vm_pageout.c revision 194806
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 194806 2009-06-24 04:45:03Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108/*
109 * System initialization
110 */
111
112/* the kernel process "vm_pageout"*/
113static void vm_pageout(void);
114static int vm_pageout_clean(vm_page_t);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125    &page_kp);
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148static struct mtx vm_daemon_mtx;
149/* Allow for use by vm_pageout before vm_daemon is initialized. */
150MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151#endif
152static int vm_max_launder = 32;
153static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154static int vm_pageout_full_stats_interval = 0;
155static int vm_pageout_algorithm=0;
156static int defer_swap_pageouts=0;
157static int disable_swap_pageouts=0;
158
159#if defined(NO_SWAPPING)
160static int vm_swap_enabled=0;
161static int vm_swap_idle_enabled=0;
162#else
163static int vm_swap_enabled=1;
164static int vm_swap_idle_enabled=0;
165#endif
166
167SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170SYSCTL_INT(_vm, OID_AUTO, max_launder,
171	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182#if defined(NO_SWAPPING)
183SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187#else
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#endif
193
194SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200static int pageout_lock_miss;
201SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204#define VM_PAGEOUT_PAGE_COUNT 16
205int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208SYSCTL_INT(_vm, OID_AUTO, max_wired,
209	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211#if !defined(NO_SWAPPING)
212static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214static void vm_req_vmdaemon(int req);
215#endif
216static void vm_pageout_page_stats(void);
217
218/*
219 * vm_pageout_fallback_object_lock:
220 *
221 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222 * known to have failed and page queue must be either PQ_ACTIVE or
223 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224 * while locking the vm object.  Use marker page to detect page queue
225 * changes and maintain notion of next page on page queue.  Return
226 * TRUE if no changes were detected, FALSE otherwise.  vm object is
227 * locked on return.
228 *
229 * This function depends on both the lock portion of struct vm_object
230 * and normal struct vm_page being type stable.
231 */
232boolean_t
233vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234{
235	struct vm_page marker;
236	boolean_t unchanged;
237	u_short queue;
238	vm_object_t object;
239
240	/*
241	 * Initialize our marker
242	 */
243	bzero(&marker, sizeof(marker));
244	marker.flags = PG_FICTITIOUS | PG_MARKER;
245	marker.oflags = VPO_BUSY;
246	marker.queue = m->queue;
247	marker.wire_count = 1;
248
249	queue = m->queue;
250	object = m->object;
251
252	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253			   m, &marker, pageq);
254	vm_page_unlock_queues();
255	VM_OBJECT_LOCK(object);
256	vm_page_lock_queues();
257
258	/* Page queue might have changed. */
259	*next = TAILQ_NEXT(&marker, pageq);
260	unchanged = (m->queue == queue &&
261		     m->object == object &&
262		     &marker == TAILQ_NEXT(m, pageq));
263	TAILQ_REMOVE(&vm_page_queues[queue].pl,
264		     &marker, pageq);
265	return (unchanged);
266}
267
268/*
269 * vm_pageout_clean:
270 *
271 * Clean the page and remove it from the laundry.
272 *
273 * We set the busy bit to cause potential page faults on this page to
274 * block.  Note the careful timing, however, the busy bit isn't set till
275 * late and we cannot do anything that will mess with the page.
276 */
277static int
278vm_pageout_clean(m)
279	vm_page_t m;
280{
281	vm_object_t object;
282	vm_page_t mc[2*vm_pageout_page_count];
283	int pageout_count;
284	int ib, is, page_base;
285	vm_pindex_t pindex = m->pindex;
286
287	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290	/*
291	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292	 * with the new swapper, but we could have serious problems paging
293	 * out other object types if there is insufficient memory.
294	 *
295	 * Unfortunately, checking free memory here is far too late, so the
296	 * check has been moved up a procedural level.
297	 */
298
299	/*
300	 * Can't clean the page if it's busy or held.
301	 */
302	if ((m->hold_count != 0) ||
303	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304		return 0;
305	}
306
307	mc[vm_pageout_page_count] = m;
308	pageout_count = 1;
309	page_base = vm_pageout_page_count;
310	ib = 1;
311	is = 1;
312
313	/*
314	 * Scan object for clusterable pages.
315	 *
316	 * We can cluster ONLY if: ->> the page is NOT
317	 * clean, wired, busy, held, or mapped into a
318	 * buffer, and one of the following:
319	 * 1) The page is inactive, or a seldom used
320	 *    active page.
321	 * -or-
322	 * 2) we force the issue.
323	 *
324	 * During heavy mmap/modification loads the pageout
325	 * daemon can really fragment the underlying file
326	 * due to flushing pages out of order and not trying
327	 * align the clusters (which leave sporatic out-of-order
328	 * holes).  To solve this problem we do the reverse scan
329	 * first and attempt to align our cluster, then do a
330	 * forward scan if room remains.
331	 */
332	object = m->object;
333more:
334	while (ib && pageout_count < vm_pageout_page_count) {
335		vm_page_t p;
336
337		if (ib > pindex) {
338			ib = 0;
339			break;
340		}
341
342		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
343			ib = 0;
344			break;
345		}
346		if ((p->oflags & VPO_BUSY) || p->busy) {
347			ib = 0;
348			break;
349		}
350		vm_page_test_dirty(p);
351		if (p->dirty == 0 ||
352		    p->queue != PQ_INACTIVE ||
353		    p->wire_count != 0 ||	/* may be held by buf cache */
354		    p->hold_count != 0) {	/* may be undergoing I/O */
355			ib = 0;
356			break;
357		}
358		mc[--page_base] = p;
359		++pageout_count;
360		++ib;
361		/*
362		 * alignment boundry, stop here and switch directions.  Do
363		 * not clear ib.
