;
927			} else {
928				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
929				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
930				vm_page_count_min());
931
932			}
933
934			/*
935			 * We don't bother paging objects that are "dead".
936			 * Those objects are in a "rundown" state.
937			 */
938			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
939				vm_page_unlock(m);
940				VM_OBJECT_UNLOCK(object);
941				vm_page_requeue(m);
942				continue;
943			}
944
945			/*
946			 * Following operations may unlock
947			 * vm_page_queue_mtx, invalidating the 'next'
948			 * pointer.  To prevent an inordinate number
949			 * of restarts we use our marker to remember
950			 * our place.
951			 *
952			 */
953			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
954					   m, &marker, pageq);
955			/*
956			 * The object is already known NOT to be dead.   It
957			 * is possible for the vget() to block the whole
958			 * pageout daemon, but the new low-memory handling
959			 * code should prevent it.
960			 *
961			 * The previous code skipped locked vnodes and, worse,
962			 * reordered pages in the queue.  This results in
963			 * completely non-deterministic operation and, on a
964			 * busy system, can lead to extremely non-optimal
965			 * pageouts.  For example, it can cause clean pages
966			 * to be freed and dirty pages to be moved to the end
967			 * of the queue.  Since dirty pages are also moved to
968			 * the end of the queue once-cleaned, this gives
969			 * way too large a weighting to defering the freeing
970			 * of dirty pages.
971			 *
972			 * We can't wait forever for the vnode lock, we might
973			 * deadlock due to a vn_read() getting stuck in
974			 * vm_wait while holding this vnode.  We skip the
975			 * vnode if we can't get it in a reasonable amount
976			 * of time.
977			 */
978			if (object->type == OBJT_VNODE) {
979				vm_page_unlock_queues();
980				vm_page_unlock(m);
981				vp = object->handle;
982				if (vp->v_type == VREG &&
983				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
984					mp = NULL;
985					++pageout_lock_miss;
986					if (object->flags & OBJ_MIGHTBEDIRTY)
987						vnodes_skipped++;
988					vm_page_lock_queues();
989					goto unlock_and_continue;
990				}
991				KASSERT(mp != NULL,
992				    ("vp %p with NULL v_mount", vp));
993				vm_object_reference_locked(object);
994				VM_OBJECT_UNLOCK(object);
995				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
996				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
997				    curthread)) {
998					VM_OBJECT_LOCK(object);
999					vm_page_lock_queues();
1000					++pageout_lock_miss;
1001					if (object->flags & OBJ_MIGHTBEDIRTY)
1002						vnodes_skipped++;
1003					vp = NULL;
1004					goto unlock_and_continue;
1005				}
1006				VM_OBJECT_LOCK(object);
1007				vm_page_lock(m);
1008				vm_page_lock_queues();
1009				/*
1010				 * The page might have been moved to another
1011				 * queue during potential blocking in vget()
1012				 * above.  The page might have been freed and
1013				 * reused for another vnode.
1014				 */
1015				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
1016				    m->object != object ||
1017				    TAILQ_NEXT(m, pageq) != &marker) {
1018					vm_page_unlock(m);
1019					if (object->flags & OBJ_MIGHTBEDIRTY)
1020						vnodes_skipped++;
1021					goto unlock_and_continue;
1022				}
1023
1024				/*
1025				 * The page may have been busied during the
1026				 * blocking in vget().  We don't move the
1027				 * page back onto the end of the queue so that
1028				 * statistics are more correct if we don't.
1029				 */
1030				if (m->busy || (m->oflags & VPO_BUSY)) {
1031					vm_page_unlock(m);
1032					goto unlock_and_continue;
1033				}
1034
1035				/*
1036				 * If the page has become held it might
1037				 * be undergoing I/O, so skip it
1038				 */
1039				if (m->hold_count) {
1040					vm_page_unlock(m);
1041					vm_page_requeue(m);
1042					if (object->flags & OBJ_MIGHTBEDIRTY)
1043						vnodes_skipped++;
1044					goto unlock_and_continue;
1045				}
1046			}
1047			vm_page_unlock(m);
1048
1049			/*
1050			 * If a page is dirty, then it is either being washed
1051			 * (but not yet cleaned) or it is still in the
1052			 * laundry.  If it is still in the laundry, then we
1053			 * start the cleaning operation.
