vm_pageout.c revision 192261
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 192261 2009-05-17 20:40:41Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108#include <machine/mutex.h>
109
110/*
111 * System initialization
112 */
113
114/* the kernel process "vm_pageout"*/
115static void vm_pageout(void);
116static int vm_pageout_clean(vm_page_t);
117static void vm_pageout_scan(int pass);
118
119struct proc *pageproc;
120
121static struct kproc_desc page_kp = {
122	"pagedaemon",
123	vm_pageout,
124	&pageproc
125};
126SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127    &page_kp);
128
129#if !defined(NO_SWAPPING)
130/* the kernel process "vm_daemon"*/
131static void vm_daemon(void);
132static struct	proc *vmproc;
133
134static struct kproc_desc vm_kp = {
135	"vmdaemon",
136	vm_daemon,
137	&vmproc
138};
139SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140#endif
141
142
143int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144int vm_pageout_deficit;		/* Estimated number of pages deficit */
145int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146
147#if !defined(NO_SWAPPING)
148static int vm_pageout_req_swapout;	/* XXX */
149static int vm_daemon_needed;
150static struct mtx vm_daemon_mtx;
151/* Allow for use by vm_pageout before vm_daemon is initialized. */
152MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153#endif
154static int vm_max_launder = 32;
155static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156static int vm_pageout_full_stats_interval = 0;
157static int vm_pageout_algorithm=0;
158static int defer_swap_pageouts=0;
159static int disable_swap_pageouts=0;
160
161#if defined(NO_SWAPPING)
162static int vm_swap_enabled=0;
163static int vm_swap_idle_enabled=0;
164#else
165static int vm_swap_enabled=1;
166static int vm_swap_idle_enabled=0;
167#endif
168
169SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172SYSCTL_INT(_vm, OID_AUTO, max_launder,
173	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184#if defined(NO_SWAPPING)
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#else
190SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194#endif
195
196SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202static int pageout_lock_miss;
203SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206#define VM_PAGEOUT_PAGE_COUNT 16
207int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
210SYSCTL_INT(_vm, OID_AUTO, max_wired,
211	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213#if !defined(NO_SWAPPING)
214static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216static void vm_req_vmdaemon(int req);
217#endif
218static void vm_pageout_page_stats(void);
219
220/*
221 * vm_pageout_fallback_object_lock:
222 *
223 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224 * known to have failed and page queue must be either PQ_ACTIVE or
225 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226 * while locking the vm object.  Use marker page to detect page queue
227 * changes and maintain notion of next page on page queue.  Return
228 * TRUE if no changes were detected, FALSE otherwise.  vm object is
229 * locked on return.
230 *
231 * This function depends on both the lock portion of struct vm_object
232 * and normal struct vm_page being type stable.
233 */
234boolean_t
235vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236{
237	struct vm_page marker;
238	boolean_t unchanged;
239	u_short queue;
240	vm_object_t object;
241
242	/*
243	 * Initialize our marker
244	 */
245	bzero(&marker, sizeof(marker));
246	marker.flags = PG_FICTITIOUS | PG_MARKER;
247	marker.oflags = VPO_BUSY;
248	marker.queue = m->queue;
249	marker.wire_count = 1;
250
251	queue = m->queue;
252	object = m->object;
253
254	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255			   m, &marker, pageq);
256	vm_page_unlock_queues();
257	VM_OBJECT_LOCK(object);
258	vm_page_lock_queues();
259
260	/* Page queue might have changed. */
261	*next = TAILQ_NEXT(&marker, pageq);
262	unchanged = (m->queue == queue &&
263		     m->object == object &&
264		     &marker == TAILQ_NEXT(m, pageq));
265	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266		     &marker, pageq);
267	return (unchanged);
268}
269
270/*
271 * vm_pageout_clean:
272 *
273 * Clean the page and remove it from the laundry.