364		 */
365		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
366			break;
367	}
368
369	while (pageout_count < vm_pageout_page_count &&
370	    pindex + is < object->size) {
371		vm_page_t p;
372
373		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
374			break;
375		if ((p->oflags & VPO_BUSY) || p->busy) {
376			break;
377		}
378		vm_page_test_dirty(p);
379		if (p->dirty == 0 ||
380		    p->queue != PQ_INACTIVE ||
381		    p->wire_count != 0 ||	/* may be held by buf cache */
382		    p->hold_count != 0) {	/* may be undergoing I/O */
383			break;
384		}
385		mc[page_base + pageout_count] = p;
386		++pageout_count;
387		++is;
388	}
389
390	/*
391	 * If we exhausted our forward scan, continue with the reverse scan
392	 * when possible, even past a page boundry.  This catches boundry
393	 * conditions.
394	 */
395	if (ib && pageout_count < vm_pageout_page_count)
396		goto more;
397
398	/*
399	 * we allow reads during pageouts...
400	 */
401	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402}
403
404/*
405 * vm_pageout_flush() - launder the given pages
406 *
407 *	The given pages are laundered.  Note that we setup for the start of
408 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
409 *	reference count all in here rather then in the parent.  If we want
410 *	the parent to do more sophisticated things we may have to change
411 *	the ordering.
412 */
413int
414vm_pageout_flush(vm_page_t *mc, int count, int flags)
415{
416	vm_object_t object = mc[0]->object;
417	int pageout_status[count];
418	int numpagedout = 0;
419	int i;
420
421	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423	/*
424	 * Initiate I/O.  Bump the vm_page_t->busy counter and
425	 * mark the pages read-only.
426	 *
427	 * We do not have to fixup the clean/dirty bits here... we can
428	 * allow the pager to do it after the I/O completes.
429	 *
430	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
431	 * edge case with file fragments.
432	 */
433	for (i = 0; i < count; i++) {
434		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
436			mc[i], i, count));
437		vm_page_io_start(mc[i]);
438		pmap_remove_write(mc[i]);
439	}
440	vm_page_unlock_queues();
441	vm_object_pip_add(object, count);
442
443	vm_pager_put_pages(object, mc, count, flags, pageout_status);
444
445	vm_page_lock_queues();
446	for (i = 0; i < count; i++) {
447		vm_page_t mt = mc[i];
448
449		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
450		    (mt->flags & PG_WRITEABLE) == 0,
451		    ("vm_pageout_flush: page %p is not write protected", mt));
452		switch (pageout_status[i]) {
453		case VM_PAGER_OK:
454		case VM_PAGER_PEND:
455			numpagedout++;
456			break;
457		case VM_PAGER_BAD:
458			/*
459			 * Page outside of range of object. Right now we
460			 * essentially lose the changes by pretending it
461			 * worked.
462			 */
463			vm_page_undirty(mt);
464			break;
465		case VM_PAGER_ERROR:
466		case VM_PAGER_FAIL:
467			/*
468			 * If page couldn't be paged out, then reactivate the
469			 * page so it doesn't clog the inactive list.  (We
470			 * will try paging out it again later).
471			 */
472			vm_page_activate(mt);
473			break;
474		case VM_PAGER_AGAIN:
475			break;
476		}
477
478		/*
479		 * If the operation is still going, leave the page busy to
480		 * block all other accesses. Also, leave the paging in
481		 * progress indicator set so that we don't attempt an object
482		 * collapse.
483		 */
484		if (pageout_status[i] != VM_PAGER_PEND) {
485			vm_object_pip_wakeup(object);
486			vm_page_io_finish(mt);
487			if (vm_page_count_severe())
488				vm_page_try_to_cache(mt);
489		}
490	}
491	return numpagedout;
492}
493
494#if !defined(NO_SWAPPING)
495/*
496 *	vm_pageout_object_deactivate_pages
497 *
498 *	deactivate enough pages to satisfy the inactive target
499 *	requirements or if vm_page_proc_limit is set, then
500 *	deactivate all of the pages in the object and its
501 *	backing_objects.
502 *
503 *	The object and map must be locked.
504 */
505static void
506vm_pageout_object_deactivate_pages(pmap, first_object, desired)
507	pmap_t pmap;
508	vm_object_t first_object;
509	long desired;
510{
511	vm_object_t backing_object, object;
512	vm_page_t p, next;
513	int actcount, rcount, remove_mode;
514
515	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
516	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
517		return;
518	for (object = first_object;; object = backing_object) {
519		if (pmap_resident_count(pmap) <= desired)
520			goto unlock_return;
521		if (object->paging_in_progress)
522			goto unlock_return;
523
524		remove_mode = 0;
525		if (object->shadow_count > 1)
526			remove_mode = 1;
527		/*
528		 * scan the objects entire memory queue
529		 */
530		rcount = object->resident_page_count;
531		p = TAILQ_FIRST(&object->memq);
532		vm_page_lock_queues();
533		while (p && (rcount-- > 0)) {
534			if (pmap_resident_count(pmap) <= desired) {
535				vm_page_unlock_queues();
536				goto unlock_return;
537			}
538			next = TAILQ_NEXT(p, listq);
539			cnt.v_pdpages++;
540			if (p->wire_count != 0 ||
541			    p->hold_count != 0 ||
542			    p->busy != 0 ||
543			    (p->oflags & VPO_BUSY) ||
544			    (p->flags & PG_UNMANAGED) ||
545			    !pmap_page_exists_quick(pmap, p)) {
546				p = next;
547				continue;
548			}
549			actcount = pmap_ts_referenced(p);
550			if (actcount) {
551				vm_page_flag_set(p, PG_REFERENCED);
552			} else if (p->flags & PG_REFERENCED) {
553				actcount = 1;
554			}
555			if ((p->queue != PQ_ACTIVE) &&
556				(p->flags & PG_REFERENCED)) {
557				vm_page_activate(p);
558				p->act_count += actcount;
559				vm_page_flag_clear(p, PG_REFERENCED);
560			} else if (p->queue == PQ_ACTIVE) {
561				if ((p->flags & PG_REFERENCED) == 0) {
562					p->act_count -= min(p->act_count, ACT_DECLINE);
563					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
564						pmap_remove_all(p);
565						vm_page_deactivate(p);
566					} else {
567						vm_page_requeue(p);
568					}
569				} else {
570					vm_page_activate(p);
571					vm_page_flag_clear(p, PG_REFERENCED);
572					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
573						p->act_count += ACT_ADVANCE;
574					vm_page_requeue(p);
575				}
576			} else if (p->queue == PQ_INACTIVE) {
577				pmap_remove_all(p);
578			}
579			p = next;
580		}
581		vm_page_unlock_queues();
582		if ((backing_object = object->backing_object) == NULL)
583			goto unlock_return;
584		VM_OBJECT_LOCK(backing_object);
585		if (object != first_object)
586			VM_OBJECT_UNLOCK(object);
587	}
588unlock_return:
589	if (object != first_object)
590		VM_OBJECT_UNLOCK(object);
591}
592
593/*
594 * deactivate some number of pages in a map, try to do it fairly, but
595 * that is really hard to do.