1054			 *
1055			 * decrement page_shortage on success to account for
1056			 * the (future) cleaned page.  Otherwise we could wind
1057			 * up laundering or cleaning too many pages.
1058			 */
1059			vm_page_unlock_queues();
1060			if (vm_pageout_clean(m) != 0) {
1061				--page_shortage;
1062				--maxlaunder;
1063			}
1064			vm_page_lock_queues();
1065unlock_and_continue:
1066			vm_page_lock_assert(m, MA_NOTOWNED);
1067			VM_OBJECT_UNLOCK(object);
1068			if (mp != NULL) {
1069				vm_page_unlock_queues();
1070				if (vp != NULL)
1071					vput(vp);
1072				VFS_UNLOCK_GIANT(vfslocked);
1073				vm_object_deallocate(object);
1074				vn_finished_write(mp);
1075				vm_page_lock_queues();
1076			}
1077			next = TAILQ_NEXT(&marker, pageq);
1078			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1079				     &marker, pageq);
1080			vm_page_lock_assert(m, MA_NOTOWNED);
1081			continue;
1082		}
1083		vm_page_unlock(m);
1084		VM_OBJECT_UNLOCK(object);
1085	}
1086
1087	/*
1088	 * Compute the number of pages we want to try to move from the
1089	 * active queue to the inactive queue.
1090	 */
1091	page_shortage = vm_paging_target() +
1092		cnt.v_inactive_target - cnt.v_inactive_count;
1093	page_shortage += addl_page_shortage;
1094
1095	/*
1096	 * Scan the active queue for things we can deactivate. We nominally
1097	 * track the per-page activity counter and use it to locate
1098	 * deactivation candidates.
1099	 */
1100	pcount = cnt.v_active_count;
1101	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1102	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1103
1104	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1105
1106		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1107		    ("vm_pageout_scan: page %p isn't active", m));
1108
1109		next = TAILQ_NEXT(m, pageq);
1110		object = m->object;
1111		if ((m->flags & PG_MARKER) != 0) {
1112			m = next;
1113			continue;
1114		}
1115		if (!vm_page_trylock(m) || (object = m->object) == NULL) {
1116			m = next;
1117			continue;
1118		}
1119		if (!VM_OBJECT_TRYLOCK(object) &&
1120		    !vm_pageout_fallback_object_lock(m, &next)) {
1121			VM_OBJECT_UNLOCK(object);
1122			vm_page_unlock(m);
1123			m = next;
1124			continue;
1125		}
1126
1127		/*
1128		 * Don't deactivate pages that are busy.
1129		 */
1130		if ((m->busy != 0) ||
1131		    (m->oflags & VPO_BUSY) ||
1132		    (m->hold_count != 0)) {
1133			vm_page_unlock(m);
1134			VM_OBJECT_UNLOCK(object);
1135			vm_page_requeue(m);
1136			m = next;
1137			continue;
1138		}
1139
1140		/*
1141		 * The count for pagedaemon pages is done after checking the
1142		 * page for eligibility...
1143		 */
1144		cnt.v_pdpages++;
1145
1146		/*
1147		 * Check to see "how much" the page has been used.
1148		 */
1149		actcount = 0;
1150		if (object->ref_count != 0) {
1151			if (m->flags & PG_REFERENCED) {
1152				actcount += 1;
1153			}
1154			actcount += pmap_ts_referenced(m);
1155			if (actcount) {
1156				m->act_count += ACT_ADVANCE + actcount;
1157				if (m->act_count > ACT_MAX)
1158					m->act_count = ACT_MAX;
1159			}
1160		}
1161
1162		/*
1163		 * Since we have "tested" this bit, we need to clear it now.
1164		 */
1165		vm_page_flag_clear(m, PG_REFERENCED);
1166
1167		/*
1168		 * Only if an object is currently being used, do we use the
1169		 * page activation count stats.
