vm_pageout.c revision 207374
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 207374 2010-04-29 16:18:45Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218/*
219 * vm_pageout_fallback_object_lock:
220 *
221 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222 * known to have failed and page queue must be either PQ_ACTIVE or
223 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224 * while locking the vm object.  Use marker page to detect page queue
225 * changes and maintain notion of next page on page queue.  Return
226 * TRUE if no changes were detected, FALSE otherwise.  vm object is
227 * locked on return.
228 *
229 * This function depends on both the lock portion of struct vm_object
230 * and normal struct vm_page being type stable.
231 */
232boolean_t
233vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234{
235	struct vm_page marker;
236	boolean_t unchanged;
237	u_short queue;
238	vm_object_t object;
239
240	/*
241	 * Initialize our marker
242	 */
243	bzero(&marker, sizeof(marker));
244	marker.flags = PG_FICTITIOUS | PG_MARKER;
245	marker.oflags = VPO_BUSY;
246	marker.queue = m->queue;
247	marker.wire_count = 1;
248
249	queue = m->queue;
250	object = m->object;
251
252	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253			   m, &marker, pageq);
254	vm_page_unlock_queues();
255	VM_OBJECT_LOCK(object);
256	vm_page_lock_queues();
257
258	/* Page queue might have changed. */
259	*next = TAILQ_NEXT(&marker, pageq);
260	unchanged = (m->queue == queue &&
261		     m->object == object &&
262		     &marker == TAILQ_NEXT(m, pageq));
263	TAILQ_REMOVE(&vm_page_queues[queue].pl,
264		     &marker, pageq);
265	return (unchanged);
266}
267
268/*
269 * vm_pageout_clean:
270 *
271 * Clean the page and remove it from the laundry.
272 *
273 * We set the busy bit to cause potential page faults on this page to
274 * block.  Note the careful timing, however, the busy bit isn't set till
275 * late and we cannot do anything that will mess with the page.
276 */
277static int
278vm_pageout_clean(m)
279	vm_page_t m;
280{
281	vm_object_t object;
282	vm_page_t mc[2*vm_pageout_page_count];
283	int pageout_count;
284	int ib, is, page_base;
285	vm_pindex_t pindex = m->pindex;
286
287	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290	/*
291	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292	 * with the new swapper, but we could have serious problems paging
293	 * out other object types if there is insufficient memory.
294	 *
295	 * Unfortunately, checking free memory here is far too late, so the
296	 * check has been moved up a procedural level.
297	 */
298
299	/*
300	 * Can't clean the page if it's busy or held.
301	 */
302	if ((m->hold_count != 0) ||
303	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304		return 0;
305	}
306
307	mc[vm_pageout_page_count] = m;
308	pageout_count = 1;
309	page_base = vm_pageout_page_count;
310	ib = 1;
311	is = 1;
312
313	/*
314	 * Scan object for clusterable pages.
315	 *
316	 * We can cluster ONLY if: ->> the page is NOT
317	 * clean, wired, busy, held, or mapped into a
318	 * buffer, and one of the following:
319	 * 1) The page is inactive, or a seldom used
320	 *    active page.
321	 * -or-
322	 * 2) we force the issue.
323	 *
324	 * During heavy mmap/modification loads the pageout
325	 * daemon can really fragment the underlying file
326	 * due to flushing pages out of order and not trying
327	 * align the clusters (which leave sporatic out-of-order
328	 * holes).  To solve this problem we do the reverse scan
329	 * first and attempt to align our cluster, then do a
330	 * forward scan if room remains.
331	 */
332	object = m->object;
333more:
334	while (ib && pageout_count < vm_pageout_page_count) {
335		vm_page_t p;
336
337		if (ib > pindex) {
338			ib = 0;
339			break;
340		}
341
342		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
343			ib = 0;
344			break;
345		}
346		if ((p->oflags & VPO_BUSY) || p->busy) {
347			ib = 0;
348			break;
349		}
350		vm_page_test_dirty(p);
351		if (p->dirty == 0 ||
352		    p->queue != PQ_INACTIVE ||
353		    p->hold_count != 0) {	/* may be undergoing I/O */
354			ib = 0;
355			break;
356		}
357		mc[--page_base] = p;
358		++pageout_count;
359		++ib;
360		/*
361		 * alignment boundry, stop here and switch directions.  Do
362		 * not clear ib.
363		 */
364		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
365			break;
366	}
367
368	while (pageout_count < vm_pageout_page_count &&
369	    pindex + is < object->size) {
370		vm_page_t p;
371
372		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
373			break;
374		if ((p->oflags & VPO_BUSY) || p->busy) {
375			break;
376		}
377		vm_page_test_dirty(p);
378		if (p->dirty == 0 ||
379		    p->queue != PQ_INACTIVE ||
380		    p->hold_count != 0) {	/* may be undergoing I/O */
381			break;
382		}
383		mc[page_base + pageout_count] = p;
384		++pageout_count;
385		++is;
386	}
387
388	/*
389	 * If we exhausted our forward scan, continue with the reverse scan
390	 * when possible, even past a page boundry.  This catches boundry
391	 * conditions.
392	 */
393	if (ib && pageout_count < vm_pageout_page_count)
394		goto more;
395
396	/*
397	 * we allow reads during pageouts...
398	 */
399	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
400}
401
402/*
403 * vm_pageout_flush() - launder the given pages
404 *
405 *	The given pages are laundered.  Note that we setup for the start of
406 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
407 *	reference count all in here rather then in the parent.  If we want
408 *	the parent to do more sophisticated things we may have to change
409 *	the ordering.