596 */
597static void
598vm_pageout_map_deactivate_pages(map, desired)
599	vm_map_t map;
600	long desired;
601{
602	vm_map_entry_t tmpe;
603	vm_object_t obj, bigobj;
604	int nothingwired;
605
606	if (!vm_map_trylock(map))
607		return;
608
609	bigobj = NULL;
610	nothingwired = TRUE;
611
612	/*
613	 * first, search out the biggest object, and try to free pages from
614	 * that.
615	 */
616	tmpe = map->header.next;
617	while (tmpe != &map->header) {
618		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
619			obj = tmpe->object.vm_object;
620			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
621				if (obj->shadow_count <= 1 &&
622				    (bigobj == NULL ||
623				     bigobj->resident_page_count < obj->resident_page_count)) {
624					if (bigobj != NULL)
625						VM_OBJECT_UNLOCK(bigobj);
626					bigobj = obj;
627				} else
628					VM_OBJECT_UNLOCK(obj);
629			}
630		}
631		if (tmpe->wired_count > 0)
632			nothingwired = FALSE;
633		tmpe = tmpe->next;
634	}
635
636	if (bigobj != NULL) {
637		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
638		VM_OBJECT_UNLOCK(bigobj);
639	}
640	/*
641	 * Next, hunt around for other pages to deactivate.  We actually
642	 * do this search sort of wrong -- .text first is not the best idea.
643	 */
644	tmpe = map->header.next;
645	while (tmpe != &map->header) {
646		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
647			break;
648		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
649			obj = tmpe->object.vm_object;
650			if (obj != NULL) {
651				VM_OBJECT_LOCK(obj);
652				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
653				VM_OBJECT_UNLOCK(obj);
654			}
655		}
656		tmpe = tmpe->next;
657	}
658
659	/*
660	 * Remove all mappings if a process is swapped out, this will free page
661	 * table pages.
662	 */
663	if (desired == 0 && nothingwired) {
664		pmap_remove(vm_map_pmap(map), vm_map_min(map),
665		    vm_map_max(map));
666	}
667	vm_map_unlock(map);
668}
669#endif		/* !defined(NO_SWAPPING) */
670
671/*
672 *	vm_pageout_scan does the dirty work for the pageout daemon.
673 */
674static void
675vm_pageout_scan(int pass)
676{
677	vm_page_t m, next;
678	struct vm_page marker;
679	int page_shortage, maxscan, pcount;
680	int addl_page_shortage, addl_page_shortage_init;
681	vm_object_t object;
682	int actcount;
683	int vnodes_skipped = 0;
684	int maxlaunder;
685
686	/*
687	 * Decrease registered cache sizes.
688	 */
689	EVENTHANDLER_INVOKE(vm_lowmem, 0);
690	/*
691	 * We do this explicitly after the caches have been drained above.
692	 */
693	uma_reclaim();
694
695	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
696
697	/*
698	 * Calculate the number of pages we want to either free or move
699	 * to the cache.
700	 */
701	page_shortage = vm_paging_target() + addl_page_shortage_init;
702
703	/*
704	 * Initialize our marker
705	 */
706	bzero(&marker, sizeof(marker));
707	marker.flags = PG_FICTITIOUS | PG_MARKER;
708	marker.oflags = VPO_BUSY;
709	marker.queue = PQ_INACTIVE;
710	marker.wire_count = 1;
711
712	/*
713	 * Start scanning the inactive queue for pages we can move to the
714	 * cache or free.  The scan will stop when the target is reached or
715	 * we have scanned the entire inactive queue.  Note that m->act_count
716	 * is not used to form decisions for the inactive queue, only for the
717	 * active queue.
718	 *
719	 * maxlaunder limits the number of dirty pages we flush per scan.
720	 * For most systems a smaller value (16 or 32) is more robust under
721	 * extreme memory and disk pressure because any unnecessary writes
722	 * to disk can result in extreme performance degredation.  However,
723	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
724	 * used) will die horribly with limited laundering.  If the pageout
725	 * daemon cannot clean enough pages in the first pass, we let it go
726	 * all out in succeeding passes.
727	 */
728	if ((maxlaunder = vm_max_launder) <= 1)
729		maxlaunder = 1;
730	if (pass)
731		maxlaunder = 10000;
732	vm_page_lock_queues();
733rescan0:
734	addl_page_shortage = addl_page_shortage_init;
735	maxscan = cnt.v_inactive_count;
736
737	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
738	     m != NULL && maxscan-- > 0 && page_shortage > 0;
739	     m = next) {
740
741		cnt.v_pdpages++;
742
743		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
744			goto rescan0;
745		}
746
747		next = TAILQ_NEXT(m, pageq);
748		object = m->object;
749
750		/*
751		 * skip marker pages
752		 */
753		if (m->flags & PG_MARKER)
754			continue;
755
756		/*
757		 * A held page may be undergoing I/O, so skip it.