274 *
275 * We set the busy bit to cause potential page faults on this page to
276 * block.  Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
278 */
279static int
280vm_pageout_clean(m)
281	vm_page_t m;
282{
283	vm_object_t object;
284	vm_page_t mc[2*vm_pageout_page_count];
285	int pageout_count;
286	int ib, is, page_base;
287	vm_pindex_t pindex = m->pindex;
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292	/*
293	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294	 * with the new swapper, but we could have serious problems paging
295	 * out other object types if there is insufficient memory.
296	 *
297	 * Unfortunately, checking free memory here is far too late, so the
298	 * check has been moved up a procedural level.
299	 */
300
301	/*
302	 * Can't clean the page if it's busy or held.
303	 */
304	if ((m->hold_count != 0) ||
305	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306		return 0;
307	}
308
309	mc[vm_pageout_page_count] = m;
310	pageout_count = 1;
311	page_base = vm_pageout_page_count;
312	ib = 1;
313	is = 1;
314
315	/*
316	 * Scan object for clusterable pages.
317	 *
318	 * We can cluster ONLY if: ->> the page is NOT
319	 * clean, wired, busy, held, or mapped into a
320	 * buffer, and one of the following:
321	 * 1) The page is inactive, or a seldom used
322	 *    active page.
323	 * -or-
324	 * 2) we force the issue.
325	 *
326	 * During heavy mmap/modification loads the pageout
327	 * daemon can really fragment the underlying file
328	 * due to flushing pages out of order and not trying
329	 * align the clusters (which leave sporatic out-of-order
330	 * holes).  To solve this problem we do the reverse scan
331	 * first and attempt to align our cluster, then do a
332	 * forward scan if room remains.
333	 */
334	object = m->object;
335more:
336	while (ib && pageout_count < vm_pageout_page_count) {
337		vm_page_t p;
338
339		if (ib > pindex) {
340			ib = 0;
341			break;
342		}
343
344		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345			ib = 0;
346			break;
347		}
348		if ((p->oflags & VPO_BUSY) || p->busy) {
349			ib = 0;
350			break;
351		}
352		vm_page_test_dirty(p);
353		if ((p->dirty & p->valid) == 0 ||
354		    p->queue != PQ_INACTIVE ||
355		    p->wire_count != 0 ||	/* may be held by buf cache */
356		    p->hold_count != 0) {	/* may be undergoing I/O */
357			ib = 0;
358			break;
359		}
360		mc[--page_base] = p;
361		++pageout_count;
362		++ib;
363		/*
364		 * alignment boundry, stop here and switch directions.  Do
365		 * not clear ib.
366		 */
367		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368			break;
369	}
370
371	while (pageout_count < vm_pageout_page_count &&
372	    pindex + is < object->size) {
373		vm_page_t p;
374
375		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376			break;
377		if ((p->oflags & VPO_BUSY) || p->busy) {
378			break;
379		}
380		vm_page_test_dirty(p);
381		if ((p->dirty & p->valid) == 0 ||
382		    p->queue != PQ_INACTIVE ||
383		    p->wire_count != 0 ||	/* may be held by buf cache */
384		    p->hold_count != 0) {	/* may be undergoing I/O */
385			break;
386		}
387		mc[page_base + pageout_count] = p;
388		++pageout_count;
389		++is;
390	}
391
392	/*
393	 * If we exhausted our forward scan, continue with the reverse scan
394	 * when possible, even past a page boundry.  This catches boundry
395	 * conditions.
396	 */
397	if (ib && pageout_count < vm_pageout_page_count)
398		goto more;
399
400	/*
401	 * we allow reads during pageouts...
402	 */
403	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404}
405
406/*
407 * vm_pageout_flush() - launder the given pages
408 *
409 *	The given pages are laundered.  Note that we setup for the start of
410 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
411 *	reference count all in here rather then in the parent.  If we want
412 *	the parent to do more sophisticated things we may have to change
413 *	the ordering.