1170		 */
1171		if (actcount && (object->ref_count != 0)) {
1172			vm_page_requeue(m);
1173		} else {
1174			m->act_count -= min(m->act_count, ACT_DECLINE);
1175			if (vm_pageout_algorithm ||
1176			    object->ref_count == 0 ||
1177			    m->act_count == 0) {
1178				page_shortage--;
1179				if (object->ref_count == 0) {
1180					KASSERT(!pmap_page_is_mapped(m),
1181				    ("vm_pageout_scan: page %p is mapped", m));
1182					if (m->dirty == 0)
1183						vm_page_cache(m);
1184					else
1185						vm_page_deactivate(m);
1186				} else {
1187					vm_page_deactivate(m);
1188				}
1189			} else {
1190				vm_page_requeue(m);
1191			}
1192		}
1193		vm_page_unlock(m);
1194		VM_OBJECT_UNLOCK(object);
1195		m = next;
1196	}
1197	vm_page_unlock_queues();
1198#if !defined(NO_SWAPPING)
1199	/*
1200	 * Idle process swapout -- run once per second.
1201	 */
1202	if (vm_swap_idle_enabled) {
1203		static long lsec;
1204		if (time_second != lsec) {
1205			vm_req_vmdaemon(VM_SWAP_IDLE);
1206			lsec = time_second;
1207		}
1208	}
1209#endif
1210
1211	/*
1212	 * If we didn't get enough free pages, and we have skipped a vnode
1213	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1214	 * if we did not get enough free pages.
1215	 */
1216	if (vm_paging_target() > 0) {
1217		if (vnodes_skipped && vm_page_count_min())
1218			(void) speedup_syncer();
1219#if !defined(NO_SWAPPING)
1220		if (vm_swap_enabled && vm_page_count_target())
1221			vm_req_vmdaemon(VM_SWAP_NORMAL);
1222#endif
1223	}
1224
1225	/*
1226	 * If we are critically low on one of RAM or swap and low on
1227	 * the other, kill the largest process.  However, we avoid
1228	 * doing this on the first pass in order to give ourselves a
1229	 * chance to flush out dirty vnode-backed pages and to allow
1230	 * active pages to be moved to the inactive queue and reclaimed.
1231	 */
1232	if (pass != 0 &&
1233	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1234	     (swap_pager_full && vm_paging_target() > 0)))
1235		vm_pageout_oom(VM_OOM_MEM);
1236}
1237
1238
1239void
1240vm_pageout_oom(int shortage)
1241{
1242	struct proc *p, *bigproc;
1243	vm_offset_t size, bigsize;
1244	struct thread *td;
1245	struct vmspace *vm;
1246
1247	/*
1248	 * We keep the process bigproc locked once we find it to keep anyone
1249	 * from messing with it; however, there is a possibility of
1250	 * deadlock if process B is bigproc and one of it's child processes
1251	 * attempts to propagate a signal to B while we are waiting for A's
1252	 * lock while walking this list.  To avoid this, we don't block on
1253	 * the process lock but just skip a process if it is already locked.
1254	 */
1255	bigproc = NULL;
1256	bigsize = 0;
1257	sx_slock(&allproc_lock);
1258	FOREACH_PROC_IN_SYSTEM(p) {
1259		int breakout;
1260
1261		if (PROC_TRYLOCK(p) == 0)
1262			continue;
1263		/*
1264		 * If this is a system, protected or killed process, skip it.
1265		 */
1266		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1267		    (p->p_pid == 1) || P_KILLED(p) ||
1268		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1269			PROC_UNLOCK(p);
1270			continue;
1271		}
1272		/*
1273		 * If the process is in a non-running type state,
1274		 * don't touch it.  Check all the threads individually.
1275		 */
1276		breakout = 0;
1277		FOREACH_THREAD_IN_PROC(p, td) {
1278			thread_lock(td);
1279			if (!TD_ON_RUNQ(td) &&
1280			    !TD_IS_RUNNING(td) &&
1281			    !TD_IS_SLEEPING(td)) {
1282				thread_unlock(td);
1283				breakout = 1;
1284				break;
1285			}
1286			thread_unlock(td);
1287		}
1288		if (breakout) {
1289			PROC_UNLOCK(p);
1290			continue;
1291		}
1292		/*
1293		 * get the process size
1294		 */
1295		vm = vmspace_acquire_ref(p);
1296		if (vm == NULL) {
1297			PROC_UNLOCK(p);
1298			continue;
1299		}
1300		if (!vm_map_trylock_read(&vm->vm_map)) {
1301			vmspace_free(vm);
1302			PROC_UNLOCK(p);
1303			continue;
1304		}
1305		size = vmspace_swap_count(vm);
1306		vm_map_unlock_read(&vm->vm_map);
1307		if (shortage == VM_OOM_MEM)
1308			size += vmspace_resident_count(vm);
1309		vmspace_free(vm);
1310		/*
1311		 * if the this process is bigger than the biggest one
1312		 * remember it.