758		 */
759		if (m->hold_count) {
760			vm_page_requeue(m);
761			addl_page_shortage++;
762			continue;
763		}
764		/*
765		 * Don't mess with busy pages, keep in the front of the
766		 * queue, most likely are being paged out.
767		 */
768		if (!VM_OBJECT_TRYLOCK(object) &&
769		    (!vm_pageout_fallback_object_lock(m, &next) ||
770		     m->hold_count != 0)) {
771			VM_OBJECT_UNLOCK(object);
772			addl_page_shortage++;
773			continue;
774		}
775		if (m->busy || (m->oflags & VPO_BUSY)) {
776			VM_OBJECT_UNLOCK(object);
777			addl_page_shortage++;
778			continue;
779		}
780
781		/*
782		 * If the object is not being used, we ignore previous
783		 * references.
784		 */
785		if (object->ref_count == 0) {
786			vm_page_flag_clear(m, PG_REFERENCED);
787			KASSERT(!pmap_page_is_mapped(m),
788			    ("vm_pageout_scan: page %p is mapped", m));
789
790		/*
791		 * Otherwise, if the page has been referenced while in the
792		 * inactive queue, we bump the "activation count" upwards,
793		 * making it less likely that the page will be added back to
794		 * the inactive queue prematurely again.  Here we check the
795		 * page tables (or emulated bits, if any), given the upper
796		 * level VM system not knowing anything about existing
797		 * references.
798		 */
799		} else if (((m->flags & PG_REFERENCED) == 0) &&
800			(actcount = pmap_ts_referenced(m))) {
801			vm_page_activate(m);
802			VM_OBJECT_UNLOCK(object);
803			m->act_count += (actcount + ACT_ADVANCE);
804			continue;
805		}
806
807		/*
808		 * If the upper level VM system knows about any page
809		 * references, we activate the page.  We also set the
810		 * "activation count" higher than normal so that we will less
811		 * likely place pages back onto the inactive queue again.
812		 */
813		if ((m->flags & PG_REFERENCED) != 0) {
814			vm_page_flag_clear(m, PG_REFERENCED);
815			actcount = pmap_ts_referenced(m);
816			vm_page_activate(m);
817			VM_OBJECT_UNLOCK(object);
818			m->act_count += (actcount + ACT_ADVANCE + 1);
819			continue;
820		}
821
822		/*
823		 * If the upper level VM system does not believe that the page
824		 * is fully dirty, but it is mapped for write access, then we
825		 * consult the pmap to see if the page's dirty status should
826		 * be updated.
827		 */
828		if (m->dirty != VM_PAGE_BITS_ALL &&
829		    (m->flags & PG_WRITEABLE) != 0) {
830			/*
831			 * Avoid a race condition: Unless write access is
832			 * removed from the page, another processor could
833			 * modify it before all access is removed by the call
834			 * to vm_page_cache() below.  If vm_page_cache() finds
835			 * that the page has been modified when it removes all
836			 * access, it panics because it cannot cache dirty
837			 * pages.  In principle, we could eliminate just write
838			 * access here rather than all access.  In the expected
839			 * case, when there are no last instant modifications
840			 * to the page, removing all access will be cheaper
841			 * overall.
842			 */
843			if (pmap_is_modified(m))
844				vm_page_dirty(m);
845			else if (m->dirty == 0)
846				pmap_remove_all(m);
847		}
848
849		if (m->valid == 0) {
850			/*
851			 * Invalid pages can be easily freed
852			 */
853			vm_page_free(m);
854			cnt.v_dfree++;
855			--page_shortage;
856		} else if (m->dirty == 0) {
857			/*
858			 * Clean pages can be placed onto the cache queue.
859			 * This effectively frees them.
860			 */
861			vm_page_cache(m);
862			--page_shortage;
863		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
864			/*
865			 * Dirty pages need to be paged out, but flushing
866			 * a page is extremely expensive verses freeing
867			 * a clean page.  Rather then artificially limiting
868			 * the number of pages we can flush, we instead give
869			 * dirty pages extra priority on the inactive queue
870			 * by forcing them to be cycled through the queue
871			 * twice before being flushed, after which the
872			 * (now clean) page will cycle through once more
873			 * before being freed.  This significantly extends
874			 * the thrash point for a heavily loaded machine.
875			 */
876			vm_page_flag_set(m, PG_WINATCFLS);
877			vm_page_requeue(m);
878		} else if (maxlaunder > 0) {
879			/*
880			 * We always want to try to flush some dirty pages if
881			 * we encounter them, to keep the system stable.
882			 * Normally this number is small, but under extreme
883			 * pressure where there are insufficient clean pages
884			 * on the inactive queue, we may have to go all out.
885			 */
886			int swap_pageouts_ok, vfslocked = 0;
887			struct vnode *vp = NULL;
888			struct mount *mp = NULL;
889
890			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
891				swap_pageouts_ok = 1;
892			} else {
893				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
894				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
895				vm_page_count_min());
896
897			}
898
899			/*
900			 * We don't bother paging objects that are "dead".
901			 * Those objects are in a "rundown" state.
902			 */
903			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
904				VM_OBJECT_UNLOCK(object);
905				vm_page_requeue(m);
906				continue;
907			}
908
909			/*
910			 * Following operations may unlock
911			 * vm_page_queue_mtx, invalidating the 'next'
912			 * pointer.  To prevent an inordinate number
913			 * of restarts we use our marker to remember
914			 * our place.