414 */
415int
416vm_pageout_flush(vm_page_t *mc, int count, int flags)
417{
418	vm_object_t object = mc[0]->object;
419	int pageout_status[count];
420	int numpagedout = 0;
421	int i;
422
423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425	/*
426	 * Initiate I/O.  Bump the vm_page_t->busy counter and
427	 * mark the pages read-only.
428	 *
429	 * We do not have to fixup the clean/dirty bits here... we can
430	 * allow the pager to do it after the I/O completes.
431	 *
432	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433	 * edge case with file fragments.
434	 */
435	for (i = 0; i < count; i++) {
436		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
438			mc[i], i, count));
439		vm_page_io_start(mc[i]);
440		pmap_remove_write(mc[i]);
441	}
442	vm_page_unlock_queues();
443	vm_object_pip_add(object, count);
444
445	vm_pager_put_pages(object, mc, count, flags, pageout_status);
446
447	vm_page_lock_queues();
448	for (i = 0; i < count; i++) {
449		vm_page_t mt = mc[i];
450
451		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452		    (mt->flags & PG_WRITEABLE) == 0,
453		    ("vm_pageout_flush: page %p is not write protected", mt));
454		switch (pageout_status[i]) {
455		case VM_PAGER_OK:
456		case VM_PAGER_PEND:
457			numpagedout++;
458			break;
459		case VM_PAGER_BAD:
460			/*
461			 * Page outside of range of object. Right now we
462			 * essentially lose the changes by pretending it
463			 * worked.
464			 */
465			vm_page_undirty(mt);
466			break;
467		case VM_PAGER_ERROR:
468		case VM_PAGER_FAIL:
469			/*
470			 * If page couldn't be paged out, then reactivate the
471			 * page so it doesn't clog the inactive list.  (We
472			 * will try paging out it again later).
473			 */
474			vm_page_activate(mt);
475			break;
476		case VM_PAGER_AGAIN:
477			break;
478		}
479
480		/*
481		 * If the operation is still going, leave the page busy to
482		 * block all other accesses. Also, leave the paging in
483		 * progress indicator set so that we don't attempt an object
484		 * collapse.
485		 */
486		if (pageout_status[i] != VM_PAGER_PEND) {
487			vm_object_pip_wakeup(object);
488			vm_page_io_finish(mt);
489			if (vm_page_count_severe())
490				vm_page_try_to_cache(mt);
491		}
492	}
493	return numpagedout;
494}
495
496#if !defined(NO_SWAPPING)
497/*
498 *	vm_pageout_object_deactivate_pages
499 *
500 *	deactivate enough pages to satisfy the inactive target
501 *	requirements or if vm_page_proc_limit is set, then
502 *	deactivate all of the pages in the object and its
503 *	backing_objects.
504 *
505 *	The object and map must be locked.