410 */
411int
412vm_pageout_flush(vm_page_t *mc, int count, int flags)
413{
414	vm_object_t object = mc[0]->object;
415	int pageout_status[count];
416	int numpagedout = 0;
417	int i;
418
419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
420	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
421	/*
422	 * Initiate I/O.  Bump the vm_page_t->busy counter and
423	 * mark the pages read-only.
424	 *
425	 * We do not have to fixup the clean/dirty bits here... we can
426	 * allow the pager to do it after the I/O completes.
427	 *
428	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
429	 * edge case with file fragments.
430	 */
431	for (i = 0; i < count; i++) {
432		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
433		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
434			mc[i], i, count));
435		vm_page_io_start(mc[i]);
436		pmap_remove_write(mc[i]);
437	}
438	vm_page_unlock_queues();
439	vm_object_pip_add(object, count);
440
441	vm_pager_put_pages(object, mc, count, flags, pageout_status);
442
443	vm_page_lock_queues();
444	for (i = 0; i < count; i++) {
445		vm_page_t mt = mc[i];
446
447		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
448		    (mt->flags & PG_WRITEABLE) == 0,
449		    ("vm_pageout_flush: page %p is not write protected", mt));
450		switch (pageout_status[i]) {
451		case VM_PAGER_OK:
452		case VM_PAGER_PEND:
453			numpagedout++;
454			break;
455		case VM_PAGER_BAD:
456			/*
457			 * Page outside of range of object. Right now we
458			 * essentially lose the changes by pretending it
459			 * worked.
460			 */
461			vm_page_undirty(mt);
462			break;
463		case VM_PAGER_ERROR:
464		case VM_PAGER_FAIL:
465			/*
466			 * If page couldn't be paged out, then reactivate the
467			 * page so it doesn't clog the inactive list.  (We
468			 * will try paging out it again later).
469			 */
470			vm_page_activate(mt);
471			break;
472		case VM_PAGER_AGAIN:
473			break;
474		}
475
476		/*
477		 * If the operation is still going, leave the page busy to
478		 * block all other accesses. Also, leave the paging in
479		 * progress indicator set so that we don't attempt an object
480		 * collapse.
481		 */
482		if (pageout_status[i] != VM_PAGER_PEND) {
483			vm_object_pip_wakeup(object);
484			vm_page_io_finish(mt);
485			if (vm_page_count_severe())
486				vm_page_try_to_cache(mt);
487		}
488	}
489	return numpagedout;
490}
491
492#if !defined(NO_SWAPPING)
493/*
494 *	vm_pageout_object_deactivate_pages
495 *
496 *	deactivate enough pages to satisfy the inactive target
497 *	requirements or if vm_page_proc_limit is set, then
498 *	deactivate all of the pages in the object and its
499 *	backing_objects.
500 *
501 *	The object and map must be locked.
502 */
503static void
504vm_pageout_object_deactivate_pages(pmap, first_object, desired)
505	pmap_t pmap;
506	vm_object_t first_object;
507	long desired;
508{
509	vm_object_t backing_object, object;
510	vm_page_t p, next;
511	int actcount, remove_mode;
512
513	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
514	if (first_object->type == OBJT_DEVICE ||
515	    first_object->type == OBJT_SG)
516		return;
517	for (object = first_object;; object = backing_object) {
518		if (pmap_resident_count(pmap) <= desired)
519			goto unlock_return;
520		if (object->type == OBJT_PHYS || object->paging_in_progress)
521			goto unlock_return;
522
523		remove_mode = 0;
524		if (object->shadow_count > 1)
525			remove_mode = 1;
526		/*
527		 * scan the objects entire memory queue
528		 */
529		p = TAILQ_FIRST(&object->memq);
530		vm_page_lock_queues();
531		while (p != NULL) {
532			if (pmap_resident_count(pmap) <= desired) {
533				vm_page_unlock_queues();
534				goto unlock_return;
535			}
536			next = TAILQ_NEXT(p, listq);
537			cnt.v_pdpages++;
538			if (p->wire_count != 0 ||
539			    p->hold_count != 0 ||
540			    p->busy != 0 ||
541			    (p->oflags & VPO_BUSY) ||
542			    !pmap_page_exists_quick(pmap, p)) {
543				p = next;
544				continue;
545			}
546			actcount = pmap_ts_referenced(p);
547			if (actcount) {
548				vm_page_flag_set(p, PG_REFERENCED);
549			} else if (p->flags & PG_REFERENCED) {
550				actcount = 1;
551			}
552			if ((p->queue != PQ_ACTIVE) &&
553				(p->flags & PG_REFERENCED)) {
554				vm_page_activate(p);
555				p->act_count += actcount;
556				vm_page_flag_clear(p, PG_REFERENCED);
557			} else if (p->queue == PQ_ACTIVE) {
558				if ((p->flags & PG_REFERENCED) == 0) {
559					p->act_count -= min(p->act_count, ACT_DECLINE);
560					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
561						pmap_remove_all(p);
562						vm_page_deactivate(p);
563					} else {
564						vm_page_requeue(p);
565					}
566				} else {
567					vm_page_activate(p);
568					vm_page_flag_clear(p, PG_REFERENCED);
569					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
570						p->act_count += ACT_ADVANCE;
571					vm_page_requeue(p);
572				}
573			} else if (p->queue == PQ_INACTIVE) {
574				pmap_remove_all(p);
575			}
576			p = next;
577		}
578		vm_page_unlock_queues();
579		if ((backing_object = object->backing_object) == NULL)
580			goto unlock_return;
581		VM_OBJECT_LOCK(backing_object);
582		if (object != first_object)
583			VM_OBJECT_UNLOCK(object);
584	}
585unlock_return:
586	if (object != first_object)
587		VM_OBJECT_UNLOCK(object);
588}
589
590/*
591 * deactivate some number of pages in a map, try to do it fairly, but
592 * that is really hard to do.