915			 *
916			 */
917			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
918					   m, &marker, pageq);
919			/*
920			 * The object is already known NOT to be dead.   It
921			 * is possible for the vget() to block the whole
922			 * pageout daemon, but the new low-memory handling
923			 * code should prevent it.
924			 *
925			 * The previous code skipped locked vnodes and, worse,
926			 * reordered pages in the queue.  This results in
927			 * completely non-deterministic operation and, on a
928			 * busy system, can lead to extremely non-optimal
929			 * pageouts.  For example, it can cause clean pages
930			 * to be freed and dirty pages to be moved to the end
931			 * of the queue.  Since dirty pages are also moved to
932			 * the end of the queue once-cleaned, this gives
933			 * way too large a weighting to defering the freeing
934			 * of dirty pages.
935			 *
936			 * We can't wait forever for the vnode lock, we might
937			 * deadlock due to a vn_read() getting stuck in
938			 * vm_wait while holding this vnode.  We skip the
939			 * vnode if we can't get it in a reasonable amount
940			 * of time.
941			 */
942			if (object->type == OBJT_VNODE) {
943				vp = object->handle;
944				if (vp->v_type == VREG &&
945				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
946					mp = NULL;
947					++pageout_lock_miss;
948					if (object->flags & OBJ_MIGHTBEDIRTY)
949						vnodes_skipped++;
950					goto unlock_and_continue;
951				}
952				vm_page_unlock_queues();
953				vm_object_reference_locked(object);
954				VM_OBJECT_UNLOCK(object);
955				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
956				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
957				    curthread)) {
958					VM_OBJECT_LOCK(object);
959					vm_page_lock_queues();
960					++pageout_lock_miss;
961					if (object->flags & OBJ_MIGHTBEDIRTY)
962						vnodes_skipped++;
963					vp = NULL;
964					goto unlock_and_continue;
965				}
966				VM_OBJECT_LOCK(object);
967				vm_page_lock_queues();
968				/*
969				 * The page might have been moved to another
970				 * queue during potential blocking in vget()
971				 * above.  The page might have been freed and
972				 * reused for another vnode.
973				 */
974				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
975				    m->object != object ||
976				    TAILQ_NEXT(m, pageq) != &marker) {
977					if (object->flags & OBJ_MIGHTBEDIRTY)
978						vnodes_skipped++;
979					goto unlock_and_continue;
980				}
981
982				/*
983				 * The page may have been busied during the
984				 * blocking in vget().  We don't move the
985				 * page back onto the end of the queue so that
986				 * statistics are more correct if we don't.
987				 */
988				if (m->busy || (m->oflags & VPO_BUSY)) {
989					goto unlock_and_continue;
990				}
991
992				/*
993				 * If the page has become held it might
994				 * be undergoing I/O, so skip it
995				 */
996				if (m->hold_count) {
997					vm_page_requeue(m);
998					if (object->flags & OBJ_MIGHTBEDIRTY)
999						vnodes_skipped++;
1000					goto unlock_and_continue;
1001				}
1002			}
1003
1004			/*
1005			 * If a page is dirty, then it is either being washed
1006			 * (but not yet cleaned) or it is still in the
1007			 * laundry.  If it is still in the laundry, then we
1008			 * start the cleaning operation.
1009			 *
1010			 * decrement page_shortage on success to account for
1011			 * the (future) cleaned page.  Otherwise we could wind
1012			 * up laundering or cleaning too many pages.
1013			 */
1014			if (vm_pageout_clean(m) != 0) {
1015				--page_shortage;
1016				--maxlaunder;
1017			}
1018unlock_and_continue:
1019			VM_OBJECT_UNLOCK(object);
1020			if (mp != NULL) {
1021				vm_page_unlock_queues();
1022				if (vp != NULL)
1023					vput(vp);
1024				VFS_UNLOCK_GIANT(vfslocked);
1025				vm_object_deallocate(object);
1026				vn_finished_write(mp);
1027				vm_page_lock_queues();
1028			}
1029			next = TAILQ_NEXT(&marker, pageq);
1030			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1031				     &marker, pageq);
1032			continue;
1033		}
1034		VM_OBJECT_UNLOCK(object);
1035	}
1036
1037	/*
1038	 * Compute the number of pages we want to try to move from the
1039	 * active queue to the inactive queue.
1040	 */
1041	page_shortage = vm_paging_target() +
1042		cnt.v_inactive_target - cnt.v_inactive_count;
1043	page_shortage += addl_page_shortage;
1044
1045	/*
1046	 * Scan the active queue for things we can deactivate. We nominally
1047	 * track the per-page activity counter and use it to locate
1048	 * deactivation candidates.
1049	 */
1050	pcount = cnt.v_active_count;
1051	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1052
1053	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1054
1055		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1056		    ("vm_pageout_scan: page %p isn't active", m));
1057
1058		next = TAILQ_NEXT(m, pageq);
1059		object = m->object;
1060		if ((m->flags & PG_MARKER) != 0) {
1061			m = next;
1062			continue;
1063		}
1064		if (!VM_OBJECT_TRYLOCK(object) &&
1065		    !vm_pageout_fallback_object_lock(m, &next)) {
1066			VM_OBJECT_UNLOCK(object);
1067			m = next;
1068			continue;
1069		}
1070
1071		/*
1072		 * Don't deactivate pages that are busy.
1073		 */
1074		if ((m->busy != 0) ||
1075		    (m->oflags & VPO_BUSY) ||
1076		    (m->hold_count != 0)) {
1077			VM_OBJECT_UNLOCK(object);
1078			vm_page_requeue(m);
1079			m = next;
1080			continue;
1081		}
1082
1083		/*
1084		 * The count for pagedaemon pages is done after checking the
1085		 * page for eligibility...
1086		 */
1087		cnt.v_pdpages++;
1088
1089		/*
1090		 * Check to see "how much" the page has been used.