506 */
507static void
508vm_pageout_object_deactivate_pages(pmap, first_object, desired)
509	pmap_t pmap;
510	vm_object_t first_object;
511	long desired;
512{
513	vm_object_t backing_object, object;
514	vm_page_t p, next;
515	int actcount, rcount, remove_mode;
516
517	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
518	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
519		return;
520	for (object = first_object;; object = backing_object) {
521		if (pmap_resident_count(pmap) <= desired)
522			goto unlock_return;
523		if (object->paging_in_progress)
524			goto unlock_return;
525
526		remove_mode = 0;
527		if (object->shadow_count > 1)
528			remove_mode = 1;
529		/*
530		 * scan the objects entire memory queue
531		 */
532		rcount = object->resident_page_count;
533		p = TAILQ_FIRST(&object->memq);
534		vm_page_lock_queues();
535		while (p && (rcount-- > 0)) {
536			if (pmap_resident_count(pmap) <= desired) {
537				vm_page_unlock_queues();
538				goto unlock_return;
539			}
540			next = TAILQ_NEXT(p, listq);
541			cnt.v_pdpages++;
542			if (p->wire_count != 0 ||
543			    p->hold_count != 0 ||
544			    p->busy != 0 ||
545			    (p->oflags & VPO_BUSY) ||
546			    (p->flags & PG_UNMANAGED) ||
547			    !pmap_page_exists_quick(pmap, p)) {
548				p = next;
549				continue;
550			}
551			actcount = pmap_ts_referenced(p);
552			if (actcount) {
553				vm_page_flag_set(p, PG_REFERENCED);
554			} else if (p->flags & PG_REFERENCED) {
555				actcount = 1;
556			}
557			if ((p->queue != PQ_ACTIVE) &&
558				(p->flags & PG_REFERENCED)) {
559				vm_page_activate(p);
560				p->act_count += actcount;
561				vm_page_flag_clear(p, PG_REFERENCED);
562			} else if (p->queue == PQ_ACTIVE) {
563				if ((p->flags & PG_REFERENCED) == 0) {
564					p->act_count -= min(p->act_count, ACT_DECLINE);
565					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566						pmap_remove_all(p);
567						vm_page_deactivate(p);
568					} else {
569						vm_page_requeue(p);
570					}
571				} else {
572					vm_page_activate(p);
573					vm_page_flag_clear(p, PG_REFERENCED);
574					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575						p->act_count += ACT_ADVANCE;
576					vm_page_requeue(p);
577				}
578			} else if (p->queue == PQ_INACTIVE) {
579				pmap_remove_all(p);
580			}
581			p = next;
582		}
583		vm_page_unlock_queues();
584		if ((backing_object = object->backing_object) == NULL)
585			goto unlock_return;
586		VM_OBJECT_LOCK(backing_object);
587		if (object != first_object)
588			VM_OBJECT_UNLOCK(object);
589	}
590unlock_return:
591	if (object != first_object)
592		VM_OBJECT_UNLOCK(object);
593}
594
595/*
596 * deactivate some number of pages in a map, try to do it fairly, but
597 * that is really hard to do.
598 */
599static void
600vm_pageout_map_deactivate_pages(map, desired)
601	vm_map_t map;
602	long desired;
603{
604	vm_map_entry_t tmpe;
605	vm_object_t obj, bigobj;
606	int nothingwired;
607
608	if (!vm_map_trylock(map))
609		return;
610
611	bigobj = NULL;
612	nothingwired = TRUE;
613
614	/*
615	 * first, search out the biggest object, and try to free pages from
616	 * that.
617	 */
618	tmpe = map->header.next;
619	while (tmpe != &map->header) {
620		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621			obj = tmpe->object.vm_object;
622			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623				if (obj->shadow_count <= 1 &&
624				    (bigobj == NULL ||
625				     bigobj->resident_page_count < obj->resident_page_count)) {
626					if (bigobj != NULL)
627						VM_OBJECT_UNLOCK(bigobj);
628					bigobj = obj;
629				} else
630					VM_OBJECT_UNLOCK(obj);
631			}
632		}
633		if (tmpe->wired_count > 0)
634			nothingwired = FALSE;
635		tmpe = tmpe->next;
636	}
637
638	if (bigobj != NULL) {
639		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640		VM_OBJECT_UNLOCK(bigobj);
641	}
642	/*
643	 * Next, hunt around for other pages to deactivate.  We actually
644	 * do this search sort of wrong -- .text first is not the best idea.
645	 */
646	tmpe = map->header.next;
647	while (tmpe != &map->header) {
648		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649			break;
650		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651			obj = tmpe->object.vm_object;
652			if (obj != NULL) {
653				VM_OBJECT_LOCK(obj);
654				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655				VM_OBJECT_UNLOCK(obj);
656			}
657		}
658		tmpe = tmpe->next;
659	}
660
661	/*
662	 * Remove all mappings if a process is swapped out, this will free page
663	 * table pages.