593 */
594static void
595vm_pageout_map_deactivate_pages(map, desired)
596	vm_map_t map;
597	long desired;
598{
599	vm_map_entry_t tmpe;
600	vm_object_t obj, bigobj;
601	int nothingwired;
602
603	if (!vm_map_trylock(map))
604		return;
605
606	bigobj = NULL;
607	nothingwired = TRUE;
608
609	/*
610	 * first, search out the biggest object, and try to free pages from
611	 * that.
612	 */
613	tmpe = map->header.next;
614	while (tmpe != &map->header) {
615		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
616			obj = tmpe->object.vm_object;
617			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
618				if (obj->shadow_count <= 1 &&
619				    (bigobj == NULL ||
620				     bigobj->resident_page_count < obj->resident_page_count)) {
621					if (bigobj != NULL)
622						VM_OBJECT_UNLOCK(bigobj);
623					bigobj = obj;
624				} else
625					VM_OBJECT_UNLOCK(obj);
626			}
627		}
628		if (tmpe->wired_count > 0)
629			nothingwired = FALSE;
630		tmpe = tmpe->next;
631	}
632
633	if (bigobj != NULL) {
634		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
635		VM_OBJECT_UNLOCK(bigobj);
636	}
637	/*
638	 * Next, hunt around for other pages to deactivate.  We actually
639	 * do this search sort of wrong -- .text first is not the best idea.
640	 */
641	tmpe = map->header.next;
642	while (tmpe != &map->header) {
643		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
644			break;
645		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
646			obj = tmpe->object.vm_object;
647			if (obj != NULL) {
648				VM_OBJECT_LOCK(obj);
649				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
650				VM_OBJECT_UNLOCK(obj);
651			}
652		}
653		tmpe = tmpe->next;
654	}
655
656	/*
657	 * Remove all mappings if a process is swapped out, this will free page
658	 * table pages.
659	 */
660	if (desired == 0 && nothingwired) {
661		pmap_remove(vm_map_pmap(map), vm_map_min(map),
662		    vm_map_max(map));
663	}
664	vm_map_unlock(map);
665}
666#endif		/* !defined(NO_SWAPPING) */
667
668/*
669 *	vm_pageout_scan does the dirty work for the pageout daemon.
670 */
671static void
672vm_pageout_scan(int pass)
673{
674	vm_page_t m, next;
675	struct vm_page marker;
676	int page_shortage, maxscan, pcount;
677	int addl_page_shortage, addl_page_shortage_init;
678	vm_object_t object;
679	int actcount;
680	int vnodes_skipped = 0;
681	int maxlaunder;
682
683	/*
684	 * Decrease registered cache sizes.
685	 */
686	EVENTHANDLER_INVOKE(vm_lowmem, 0);
687	/*
688	 * We do this explicitly after the caches have been drained above.
689	 */
690	uma_reclaim();
691
692	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
693
694	/*
695	 * Calculate the number of pages we want to either free or move
696	 * to the cache.
697	 */
698	page_shortage = vm_paging_target() + addl_page_shortage_init;
699
700	/*
701	 * Initialize our marker
702	 */
703	bzero(&marker, sizeof(marker));
704	marker.flags = PG_FICTITIOUS | PG_MARKER;
705	marker.oflags = VPO_BUSY;
706	marker.queue = PQ_INACTIVE;
707	marker.wire_count = 1;
708
709	/*
710	 * Start scanning the inactive queue for pages we can move to the
711	 * cache or free.  The scan will stop when the target is reached or
712	 * we have scanned the entire inactive queue.  Note that m->act_count
713	 * is not used to form decisions for the inactive queue, only for the
714	 * active queue.
715	 *
716	 * maxlaunder limits the number of dirty pages we flush per scan.
717	 * For most systems a smaller value (16 or 32) is more robust under
718	 * extreme memory and disk pressure because any unnecessary writes
719	 * to disk can result in extreme performance degredation.  However,
720	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
721	 * used) will die horribly with limited laundering.  If the pageout
722	 * daemon cannot clean enough pages in the first pass, we let it go
723	 * all out in succeeding passes.
724	 */
725	if ((maxlaunder = vm_max_launder) <= 1)
726		maxlaunder = 1;
727	if (pass)
728		maxlaunder = 10000;
729	vm_page_lock_queues();
730rescan0:
731	addl_page_shortage = addl_page_shortage_init;
732	maxscan = cnt.v_inactive_count;
733
734	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
735	     m != NULL && maxscan-- > 0 && page_shortage > 0;
736	     m = next) {
737
738		cnt.v_pdpages++;
739
740		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
741			goto rescan0;
742		}
743
744		next = TAILQ_NEXT(m, pageq);
745		object = m->object;
746
747		/*
748		 * skip marker pages
749		 */
750		if (m->flags & PG_MARKER)
751			continue;
752
753		/*
754		 * A held page may be undergoing I/O, so skip it.
755		 */
756		if (m->hold_count) {
757			vm_page_requeue(m);
758			addl_page_shortage++;
759			continue;
760		}
761		/*
762		 * Don't mess with busy pages, keep in the front of the
763		 * queue, most likely are being paged out.
764		 */
765		if (!VM_OBJECT_TRYLOCK(object) &&
766		    (!vm_pageout_fallback_object_lock(m, &next) ||
767		     m->hold_count != 0)) {
768			VM_OBJECT_UNLOCK(object);
769			addl_page_shortage++;
770			continue;
771		}
772		if (m->busy || (m->oflags & VPO_BUSY)) {
773			VM_OBJECT_UNLOCK(object);
774			addl_page_shortage++;
775			continue;
776		}
777
778		/*
779		 * If the object is not being used, we ignore previous
780		 * references.