1091		 */
1092		actcount = 0;
1093		if (object->ref_count != 0) {
1094			if (m->flags & PG_REFERENCED) {
1095				actcount += 1;
1096			}
1097			actcount += pmap_ts_referenced(m);
1098			if (actcount) {
1099				m->act_count += ACT_ADVANCE + actcount;
1100				if (m->act_count > ACT_MAX)
1101					m->act_count = ACT_MAX;
1102			}
1103		}
1104
1105		/*
1106		 * Since we have "tested" this bit, we need to clear it now.
1107		 */
1108		vm_page_flag_clear(m, PG_REFERENCED);
1109
1110		/*
1111		 * Only if an object is currently being used, do we use the
1112		 * page activation count stats.
1113		 */
1114		if (actcount && (object->ref_count != 0)) {
1115			vm_page_requeue(m);
1116		} else {
1117			m->act_count -= min(m->act_count, ACT_DECLINE);
1118			if (vm_pageout_algorithm ||
1119			    object->ref_count == 0 ||
1120			    m->act_count == 0) {
1121				page_shortage--;
1122				if (object->ref_count == 0) {
1123					pmap_remove_all(m);
1124					if (m->dirty == 0)
1125						vm_page_cache(m);
1126					else
1127						vm_page_deactivate(m);
1128				} else {
1129					vm_page_deactivate(m);
1130				}
1131			} else {
1132				vm_page_requeue(m);
1133			}
1134		}
1135		VM_OBJECT_UNLOCK(object);
1136		m = next;
1137	}
1138	vm_page_unlock_queues();
1139#if !defined(NO_SWAPPING)
1140	/*
1141	 * Idle process swapout -- run once per second.
1142	 */
1143	if (vm_swap_idle_enabled) {
1144		static long lsec;
1145		if (time_second != lsec) {
1146			vm_req_vmdaemon(VM_SWAP_IDLE);
1147			lsec = time_second;
1148		}
1149	}
1150#endif
1151
1152	/*
1153	 * If we didn't get enough free pages, and we have skipped a vnode
1154	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1155	 * if we did not get enough free pages.
1156	 */
1157	if (vm_paging_target() > 0) {
1158		if (vnodes_skipped && vm_page_count_min())
1159			(void) speedup_syncer();
1160#if !defined(NO_SWAPPING)
1161		if (vm_swap_enabled && vm_page_count_target())
1162			vm_req_vmdaemon(VM_SWAP_NORMAL);
1163#endif
1164	}
1165
1166	/*
1167	 * If we are critically low on one of RAM or swap and low on
1168	 * the other, kill the largest process.  However, we avoid
1169	 * doing this on the first pass in order to give ourselves a
1170	 * chance to flush out dirty vnode-backed pages and to allow
1171	 * active pages to be moved to the inactive queue and reclaimed.
1172	 */
1173	if (pass != 0 &&
1174	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1175	     (swap_pager_full && vm_paging_target() > 0)))
1176		vm_pageout_oom(VM_OOM_MEM);
1177}
1178
1179
1180void
1181vm_pageout_oom(int shortage)
1182{
1183	struct proc *p, *bigproc;
1184	vm_offset_t size, bigsize;
1185	struct thread *td;
1186	struct vmspace *vm;
1187
1188	/*
1189	 * We keep the process bigproc locked once we find it to keep anyone
1190	 * from messing with it; however, there is a possibility of
1191	 * deadlock if process B is bigproc and one of it's child processes
1192	 * attempts to propagate a signal to B while we are waiting for A's
1193	 * lock while walking this list.  To avoid this, we don't block on
1194	 * the process lock but just skip a process if it is already locked.
1195	 */
1196	bigproc = NULL;
1197	bigsize = 0;
1198	sx_slock(&allproc_lock);
1199	FOREACH_PROC_IN_SYSTEM(p) {
1200		int breakout;
1201
1202		if (PROC_TRYLOCK(p) == 0)
1203			continue;
1204		/*
1205		 * If this is a system or protected process, skip it.
1206		 */
1207		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1208		    (p->p_pid == 1) ||
1209		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1210			PROC_UNLOCK(p);
1211			continue;
1212		}
1213		/*
1214		 * If the process is in a non-running type state,
1215		 * don't touch it.  Check all the threads individually.
1216		 */
1217		breakout = 0;
1218		FOREACH_THREAD_IN_PROC(p, td) {
1219			thread_lock(td);
1220			if (!TD_ON_RUNQ(td) &&
1221			    !TD_IS_RUNNING(td) &&
1222			    !TD_IS_SLEEPING(td)) {
1223				thread_unlock(td);
1224				breakout = 1;
1225				break;
1226			}
1227			thread_unlock(td);
1228		}
1229		if (breakout) {
1230			PROC_UNLOCK(p);
1231			continue;
1232		}
1233		/*
1234		 * get the process size
1235		 */
1236		vm = vmspace_acquire_ref(p);
1237		if (vm == NULL) {
1238			PROC_UNLOCK(p);
1239			continue;
1240		}
1241		if (!vm_map_trylock_read(&vm->vm_map)) {
1242			vmspace_free(vm);
1243			PROC_UNLOCK(p);
1244			continue;
1245		}
1246		size = vmspace_swap_count(vm);
1247		vm_map_unlock_read(&vm->vm_map);
1248		if (shortage == VM_OOM_MEM)
1249			size += vmspace_resident_count(vm);
1250		vmspace_free(vm);
1251		/*
1252		 * if the this process is bigger than the biggest one
1253		 * remember it.