664	 */
665	if (desired == 0 && nothingwired) {
666		pmap_remove(vm_map_pmap(map), vm_map_min(map),
667		    vm_map_max(map));
668	}
669	vm_map_unlock(map);
670}
671#endif		/* !defined(NO_SWAPPING) */
672
673/*
674 *	vm_pageout_scan does the dirty work for the pageout daemon.
675 */
676static void
677vm_pageout_scan(int pass)
678{
679	vm_page_t m, next;
680	struct vm_page marker;
681	int page_shortage, maxscan, pcount;
682	int addl_page_shortage, addl_page_shortage_init;
683	vm_object_t object;
684	int actcount;
685	int vnodes_skipped = 0;
686	int maxlaunder;
687
688	/*
689	 * Decrease registered cache sizes.
690	 */
691	EVENTHANDLER_INVOKE(vm_lowmem, 0);
692	/*
693	 * We do this explicitly after the caches have been drained above.
694	 */
695	uma_reclaim();
696
697	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699	/*
700	 * Calculate the number of pages we want to either free or move
701	 * to the cache.
702	 */
703	page_shortage = vm_paging_target() + addl_page_shortage_init;
704
705	/*
706	 * Initialize our marker
707	 */
708	bzero(&marker, sizeof(marker));
709	marker.flags = PG_FICTITIOUS | PG_MARKER;
710	marker.oflags = VPO_BUSY;
711	marker.queue = PQ_INACTIVE;
712	marker.wire_count = 1;
713
714	/*
715	 * Start scanning the inactive queue for pages we can move to the
716	 * cache or free.  The scan will stop when the target is reached or
717	 * we have scanned the entire inactive queue.  Note that m->act_count
718	 * is not used to form decisions for the inactive queue, only for the
719	 * active queue.
720	 *
721	 * maxlaunder limits the number of dirty pages we flush per scan.
722	 * For most systems a smaller value (16 or 32) is more robust under
723	 * extreme memory and disk pressure because any unnecessary writes
724	 * to disk can result in extreme performance degredation.  However,
725	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
726	 * used) will die horribly with limited laundering.  If the pageout
727	 * daemon cannot clean enough pages in the first pass, we let it go
728	 * all out in succeeding passes.
729	 */
730	if ((maxlaunder = vm_max_launder) <= 1)
731		maxlaunder = 1;
732	if (pass)
733		maxlaunder = 10000;
734	vm_page_lock_queues();
735rescan0:
736	addl_page_shortage = addl_page_shortage_init;
737	maxscan = cnt.v_inactive_count;
738
739	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
740	     m != NULL && maxscan-- > 0 && page_shortage > 0;
741	     m = next) {
742
743		cnt.v_pdpages++;
744
745		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
746			goto rescan0;
747		}
748
749		next = TAILQ_NEXT(m, pageq);
750		object = m->object;
751
752		/*
753		 * skip marker pages
754		 */
755		if (m->flags & PG_MARKER)
756			continue;
757
758		/*
759		 * A held page may be undergoing I/O, so skip it.
760		 */
761		if (m->hold_count) {
762			vm_page_requeue(m);
763			addl_page_shortage++;
764			continue;
765		}
766		/*
767		 * Don't mess with busy pages, keep in the front of the
768		 * queue, most likely are being paged out.
769		 */
770		if (!VM_OBJECT_TRYLOCK(object) &&
771		    (!vm_pageout_fallback_object_lock(m, &next) ||
772		     m->hold_count != 0)) {
773			VM_OBJECT_UNLOCK(object);
774			addl_page_shortage++;
775			continue;
776		}
777		if (m->busy || (m->oflags & VPO_BUSY)) {
778			VM_OBJECT_UNLOCK(object);
779			addl_page_shortage++;
780			continue;
781		}
782
783		/*
784		 * If the object is not being used, we ignore previous
785		 * references.