781		 */
782		if (object->ref_count == 0) {
783			vm_page_flag_clear(m, PG_REFERENCED);
784			KASSERT(!pmap_page_is_mapped(m),
785			    ("vm_pageout_scan: page %p is mapped", m));
786
787		/*
788		 * Otherwise, if the page has been referenced while in the
789		 * inactive queue, we bump the "activation count" upwards,
790		 * making it less likely that the page will be added back to
791		 * the inactive queue prematurely again.  Here we check the
792		 * page tables (or emulated bits, if any), given the upper
793		 * level VM system not knowing anything about existing
794		 * references.
795		 */
796		} else if (((m->flags & PG_REFERENCED) == 0) &&
797			(actcount = pmap_ts_referenced(m))) {
798			vm_page_activate(m);
799			VM_OBJECT_UNLOCK(object);
800			m->act_count += (actcount + ACT_ADVANCE);
801			continue;
802		}
803
804		/*
805		 * If the upper level VM system knows about any page
806		 * references, we activate the page.  We also set the
807		 * "activation count" higher than normal so that we will less
808		 * likely place pages back onto the inactive queue again.
809		 */
810		if ((m->flags & PG_REFERENCED) != 0) {
811			vm_page_flag_clear(m, PG_REFERENCED);
812			actcount = pmap_ts_referenced(m);
813			vm_page_activate(m);
814			VM_OBJECT_UNLOCK(object);
815			m->act_count += (actcount + ACT_ADVANCE + 1);
816			continue;
817		}
818
819		/*
820		 * If the upper level VM system does not believe that the page
821		 * is fully dirty, but it is mapped for write access, then we
822		 * consult the pmap to see if the page's dirty status should
823		 * be updated.
824		 */
825		if (m->dirty != VM_PAGE_BITS_ALL &&
826		    (m->flags & PG_WRITEABLE) != 0) {
827			/*
828			 * Avoid a race condition: Unless write access is
829			 * removed from the page, another processor could
830			 * modify it before all access is removed by the call
831			 * to vm_page_cache() below.  If vm_page_cache() finds
832			 * that the page has been modified when it removes all
833			 * access, it panics because it cannot cache dirty
834			 * pages.  In principle, we could eliminate just write
835			 * access here rather than all access.  In the expected
836			 * case, when there are no last instant modifications
837			 * to the page, removing all access will be cheaper
838			 * overall.
839			 */
840			if (pmap_is_modified(m))
841				vm_page_dirty(m);
842			else if (m->dirty == 0)
843				pmap_remove_all(m);
844		}
845
846		if (m->valid == 0) {
847			/*
848			 * Invalid pages can be easily freed
849			 */
850			vm_page_free(m);
851			cnt.v_dfree++;
852			--page_shortage;
853		} else if (m->dirty == 0) {
854			/*
855			 * Clean pages can be placed onto the cache queue.
856			 * This effectively frees them.
857			 */
858			vm_page_cache(m);
859			--page_shortage;
860		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
861			/*
862			 * Dirty pages need to be paged out, but flushing
863			 * a page is extremely expensive verses freeing
864			 * a clean page.  Rather then artificially limiting
865			 * the number of pages we can flush, we instead give
866			 * dirty pages extra priority on the inactive queue
867			 * by forcing them to be cycled through the queue
868			 * twice before being flushed, after which the
869			 * (now clean) page will cycle through once more
870			 * before being freed.  This significantly extends
871			 * the thrash point for a heavily loaded machine.
872			 */
873			vm_page_flag_set(m, PG_WINATCFLS);
874			vm_page_requeue(m);
875		} else if (maxlaunder > 0) {
876			/*
877			 * We always want to try to flush some dirty pages if
878			 * we encounter them, to keep the system stable.
879			 * Normally this number is small, but under extreme
880			 * pressure where there are insufficient clean pages
881			 * on the inactive queue, we may have to go all out.
882			 */
883			int swap_pageouts_ok, vfslocked = 0;
884			struct vnode *vp = NULL;
885			struct mount *mp = NULL;
886
887			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
888				swap_pageouts_ok = 1;
889			} else {
890				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
891				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
892				vm_page_count_min());
893
894			}
895
896			/*
897			 * We don't bother paging objects that are "dead".
898			 * Those objects are in a "rundown" state.
899			 */
900			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
901				VM_OBJECT_UNLOCK(object);
902				vm_page_requeue(m);
903				continue;
904			}
905
906			/*
907			 * Following operations may unlock
908			 * vm_page_queue_mtx, invalidating the 'next'
909			 * pointer.  To prevent an inordinate number
910			 * of restarts we use our marker to remember
911			 * our place.
912			 *
913			 */
914			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
915					   m, &marker, pageq);
916			/*
917			 * The object is already known NOT to be dead.   It
918			 * is possible for the vget() to block the whole
919			 * pageout daemon, but the new low-memory handling
920			 * code should prevent it.
921			 *
922			 * The previous code skipped locked vnodes and, worse,
923			 * reordered pages in the queue.  This results in
924			 * completely non-deterministic operation and, on a
925			 * busy system, can lead to extremely non-optimal
926			 * pageouts.  For example, it can cause clean pages
927			 * to be freed and dirty pages to be moved to the end
928			 * of the queue.  Since dirty pages are also moved to
929			 * the end of the queue once-cleaned, this gives
930			 * way too large a weighting to defering the freeing
931			 * of dirty pages.
932			 *
933			 * We can't wait forever for the vnode lock, we might
934			 * deadlock due to a vn_read() getting stuck in
935			 * vm_wait while holding this vnode.  We skip the
936			 * vnode if we can't get it in a reasonable amount
937			 * of time.