1254		 */
1255		if (size > bigsize) {
1256			if (bigproc != NULL)
1257				PROC_UNLOCK(bigproc);
1258			bigproc = p;
1259			bigsize = size;
1260		} else
1261			PROC_UNLOCK(p);
1262	}
1263	sx_sunlock(&allproc_lock);
1264	if (bigproc != NULL) {
1265		killproc(bigproc, "out of swap space");
1266		sched_nice(bigproc, PRIO_MIN);
1267		PROC_UNLOCK(bigproc);
1268		wakeup(&cnt.v_free_count);
1269	}
1270}
1271
1272/*
1273 * This routine tries to maintain the pseudo LRU active queue,
1274 * so that during long periods of time where there is no paging,
1275 * that some statistic accumulation still occurs.  This code
1276 * helps the situation where paging just starts to occur.
1277 */
1278static void
1279vm_pageout_page_stats()
1280{
1281	vm_object_t object;
1282	vm_page_t m,next;
1283	int pcount,tpcount;		/* Number of pages to check */
1284	static int fullintervalcount = 0;
1285	int page_shortage;
1286
1287	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1288	page_shortage =
1289	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1290	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1291
1292	if (page_shortage <= 0)
1293		return;
1294
1295	pcount = cnt.v_active_count;
1296	fullintervalcount += vm_pageout_stats_interval;
1297	if (fullintervalcount < vm_pageout_full_stats_interval) {
1298		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1299		    cnt.v_page_count;
1300		if (pcount > tpcount)
1301			pcount = tpcount;
1302	} else {
1303		fullintervalcount = 0;
1304	}
1305
1306	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1307	while ((m != NULL) && (pcount-- > 0)) {
1308		int actcount;
1309
1310		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1311		    ("vm_pageout_page_stats: page %p isn't active", m));
1312
1313		next = TAILQ_NEXT(m, pageq);
1314		object = m->object;
1315
1316		if ((m->flags & PG_MARKER) != 0) {
1317			m = next;
1318			continue;
1319		}
1320		if (!VM_OBJECT_TRYLOCK(object) &&
1321		    !vm_pageout_fallback_object_lock(m, &next)) {
1322			VM_OBJECT_UNLOCK(object);
1323			m = next;
1324			continue;
1325		}
1326
1327		/*
1328		 * Don't deactivate pages that are busy.
1329		 */
1330		if ((m->busy != 0) ||
1331		    (m->oflags & VPO_BUSY) ||
1332		    (m->hold_count != 0)) {
1333			VM_OBJECT_UNLOCK(object);
1334			vm_page_requeue(m);
1335			m = next;
1336			continue;
1337		}
1338
1339		actcount = 0;
1340		if (m->flags & PG_REFERENCED) {
1341			vm_page_flag_clear(m, PG_REFERENCED);
1342			actcount += 1;
1343		}
1344
1345		actcount += pmap_ts_referenced(m);
1346		if (actcount) {
1347			m->act_count += ACT_ADVANCE + actcount;
1348			if (m->act_count > ACT_MAX)
1349				m->act_count = ACT_MAX;
1350			vm_page_requeue(m);
1351		} else {
1352			if (m->act_count == 0) {
1353				/*
1354				 * We turn off page access, so that we have
1355				 * more accurate RSS stats.  We don't do this
1356				 * in the normal page deactivation when the
1357				 * system is loaded VM wise, because the
1358				 * cost of the large number of page protect
1359				 * operations would be higher than the value
1360				 * of doing the operation.
1361				 */
1362				pmap_remove_all(m);
1363				vm_page_deactivate(m);
1364			} else {
1365				m->act_count -= min(m->act_count, ACT_DECLINE);
1366				vm_page_requeue(m);
1367			}
1368		}
1369		VM_OBJECT_UNLOCK(object);
1370		m = next;
1371	}
1372}
1373
1374/*
1375 *	vm_pageout is the high level pageout daemon.
1376 */
1377static void
1378vm_pageout()
1379{
1380	int error, pass;
1381
1382	/*
1383	 * Initialize some paging parameters.
1384	 */
1385	cnt.v_interrupt_free_min = 2;
1386	if (cnt.v_page_count < 2000)
1387		vm_pageout_page_count = 8;
1388
1389	/*
1390	 * v_free_reserved needs to include enough for the largest
1391	 * swap pager structures plus enough for any pv_entry structs
1392	 * when paging.
1393	 */
1394	if (cnt.v_page_count > 1024)
1395		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1396	else
1397		cnt.v_free_min = 4;
1398	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1399	    cnt.v_interrupt_free_min;
1400	cnt.v_free_reserved = vm_pageout_page_count +
1401	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1402	cnt.v_free_severe = cnt.v_free_min / 2;
1403	cnt.v_free_min += cnt.v_free_reserved;
1404	cnt.v_free_severe += cnt.v_free_reserved;
1405
1406	/*
1407	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1408	 * that these are more a measure of the VM cache queue hysteresis
1409	 * then the VM free queue.  Specifically, v_free_target is the
1410	 * high water mark (free+cache pages).
1411	 *
1412	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1413	 * low water mark, while v_free_min is the stop.  v_cache_min must
1414	 * be big enough to handle memory needs while the pageout daemon
1415	 * is signalled and run to free more pages.
1416	 */
1417	if (cnt.v_free_count > 6144)
1418		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1419	else
1420		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1421
1422	if (cnt.v_free_count > 2048) {
1423		cnt.v_cache_min = cnt.v_free_target;
1424		cnt.v_cache_max = 2 * cnt.v_cache_min;
1425		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1426	} else {
1427		cnt.v_cache_min = 0;
1428		cnt.v_cache_max = 0;
1429		cnt.v_inactive_target = cnt.v_free_count / 4;
1430	}
1431	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1432		cnt.v_inactive_target = cnt.v_free_count / 3;
1433
1434	/* XXX does not really belong here */
1435	if (vm_page_max_wired == 0)
1436		vm_page_max_wired = cnt.v_free_count / 3;
1437
1438	if (vm_pageout_stats_max == 0)
1439		vm_pageout_stats_max = cnt.v_free_target;
1440
1441	/*
1442	 * Set interval in seconds for stats scan.