1313		 */
1314		if (size > bigsize) {
1315			if (bigproc != NULL)
1316				PROC_UNLOCK(bigproc);
1317			bigproc = p;
1318			bigsize = size;
1319		} else
1320			PROC_UNLOCK(p);
1321	}
1322	sx_sunlock(&allproc_lock);
1323	if (bigproc != NULL) {
1324		killproc(bigproc, "out of swap space");
1325		sched_nice(bigproc, PRIO_MIN);
1326		PROC_UNLOCK(bigproc);
1327		wakeup(&cnt.v_free_count);
1328	}
1329}
1330
1331/*
1332 * This routine tries to maintain the pseudo LRU active queue,
1333 * so that during long periods of time where there is no paging,
1334 * that some statistic accumulation still occurs.  This code
1335 * helps the situation where paging just starts to occur.
1336 */
1337static void
1338vm_pageout_page_stats()
1339{
1340	vm_object_t object;
1341	vm_page_t m,next;
1342	int pcount,tpcount;		/* Number of pages to check */
1343	static int fullintervalcount = 0;
1344	int page_shortage;
1345
1346	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1347	page_shortage =
1348	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1349	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1350
1351	if (page_shortage <= 0)
1352		return;
1353
1354	pcount = cnt.v_active_count;
1355	fullintervalcount += vm_pageout_stats_interval;
1356	if (fullintervalcount < vm_pageout_full_stats_interval) {
1357		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1358		    cnt.v_page_count;
1359		if (pcount > tpcount)
1360			pcount = tpcount;
1361	} else {
1362		fullintervalcount = 0;
1363	}
1364
1365	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1366	while ((m != NULL) && (pcount-- > 0)) {
1367		int actcount;
1368
1369		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1370		    ("vm_pageout_page_stats: page %p isn't active", m));
1371
1372		next = TAILQ_NEXT(m, pageq);
1373		object = m->object;
1374
1375		if ((m->flags & PG_MARKER) != 0) {
1376			m = next;
1377			continue;
1378		}
1379		vm_page_lock_assert(m, MA_NOTOWNED);
1380		if (vm_page_trylock(m) == 0 || (object = m->object) == NULL) {
1381			m = next;
1382			continue;
1383		}
1384		if (!VM_OBJECT_TRYLOCK(object) &&
1385		    !vm_pageout_fallback_object_lock(m, &next)) {
1386			VM_OBJECT_UNLOCK(object);
1387			vm_page_unlock(m);
1388			m = next;
1389			continue;
1390		}
1391
1392		/*
1393		 * Don't deactivate pages that are busy.
1394		 */
1395		if ((m->busy != 0) ||
1396		    (m->oflags & VPO_BUSY) ||
1397		    (m->hold_count != 0)) {
1398			vm_page_unlock(m);
1399			VM_OBJECT_UNLOCK(object);
1400			vm_page_requeue(m);
1401			m = next;
1402			continue;
1403		}
1404
1405		actcount = 0;
1406		if (m->flags & PG_REFERENCED) {
1407			vm_page_flag_clear(m, PG_REFERENCED);
1408			actcount += 1;
1409		}
1410
1411		actcount += pmap_ts_referenced(m);
1412		if (actcount) {
1413			m->act_count += ACT_ADVANCE + actcount;
1414			if (m->act_count > ACT_MAX)
1415				m->act_count = ACT_MAX;
1416			vm_page_requeue(m);
1417		} else {
1418			if (m->act_count == 0) {
1419				/*
1420				 * We turn off page access, so that we have
1421				 * more accurate RSS stats.  We don't do this
1422				 * in the normal page deactivation when the
1423				 * system is loaded VM wise, because the
1424				 * cost of the large number of page protect
1425				 * operations would be higher than the value
1426				 * of doing the operation.