938			 */
939			if (object->type == OBJT_VNODE) {
940				vp = object->handle;
941				if (vp->v_type == VREG &&
942				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
943					mp = NULL;
944					++pageout_lock_miss;
945					if (object->flags & OBJ_MIGHTBEDIRTY)
946						vnodes_skipped++;
947					goto unlock_and_continue;
948				}
949				KASSERT(mp != NULL,
950				    ("vp %p with NULL v_mount", vp));
951				vm_page_unlock_queues();
952				vm_object_reference_locked(object);
953				VM_OBJECT_UNLOCK(object);
954				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
955				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
956				    curthread)) {
957					VM_OBJECT_LOCK(object);
958					vm_page_lock_queues();
959					++pageout_lock_miss;
960					if (object->flags & OBJ_MIGHTBEDIRTY)
961						vnodes_skipped++;
962					vp = NULL;
963					goto unlock_and_continue;
964				}
965				VM_OBJECT_LOCK(object);
966				vm_page_lock_queues();
967				/*
968				 * The page might have been moved to another
969				 * queue during potential blocking in vget()
970				 * above.  The page might have been freed and
971				 * reused for another vnode.
972				 */
973				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
974				    m->object != object ||
975				    TAILQ_NEXT(m, pageq) != &marker) {
976					if (object->flags & OBJ_MIGHTBEDIRTY)
977						vnodes_skipped++;
978					goto unlock_and_continue;
979				}
980
981				/*
982				 * The page may have been busied during the
983				 * blocking in vget().  We don't move the
984				 * page back onto the end of the queue so that
985				 * statistics are more correct if we don't.
986				 */
987				if (m->busy || (m->oflags & VPO_BUSY)) {
988					goto unlock_and_continue;
989				}
990
991				/*
992				 * If the page has become held it might
993				 * be undergoing I/O, so skip it
994				 */
995				if (m->hold_count) {
996					vm_page_requeue(m);
997					if (object->flags & OBJ_MIGHTBEDIRTY)
998						vnodes_skipped++;
999					goto unlock_and_continue;
1000				}
1001			}
1002
1003			/*
1004			 * If a page is dirty, then it is either being washed
1005			 * (but not yet cleaned) or it is still in the
1006			 * laundry.  If it is still in the laundry, then we
1007			 * start the cleaning operation.
1008			 *
1009			 * decrement page_shortage on success to account for
1010			 * the (future) cleaned page.  Otherwise we could wind
1011			 * up laundering or cleaning too many pages.
1012			 */
1013			if (vm_pageout_clean(m) != 0) {
1014				--page_shortage;
1015				--maxlaunder;
1016			}
1017unlock_and_continue:
1018			VM_OBJECT_UNLOCK(object);
1019			if (mp != NULL) {
1020				vm_page_unlock_queues();
1021				if (vp != NULL)
1022					vput(vp);
1023				VFS_UNLOCK_GIANT(vfslocked);
1024				vm_object_deallocate(object);
1025				vn_finished_write(mp);
1026				vm_page_lock_queues();
1027			}
1028			next = TAILQ_NEXT(&marker, pageq);
1029			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1030				     &marker, pageq);
1031			continue;
1032		}
1033		VM_OBJECT_UNLOCK(object);
1034	}
1035
1036	/*
1037	 * Compute the number of pages we want to try to move from the
1038	 * active queue to the inactive queue.
1039	 */
1040	page_shortage = vm_paging_target() +
1041		cnt.v_inactive_target - cnt.v_inactive_count;
1042	page_shortage += addl_page_shortage;
1043
1044	/*
1045	 * Scan the active queue for things we can deactivate. We nominally
1046	 * track the per-page activity counter and use it to locate
1047	 * deactivation candidates.
1048	 */
1049	pcount = cnt.v_active_count;
1050	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1051
1052	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1053
1054		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1055		    ("vm_pageout_scan: page %p isn't active", m));
1056
1057		next = TAILQ_NEXT(m, pageq);
1058		object = m->object;
1059		if ((m->flags & PG_MARKER) != 0) {
1060			m = next;
1061			continue;
1062		}
1063		if (!VM_OBJECT_TRYLOCK(object) &&
1064		    !vm_pageout_fallback_object_lock(m, &next)) {
1065			VM_OBJECT_UNLOCK(object);
1066			m = next;
1067			continue;
1068		}
1069
1070		/*
1071		 * Don't deactivate pages that are busy.
1072		 */
1073		if ((m->busy != 0) ||
1074		    (m->oflags & VPO_BUSY) ||
1075		    (m->hold_count != 0)) {
1076			VM_OBJECT_UNLOCK(object);
1077			vm_page_requeue(m);
1078			m = next;
1079			continue;
1080		}
1081
1082		/*
1083		 * The count for pagedaemon pages is done after checking the
1084		 * page for eligibility...
1085		 */
1086		cnt.v_pdpages++;
1087
1088		/*
1089		 * Check to see "how much" the page has been used.
1090		 */
1091		actcount = 0;
1092		if (object->ref_count != 0) {
1093			if (m->flags & PG_REFERENCED) {
1094				actcount += 1;
1095			}
1096			actcount += pmap_ts_referenced(m);
1097			if (actcount) {
1098				m->act_count += ACT_ADVANCE + actcount;
1099				if (m->act_count > ACT_MAX)
1100					m->act_count = ACT_MAX;
1101			}
1102		}
1103
1104		/*
1105		 * Since we have "tested" this bit, we need to clear it now.
1106		 */
1107		vm_page_flag_clear(m, PG_REFERENCED);
1108
1109		/*
1110		 * Only if an object is currently being used, do we use the
1111		 * page activation count stats.