1443	 */
1444	if (vm_pageout_stats_interval == 0)
1445		vm_pageout_stats_interval = 5;
1446	if (vm_pageout_full_stats_interval == 0)
1447		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1448
1449	swap_pager_swap_init();
1450	pass = 0;
1451	/*
1452	 * The pageout daemon is never done, so loop forever.
1453	 */
1454	while (TRUE) {
1455		/*
1456		 * If we have enough free memory, wakeup waiters.  Do
1457		 * not clear vm_pages_needed until we reach our target,
1458		 * otherwise we may be woken up over and over again and
1459		 * waste a lot of cpu.
1460		 */
1461		mtx_lock(&vm_page_queue_free_mtx);
1462		if (vm_pages_needed && !vm_page_count_min()) {
1463			if (!vm_paging_needed())
1464				vm_pages_needed = 0;
1465			wakeup(&cnt.v_free_count);
1466		}
1467		if (vm_pages_needed) {
1468			/*
1469			 * Still not done, take a second pass without waiting
1470			 * (unlimited dirty cleaning), otherwise sleep a bit
1471			 * and try again.
1472			 */
1473			++pass;
1474			if (pass > 1)
1475				msleep(&vm_pages_needed,
1476				    &vm_page_queue_free_mtx, PVM, "psleep",
1477				    hz / 2);
1478		} else {
1479			/*
1480			 * Good enough, sleep & handle stats.  Prime the pass
1481			 * for the next run.
1482			 */
1483			if (pass > 1)
1484				pass = 1;
1485			else
1486				pass = 0;
1487			error = msleep(&vm_pages_needed,
1488			    &vm_page_queue_free_mtx, PVM, "psleep",
1489			    vm_pageout_stats_interval * hz);
1490			if (error && !vm_pages_needed) {
1491				mtx_unlock(&vm_page_queue_free_mtx);
1492				pass = 0;
1493				vm_page_lock_queues();
1494				vm_pageout_page_stats();
1495				vm_page_unlock_queues();
1496				continue;
1497			}
1498		}
1499		if (vm_pages_needed)
1500			cnt.v_pdwakeups++;
1501		mtx_unlock(&vm_page_queue_free_mtx);
1502		vm_pageout_scan(pass);
1503	}
1504}
1505
1506/*
1507 * Unless the free page queue lock is held by the caller, this function
1508 * should be regarded as advisory.  Specifically, the caller should
1509 * not msleep() on &cnt.v_free_count following this function unless
1510 * the free page queue lock is held until the msleep() is performed.
1511 */
1512void
1513pagedaemon_wakeup()
1514{
1515
1516	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1517		vm_pages_needed = 1;
1518		wakeup(&vm_pages_needed);
1519	}
1520}
1521
1522#if !defined(NO_SWAPPING)
1523static void
1524vm_req_vmdaemon(int req)
1525{
1526	static int lastrun = 0;
1527
1528	mtx_lock(&vm_daemon_mtx);
1529	vm_pageout_req_swapout |= req;
1530	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1531		wakeup(&vm_daemon_needed);
1532		lastrun = ticks;
1533	}
1534	mtx_unlock(&vm_daemon_mtx);
1535}
1536
1537static void
1538vm_daemon()
1539{
1540	struct rlimit rsslim;
1541	struct proc *p;
1542	struct thread *td;
1543	struct vmspace *vm;
1544	int breakout, swapout_flags;
1545
1546	while (TRUE) {
1547		mtx_lock(&vm_daemon_mtx);
1548		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1549		swapout_flags = vm_pageout_req_swapout;
1550		vm_pageout_req_swapout = 0;
1551		mtx_unlock(&vm_daemon_mtx);
1552		if (swapout_flags)
1553			swapout_procs(swapout_flags);
1554
1555		/*
1556		 * scan the processes for exceeding their rlimits or if
1557		 * process is swapped out -- deactivate pages
1558		 */
1559		sx_slock(&allproc_lock);
1560		FOREACH_PROC_IN_SYSTEM(p) {
1561			vm_pindex_t limit, size;
1562
1563			/*
1564			 * if this is a system process or if we have already
1565			 * looked at this process, skip it.
1566			 */
1567			PROC_LOCK(p);
1568			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1569				PROC_UNLOCK(p);
1570				continue;
1571			}
1572			/*
1573			 * if the process is in a non-running type state,
1574			 * don't touch it.
1575			 */
1576			breakout = 0;
1577			FOREACH_THREAD_IN_PROC(p, td) {
1578				thread_lock(td);
1579				if (!TD_ON_RUNQ(td) &&
1580				    !TD_IS_RUNNING(td) &&
1581				    !TD_IS_SLEEPING(td)) {
1582					thread_unlock(td);
1583					breakout = 1;
1584					break;
1585				}
1586				thread_unlock(td);
1587			}
1588			if (breakout) {
1589				PROC_UNLOCK(p);
1590				continue;
1591			}
1592			/*
1593			 * get a limit
1594			 */
1595			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1596			limit = OFF_TO_IDX(
1597			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1598
1599			/*
1600			 * let processes that are swapped out really be
1601			 * swapped out set the limit to nothing (will force a
1602			 * swap-out.)
1603			 */
1604			if ((p->p_flag & P_INMEM) == 0)
1605				limit = 0;	/* XXX */
1606			vm = vmspace_acquire_ref(p);
1607			PROC_UNLOCK(p);
1608			if (vm == NULL)
1609				continue;
1610
1611			size = vmspace_resident_count(vm);
1612			if (limit >= 0 && size >= limit) {
1613				vm_pageout_map_deactivate_pages(
1614				    &vm->vm_map, limit);
1615			}
1616			vmspace_free(vm);
1617		}
1618		sx_sunlock(&allproc_lock);
1619	}
1620}
1621#endif			/* !defined(NO_SWAPPING) */
1622