786		 */
787		if (object->ref_count == 0) {
788			vm_page_flag_clear(m, PG_REFERENCED);
789			KASSERT(!pmap_page_is_mapped(m),
790			    ("vm_pageout_scan: page %p is mapped", m));
791
792		/*
793		 * Otherwise, if the page has been referenced while in the
794		 * inactive queue, we bump the "activation count" upwards,
795		 * making it less likely that the page will be added back to
796		 * the inactive queue prematurely again.  Here we check the
797		 * page tables (or emulated bits, if any), given the upper
798		 * level VM system not knowing anything about existing
799		 * references.
800		 */
801		} else if (((m->flags & PG_REFERENCED) == 0) &&
802			(actcount = pmap_ts_referenced(m))) {
803			vm_page_activate(m);
804			VM_OBJECT_UNLOCK(object);
805			m->act_count += (actcount + ACT_ADVANCE);
806			continue;
807		}
808
809		/*
810		 * If the upper level VM system knows about any page
811		 * references, we activate the page.  We also set the
812		 * "activation count" higher than normal so that we will less
813		 * likely place pages back onto the inactive queue again.
814		 */
815		if ((m->flags & PG_REFERENCED) != 0) {
816			vm_page_flag_clear(m, PG_REFERENCED);
817			actcount = pmap_ts_referenced(m);
818			vm_page_activate(m);
819			VM_OBJECT_UNLOCK(object);
820			m->act_count += (actcount + ACT_ADVANCE + 1);
821			continue;
822		}
823
824		/*
825		 * If the upper level VM system doesn't know anything about
826		 * the page being dirty, we have to check for it again.  As
827		 * far as the VM code knows, any partially dirty pages are
828		 * fully dirty.
829		 */
830		if (m->dirty == 0 && !pmap_is_modified(m)) {
831			/*
832			 * Avoid a race condition: Unless write access is
833			 * removed from the page, another processor could
834			 * modify it before all access is removed by the call
835			 * to vm_page_cache() below.  If vm_page_cache() finds
836			 * that the page has been modified when it removes all
837			 * access, it panics because it cannot cache dirty
838			 * pages.  In principle, we could eliminate just write
839			 * access here rather than all access.  In the expected
840			 * case, when there are no last instant modifications
841			 * to the page, removing all access will be cheaper
842			 * overall.
843			 */
844			if ((m->flags & PG_WRITEABLE) != 0)
845				pmap_remove_all(m);
846		} else {
847			vm_page_dirty(m);
848		}
849
850		if (m->valid == 0) {
851			/*
852			 * Invalid pages can be easily freed
853			 */
854			vm_page_free(m);
855			cnt.v_dfree++;
856			--page_shortage;
857		} else if (m->dirty == 0) {
858			/*
859			 * Clean pages can be placed onto the cache queue.
860			 * This effectively frees them.
861			 */
862			vm_page_cache(m);
863			--page_shortage;
864		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
865			/*
866			 * Dirty pages need to be paged out, but flushing
867			 * a page is extremely expensive verses freeing
868			 * a clean page.  Rather then artificially limiting
869			 * the number of pages we can flush, we instead give
870			 * dirty pages extra priority on the inactive queue
871			 * by forcing them to be cycled through the queue
872			 * twice before being flushed, after which the
873			 * (now clean) page will cycle through once more
874			 * before being freed.  This significantly extends
875			 * the thrash point for a heavily loaded machine.
876			 */
877			vm_page_flag_set(m, PG_WINATCFLS);
878			vm_page_requeue(m);
879		} else if (maxlaunder > 0) {
880			/*
881			 * We always want to try to flush some dirty pages if
882			 * we encounter them, to keep the system stable.
883			 * Normally this number is small, but under extreme
884			 * pressure where there are insufficient clean pages
885			 * on the inactive queue, we may have to go all out.
886			 */
887			int swap_pageouts_ok, vfslocked = 0;
888			struct vnode *vp = NULL;
889			struct mount *mp = NULL;
890
891			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
892				swap_pageouts_ok = 1;
893			} else {
894				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
895				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
896				vm_page_count_min());
897
898			}
899
900			/*
901			 * We don't bother paging objects that are "dead".