1112		 */
1113		if (actcount && (object->ref_count != 0)) {
1114			vm_page_requeue(m);
1115		} else {
1116			m->act_count -= min(m->act_count, ACT_DECLINE);
1117			if (vm_pageout_algorithm ||
1118			    object->ref_count == 0 ||
1119			    m->act_count == 0) {
1120				page_shortage--;
1121				if (object->ref_count == 0) {
1122					KASSERT(!pmap_page_is_mapped(m),
1123				    ("vm_pageout_scan: page %p is mapped", m));
1124					if (m->dirty == 0)
1125						vm_page_cache(m);
1126					else
1127						vm_page_deactivate(m);
1128				} else {
1129					vm_page_deactivate(m);
1130				}
1131			} else {
1132				vm_page_requeue(m);
1133			}
1134		}
1135		VM_OBJECT_UNLOCK(object);
1136		m = next;
1137	}
1138	vm_page_unlock_queues();
1139#if !defined(NO_SWAPPING)
1140	/*
1141	 * Idle process swapout -- run once per second.
1142	 */
1143	if (vm_swap_idle_enabled) {
1144		static long lsec;
1145		if (time_second != lsec) {
1146			vm_req_vmdaemon(VM_SWAP_IDLE);
1147			lsec = time_second;
1148		}
1149	}
1150#endif
1151
1152	/*
1153	 * If we didn't get enough free pages, and we have skipped a vnode
1154	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1155	 * if we did not get enough free pages.
1156	 */
1157	if (vm_paging_target() > 0) {
1158		if (vnodes_skipped && vm_page_count_min())
1159			(void) speedup_syncer();
1160#if !defined(NO_SWAPPING)
1161		if (vm_swap_enabled && vm_page_count_target())
1162			vm_req_vmdaemon(VM_SWAP_NORMAL);
1163#endif
1164	}
1165
1166	/*
1167	 * If we are critically low on one of RAM or swap and low on
1168	 * the other, kill the largest process.  However, we avoid
1169	 * doing this on the first pass in order to give ourselves a
1170	 * chance to flush out dirty vnode-backed pages and to allow
1171	 * active pages to be moved to the inactive queue and reclaimed.
1172	 */
1173	if (pass != 0 &&
1174	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1175	     (swap_pager_full && vm_paging_target() > 0)))
1176		vm_pageout_oom(VM_OOM_MEM);
1177}
1178
1179
1180void
1181vm_pageout_oom(int shortage)
1182{
1183	struct proc *p, *bigproc;
1184	vm_offset_t size, bigsize;
1185	struct thread *td;
1186	struct vmspace *vm;
1187
1188	/*
1189	 * We keep the process bigproc locked once we find it to keep anyone
1190	 * from messing with it; however, there is a possibility of
1191	 * deadlock if process B is bigproc and one of it's child processes
1192	 * attempts to propagate a signal to B while we are waiting for A's
1193	 * lock while walking this list.  To avoid this, we don't block on
1194	 * the process lock but just skip a process if it is already locked.
1195	 */
1196	bigproc = NULL;
1197	bigsize = 0;
1198	sx_slock(&allproc_lock);
1199	FOREACH_PROC_IN_SYSTEM(p) {
1200		int breakout;
1201
1202		if (PROC_TRYLOCK(p) == 0)
1203			continue;
1204		/*
1205		 * If this is a system, protected or killed process, skip it.
1206		 */
1207		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1208		    (p->p_pid == 1) || P_KILLED(p) ||
1209		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1210			PROC_UNLOCK(p);
1211			continue;
1212		}
1213		/*
1214		 * If the process is in a non-running type state,
1215		 * don't touch it.  Check all the threads individually.
1216		 */
1217		breakout = 0;
1218		FOREACH_THREAD_IN_PROC(p, td) {
1219			thread_lock(td);
1220			if (!TD_ON_RUNQ(td) &&
1221			    !TD_IS_RUNNING(td) &&
1222			    !TD_IS_SLEEPING(td)) {
1223				thread_unlock(td);
1224				breakout = 1;
1225				break;
1226			}
1227			thread_unlock(td);
1228		}
1229		if (breakout) {
1230			PROC_UNLOCK(p);
1231			continue;
1232		}
1233		/*
1234		 * get the process size
1235		 */
1236		vm = vmspace_acquire_ref(p);
1237		if (vm == NULL) {
1238			PROC_UNLOCK(p);
1239			continue;
1240		}
1241		if (!vm_map_trylock_read(&vm->vm_map)) {
1242			vmspace_free(vm);
1243			PROC_UNLOCK(p);
1244			continue;
1245		}
1246		size = vmspace_swap_count(vm);
1247		vm_map_unlock_read(&vm->vm_map);
1248		if (shortage == VM_OOM_MEM)
1249			size += vmspace_resident_count(vm);
1250		vmspace_free(vm);
1251		/*
1252		 * if the this process is bigger than the biggest one
1253		 * remember it.
1254		 */
1255		if (size > bigsize) {
1256			if (bigproc != NULL)
1257				PROC_UNLOCK(bigproc);
1258			bigproc = p;
1259			bigsize = size;
1260		} else
1261			PROC_UNLOCK(p);
1262	}
1263	sx_sunlock(&allproc_lock);
1264	if (bigproc != NULL) {
1265		killproc(bigproc, "out of swap space");
1266		sched_nice(bigproc, PRIO_MIN);
1267		PROC_UNLOCK(bigproc);
1268		wakeup(&cnt.v_free_count);
1269	}
1270}
1271
1272/*
1273 * This routine tries to maintain the pseudo LRU active queue,
1274 * so that during long periods of time where there is no paging,
1275 * that some statistic accumulation still occurs.  This code
1276 * helps the situation where paging just starts to occur.