1427				 */
1428				pmap_remove_all(m);
1429				vm_page_deactivate(m);
1430			} else {
1431				m->act_count -= min(m->act_count, ACT_DECLINE);
1432				vm_page_requeue(m);
1433			}
1434		}
1435		vm_page_unlock(m);
1436		VM_OBJECT_UNLOCK(object);
1437		m = next;
1438	}
1439}
1440
1441/*
1442 *	vm_pageout is the high level pageout daemon.
1443 */
1444static void
1445vm_pageout()
1446{
1447	int error, pass;
1448
1449	/*
1450	 * Initialize some paging parameters.
1451	 */
1452	cnt.v_interrupt_free_min = 2;
1453	if (cnt.v_page_count < 2000)
1454		vm_pageout_page_count = 8;
1455
1456	/*
1457	 * v_free_reserved needs to include enough for the largest
1458	 * swap pager structures plus enough for any pv_entry structs
1459	 * when paging.
1460	 */
1461	if (cnt.v_page_count > 1024)
1462		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1463	else
1464		cnt.v_free_min = 4;
1465	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1466	    cnt.v_interrupt_free_min;
1467	cnt.v_free_reserved = vm_pageout_page_count +
1468	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1469	cnt.v_free_severe = cnt.v_free_min / 2;
1470	cnt.v_free_min += cnt.v_free_reserved;
1471	cnt.v_free_severe += cnt.v_free_reserved;
1472
1473	/*
1474	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1475	 * that these are more a measure of the VM cache queue hysteresis
1476	 * then the VM free queue.  Specifically, v_free_target is the
1477	 * high water mark (free+cache pages).
1478	 *
1479	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1480	 * low water mark, while v_free_min is the stop.  v_cache_min must
1481	 * be big enough to handle memory needs while the pageout daemon
1482	 * is signalled and run to free more pages.
1483	 */
1484	if (cnt.v_free_count > 6144)
1485		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1486	else
1487		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1488
1489	if (cnt.v_free_count > 2048) {
1490		cnt.v_cache_min = cnt.v_free_target;
1491		cnt.v_cache_max = 2 * cnt.v_cache_min;
1492		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1493	} else {
1494		cnt.v_cache_min = 0;
1495		cnt.v_cache_max = 0;
1496		cnt.v_inactive_target = cnt.v_free_count / 4;
1497	}
1498	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1499		cnt.v_inactive_target = cnt.v_free_count / 3;
1500
1501	/* XXX does not really belong here */
1502	if (vm_page_max_wired == 0)
1503		vm_page_max_wired = cnt.v_free_count / 3;
1504
1505	if (vm_pageout_stats_max == 0)
1506		vm_pageout_stats_max = cnt.v_free_target;
1507
1508	/*
1509	 * Set interval in seconds for stats scan.
1510	 */
1511	if (vm_pageout_stats_interval == 0)
1512		vm_pageout_stats_interval = 5;
1513	if (vm_pageout_full_stats_interval == 0)
1514		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1515
1516	swap_pager_swap_init();
1517	pass = 0;
1518	/*
1519	 * The pageout daemon is never done, so loop forever.
1520	 */
1521	while (TRUE) {
1522		/*
1523		 * If we have enough free memory, wakeup waiters.  Do
1524		 * not clear vm_pages_needed until we reach our target,
1525		 * otherwise we may be woken up over and over again and
1526		 * waste a lot of cpu.
1527		 */
1528		mtx_lock(&vm_page_queue_free_mtx);
1529		if (vm_pages_needed && !vm_page_count_min()) {
1530			if (!vm_paging_needed())
1531				vm_pages_needed = 0;
1532			wakeup(&cnt.v_free_count);
1533		}
1534		if (vm_pages_needed) {
1535			/*
1536			 * Still not done, take a second pass without waiting
1537			 * (unlimited dirty cleaning), otherwise sleep a bit
1538			 * and try again.
1539			 */
1540			++pass;
1541			if (pass > 1)
1542				msleep(&vm_pages_needed,
1543				    &vm_page_queue_free_mtx, PVM, "psleep",
1544				    hz / 2);
1545		} else {
1546			/*
1547			 * Good enough, sleep & handle stats.  Prime the pass
1548			 * for the next run.