1277 */
1278static void
1279vm_pageout_page_stats()
1280{
1281	vm_object_t object;
1282	vm_page_t m,next;
1283	int pcount,tpcount;		/* Number of pages to check */
1284	static int fullintervalcount = 0;
1285	int page_shortage;
1286
1287	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1288	page_shortage =
1289	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1290	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1291
1292	if (page_shortage <= 0)
1293		return;
1294
1295	pcount = cnt.v_active_count;
1296	fullintervalcount += vm_pageout_stats_interval;
1297	if (fullintervalcount < vm_pageout_full_stats_interval) {
1298		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1299		    cnt.v_page_count;
1300		if (pcount > tpcount)
1301			pcount = tpcount;
1302	} else {
1303		fullintervalcount = 0;
1304	}
1305
1306	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1307	while ((m != NULL) && (pcount-- > 0)) {
1308		int actcount;
1309
1310		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1311		    ("vm_pageout_page_stats: page %p isn't active", m));
1312
1313		next = TAILQ_NEXT(m, pageq);
1314		object = m->object;
1315
1316		if ((m->flags & PG_MARKER) != 0) {
1317			m = next;
1318			continue;
1319		}
1320		if (!VM_OBJECT_TRYLOCK(object) &&
1321		    !vm_pageout_fallback_object_lock(m, &next)) {
1322			VM_OBJECT_UNLOCK(object);
1323			m = next;
1324			continue;
1325		}
1326
1327		/*
1328		 * Don't deactivate pages that are busy.
1329		 */
1330		if ((m->busy != 0) ||
1331		    (m->oflags & VPO_BUSY) ||
1332		    (m->hold_count != 0)) {
1333			VM_OBJECT_UNLOCK(object);
1334			vm_page_requeue(m);
1335			m = next;
1336			continue;
1337		}
1338
1339		actcount = 0;
1340		if (m->flags & PG_REFERENCED) {
1341			vm_page_flag_clear(m, PG_REFERENCED);
1342			actcount += 1;
1343		}
1344
1345		actcount += pmap_ts_referenced(m);
1346		if (actcount) {
1347			m->act_count += ACT_ADVANCE + actcount;
1348			if (m->act_count > ACT_MAX)
1349				m->act_count = ACT_MAX;
1350			vm_page_requeue(m);
1351		} else {
1352			if (m->act_count == 0) {
1353				/*
1354				 * We turn off page access, so that we have
1355				 * more accurate RSS stats.  We don't do this
1356				 * in the normal page deactivation when the
1357				 * system is loaded VM wise, because the
1358				 * cost of the large number of page protect
1359				 * operations would be higher than the value
1360				 * of doing the operation.
1361				 */
1362				pmap_remove_all(m);
1363				vm_page_deactivate(m);
1364			} else {
1365				m->act_count -= min(m->act_count, ACT_DECLINE);
1366				vm_page_requeue(m);
1367			}
1368		}
1369		VM_OBJECT_UNLOCK(object);
1370		m = next;
1371	}
1372}
1373
1374/*
1375 *	vm_pageout is the high level pageout daemon.
1376 */
1377static void
1378vm_pageout()
1379{
1380	int error, pass;
1381
1382	/*
1383	 * Initialize some paging parameters.
1384	 */
1385	cnt.v_interrupt_free_min = 2;
1386	if (cnt.v_page_count < 2000)
1387		vm_pageout_page_count = 8;
1388
1389	/*
1390	 * v_free_reserved needs to include enough for the largest
1391	 * swap pager structures plus enough for any pv_entry structs
1392	 * when paging.
1393	 */
1394	if (cnt.v_page_count > 1024)
1395		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1396	else
1397		cnt.v_free_min = 4;
1398	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1399	    cnt.v_interrupt_free_min;
1400	cnt.v_free_reserved = vm_pageout_page_count +
1401	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1402	cnt.v_free_severe = cnt.v_free_min / 2;
1403	cnt.v_free_min += cnt.v_free_reserved;
1404	cnt.v_free_severe += cnt.v_free_reserved;
1405
1406	/*
1407	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1408	 * that these are more a measure of the VM cache queue hysteresis
1409	 * then the VM free queue.  Specifically, v_free_target is the
1410	 * high water mark (free+cache pages).
1411	 *
1412	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1413	 * low water mark, while v_free_min is the stop.  v_cache_min must
1414	 * be big enough to handle memory needs while the pageout daemon
1415	 * is signalled and run to free more pages.
1416	 */
1417	if (cnt.v_free_count > 6144)
1418		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1419	else
1420		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1421
1422	if (cnt.v_free_count > 2048) {
1423		cnt.v_cache_min = cnt.v_free_target;
1424		cnt.v_cache_max = 2 * cnt.v_cache_min;
1425		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1426	} else {
1427		cnt.v_cache_min = 0;
1428		cnt.v_cache_max = 0;
1429		cnt.v_inactive_target = cnt.v_free_count / 4;
1430	}
1431	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1432		cnt.v_inactive_target = cnt.v_free_count / 3;
1433
1434	/* XXX does not really belong here */
1435	if (vm_page_max_wired == 0)
1436		vm_page_max_wired = cnt.v_free_count / 3;
1437
1438	if (vm_pageout_stats_max == 0)
1439		vm_pageout_stats_max = cnt.v_free_target;
1440
1441	/*
1442	 * Set interval in seconds for stats scan.
1443	 */
1444	if (vm_pageout_stats_interval == 0)
1445		vm_pageout_stats_interval = 5;
1446	if (vm_pageout_full_stats_interval == 0)
1447		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1448
1449	swap_pager_swap_init();
1450	pass = 0;
1451	/*
1452	 * The pageout daemon is never done, so loop forever.
1453	 */
1454	while (TRUE) {
1455		/*
1456		 * If we have enough free memory, wakeup waiters.  Do
1457		 * not clear vm_pages_needed until we reach our target,
1458		 * otherwise we may be woken up over and over again and
1459		 * waste a lot of cpu.
1460		 */
1461		mtx_lock(&vm_page_queue_free_mtx);
1462		if (vm_pages_needed && !vm_page_count_min()) {
1463			if (!vm_paging_needed())
1464				vm_pages_needed = 0;
1465			wakeup(&cnt.v_free_count);
1466		}
1467		if (vm_pages_needed) {
1468			/*
1469			 * Still not done, take a second pass without waiting
1470			 * (unlimited dirty cleaning), otherwise sleep a bit
1471			 * and try again.
1472			 */
1473			++pass;
1474			if (pass > 1)
1475				msleep(&vm_pages_needed,
1476				    &vm_page_queue_free_mtx, PVM, "psleep",
1477				    hz / 2);
1478		} else {
1479			/*
1480			 * Good enough, sleep & handle stats.  Prime the pass
1481			 * for the next run.
1482			 */
1483			if (pass > 1)
1484				pass = 1;
1485			else
1486				pass = 0;
1487			error = msleep(&vm_pages_needed,
1488			    &vm_page_queue_free_mtx, PVM, "psleep",
1489			    vm_pageout_stats_interval * hz);
1490			if (error && !vm_pages_needed) {
1491				mtx_unlock(&vm_page_queue_free_mtx);
1492				pass = 0;
1493				vm_page_lock_queues();
1494				vm_pageout_page_stats();
1495				vm_page_unlock_queues();
1496				continue;
1497			}
1498		}
1499		if (vm_pages_needed)
1500			cnt.v_pdwakeups++;
1501		mtx_unlock(&vm_page_queue_free_mtx);
1502		vm_pageout_scan(pass);
1503	}
1504}
1505
1506/*
1507 * Unless the free page queue lock is held by the caller, this function
1508 * should be regarded as advisory.  Specifically, the caller should
1509 * not msleep() on &cnt.v_free_count following this function unless
1510 * the free page queue lock is held until the msleep() is performed.
1511 */
1512void
1513pagedaemon_wakeup()
1514{
1515
1516	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1517		vm_pages_needed = 1;
1518		wakeup(&vm_pages_needed);
1519	}
1520}
1521
1522#if !defined(NO_SWAPPING)
1523static void
1524vm_req_vmdaemon(int req)
1525{
1526	static int lastrun = 0;
1527
1528	mtx_lock(&vm_daemon_mtx);
1529	vm_pageout_req_swapout |= req;
1530	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1531		wakeup(&vm_daemon_needed);
1532		lastrun = ticks;
1533	}
1534	mtx_unlock(&vm_daemon_mtx);
1535}
1536
1537static void
1538vm_daemon()
1539{
1540	struct rlimit rsslim;
1541	struct proc *p;
1542	struct thread *td;
1543	struct vmspace *vm;
1544	int breakout, swapout_flags;
1545
1546	while (TRUE) {
1547		mtx_lock(&vm_daemon_mtx);
1548		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1549		swapout_flags = vm_pageout_req_swapout;
1550		vm_pageout_req_swapout = 0;
1551		mtx_unlock(&vm_daemon_mtx);
1552		if (swapout_flags)
1553			swapout_procs(swapout_flags);
1554
1555		/*
1556		 * scan the processes for exceeding their rlimits or if
1557		 * process is swapped out -- deactivate pages
1558		 */
1559		sx_slock(&allproc_lock);
1560		FOREACH_PROC_IN_SYSTEM(p) {
1561			vm_pindex_t limit, size;
1562
1563			/*
1564			 * if this is a system process or if we have already
1565			 * looked at this process, skip it.
1566			 */
1567			PROC_LOCK(p);
1568			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1569				PROC_UNLOCK(p);
1570				continue;
1571			}
1572			/*
1573			 * if the process is in a non-running type state,
1574			 * don't touch it.
1575			 */
1576			breakout = 0;
1577			FOREACH_THREAD_IN_PROC(p, td) {
1578				thread_lock(td);
1579				if (!TD_ON_RUNQ(td) &&
1580				    !TD_IS_RUNNING(td) &&
1581				    !TD_IS_SLEEPING(td)) {
1582					thread_unlock(td);
1583					breakout = 1;
1584					break;
1585				}
1586				thread_unlock(td);
1587			}
1588			if (breakout) {
1589				PROC_UNLOCK(p);
1590				continue;
1591			}
1592			/*
1593			 * get a limit
1594			 */
1595			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1596			limit = OFF_TO_IDX(
1597			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1598
1599			/*
1600			 * let processes that are swapped out really be
1601			 * swapped out set the limit to nothing (will force a
1602			 * swap-out.)
1603			 */
1604			if ((p->p_flag & P_INMEM) == 0)
1605				limit = 0;	/* XXX */
1606			vm = vmspace_acquire_ref(p);
1607			PROC_UNLOCK(p);
1608			if (vm == NULL)
1609				continue;
1610
1611			size = vmspace_resident_count(vm);
1612			if (limit >= 0 && size >= limit) {
1613				vm_pageout_map_deactivate_pages(
1614				    &vm->vm_map, limit);
1615			}
1616			vmspace_free(vm);
1617		}
1618		sx_sunlock(&allproc_lock);
1619	}
1620}
1621#endif			/* !defined(NO_SWAPPING) */
1622