1549			 */
1550			if (pass > 1)
1551				pass = 1;
1552			else
1553				pass = 0;
1554			error = msleep(&vm_pages_needed,
1555			    &vm_page_queue_free_mtx, PVM, "psleep",
1556			    vm_pageout_stats_interval * hz);
1557			if (error && !vm_pages_needed) {
1558				mtx_unlock(&vm_page_queue_free_mtx);
1559				pass = 0;
1560				vm_page_lock_queues();
1561				vm_pageout_page_stats();
1562				vm_page_unlock_queues();
1563				continue;
1564			}
1565		}
1566		if (vm_pages_needed)
1567			cnt.v_pdwakeups++;
1568		mtx_unlock(&vm_page_queue_free_mtx);
1569		vm_pageout_scan(pass);
1570	}
1571}
1572
1573/*
1574 * Unless the free page queue lock is held by the caller, this function
1575 * should be regarded as advisory.  Specifically, the caller should
1576 * not msleep() on &cnt.v_free_count following this function unless
1577 * the free page queue lock is held until the msleep() is performed.
1578 */
1579void
1580pagedaemon_wakeup()
1581{
1582
1583	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1584		vm_pages_needed = 1;
1585		wakeup(&vm_pages_needed);
1586	}
1587}
1588
1589#if !defined(NO_SWAPPING)
1590static void
1591vm_req_vmdaemon(int req)
1592{
1593	static int lastrun = 0;
1594
1595	mtx_lock(&vm_daemon_mtx);
1596	vm_pageout_req_swapout |= req;
1597	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1598		wakeup(&vm_daemon_needed);
1599		lastrun = ticks;
1600	}
1601	mtx_unlock(&vm_daemon_mtx);
1602}
1603
1604static void
1605vm_daemon()
1606{
1607	struct rlimit rsslim;
1608	struct proc *p;
1609	struct thread *td;
1610	struct vmspace *vm;
1611	int breakout, swapout_flags;
1612
1613	while (TRUE) {
1614		mtx_lock(&vm_daemon_mtx);
1615		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1616		swapout_flags = vm_pageout_req_swapout;
1617		vm_pageout_req_swapout = 0;
1618		mtx_unlock(&vm_daemon_mtx);
1619		if (swapout_flags)
1620			swapout_procs(swapout_flags);
1621
1622		/*
1623		 * scan the processes for exceeding their rlimits or if
1624		 * process is swapped out -- deactivate pages
1625		 */
1626		sx_slock(&allproc_lock);
1627		FOREACH_PROC_IN_SYSTEM(p) {
1628			vm_pindex_t limit, size;
1629
1630			/*
1631			 * if this is a system process or if we have already
1632			 * looked at this process, skip it.
1633			 */
1634			PROC_LOCK(p);
1635			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1636				PROC_UNLOCK(p);
1637				continue;
1638			}
1639			/*
1640			 * if the process is in a non-running type state,
1641			 * don't touch it.
1642			 */
1643			breakout = 0;
1644			FOREACH_THREAD_IN_PROC(p, td) {
1645				thread_lock(td);
1646				if (!TD_ON_RUNQ(td) &&
1647				    !TD_IS_RUNNING(td) &&
1648				    !TD_IS_SLEEPING(td)) {
1649					thread_unlock(td);
1650					breakout = 1;
1651					break;
1652				}
1653				thread_unlock(td);
1654			}
1655			if (breakout) {
1656				PROC_UNLOCK(p);
1657				continue;
1658			}
1659			/*
1660			 * get a limit
1661			 */
1662			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1663			limit = OFF_TO_IDX(
1664			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1665
1666			/*
1667			 * let processes that are swapped out really be
1668			 * swapped out set the limit to nothing (will force a
1669			 * swap-out.)
1670			 */
1671			if ((p->p_flag & P_INMEM) == 0)
1672				limit = 0;	/* XXX */
1673			vm = vmspace_acquire_ref(p);
1674			PROC_UNLOCK(p);
1675			if (vm == NULL)
1676				continue;
1677
1678			size = vmspace_resident_count(vm);
1679			if (limit >= 0 && size >= limit) {
1680				vm_pageout_map_deactivate_pages(
1681				    &vm->vm_map, limit);
1682			}
1683			vmspace_free(vm);
1684		}
1685		sx_sunlock(&allproc_lock);
1686	}
1687}
1688#endif			/* !defined(NO_SWAPPING) */
1689