902			 * Those objects are in a "rundown" state.
903			 */
904			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
905				VM_OBJECT_UNLOCK(object);
906				vm_page_requeue(m);
907				continue;
908			}
909
910			/*
911			 * Following operations may unlock
912			 * vm_page_queue_mtx, invalidating the 'next'
913			 * pointer.  To prevent an inordinate number
914			 * of restarts we use our marker to remember
915			 * our place.
916			 *
917			 */
918			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
919					   m, &marker, pageq);
920			/*
921			 * The object is already known NOT to be dead.   It
922			 * is possible for the vget() to block the whole
923			 * pageout daemon, but the new low-memory handling
924			 * code should prevent it.
925			 *
926			 * The previous code skipped locked vnodes and, worse,
927			 * reordered pages in the queue.  This results in
928			 * completely non-deterministic operation and, on a
929			 * busy system, can lead to extremely non-optimal
930			 * pageouts.  For example, it can cause clean pages
931			 * to be freed and dirty pages to be moved to the end
932			 * of the queue.  Since dirty pages are also moved to
933			 * the end of the queue once-cleaned, this gives
934			 * way too large a weighting to defering the freeing
935			 * of dirty pages.
936			 *
937			 * We can't wait forever for the vnode lock, we might
938			 * deadlock due to a vn_read() getting stuck in
939			 * vm_wait while holding this vnode.  We skip the
940			 * vnode if we can't get it in a reasonable amount
941			 * of time.
942			 */
943			if (object->type == OBJT_VNODE) {
944				vp = object->handle;
945				if (vp->v_type == VREG &&
946				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
947					mp = NULL;
948					++pageout_lock_miss;
949					if (object->flags & OBJ_MIGHTBEDIRTY)
950						vnodes_skipped++;
951					goto unlock_and_continue;
952				}
953				vm_page_unlock_queues();
954				vm_object_reference_locked(object);
955				VM_OBJECT_UNLOCK(object);
956				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
957				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
958				    curthread)) {
959					VM_OBJECT_LOCK(object);
960					vm_page_lock_queues();
961					++pageout_lock_miss;
962					if (object->flags & OBJ_MIGHTBEDIRTY)
963						vnodes_skipped++;
964					vp = NULL;
965					goto unlock_and_continue;
966				}
967				VM_OBJECT_LOCK(object);
968				vm_page_lock_queues();
969				/*
970				 * The page might have been moved to another
971				 * queue during potential blocking in vget()
972				 * above.  The page might have been freed and
973				 * reused for another vnode.
974				 */
975				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
976				    m->object != object ||
977				    TAILQ_NEXT(m, pageq) != &marker) {
978					if (object->flags & OBJ_MIGHTBEDIRTY)
979						vnodes_skipped++;
980					goto unlock_and_continue;
981				}
982
983				/*
984				 * The page may have been busied during the
985				 * blocking in vget().  We don't move the
986				 * page back onto the end of the queue so that
987				 * statistics are more correct if we don't.
988				 */
989				if (m->busy || (m->oflags & VPO_BUSY)) {
990					goto unlock_and_continue;
991				}
992
993				/*
994				 * If the page has become held it might
995				 * be undergoing I/O, so skip it
996				 */
997				if (m->hold_count) {
998					vm_page_requeue(m);
999					if (object->flags & OBJ_MIGHTBEDIRTY)
1000						vnodes_skipped++;
1001					goto unlock_and_continue;
1002				}
1003			}
1004
1005			/*
1006			 * If a page is dirty, then it is either being washed
1007			 * (but not yet cleaned) or it is still in the
1008			 * laundry.  If it is still in the laundry, then we
1009			 * start the cleaning operation.
1010			 *
1011			 * decrement page_shortage on success to account for
1012			 * the (future) cleaned page.  Otherwise we could wind
1013			 * up laundering or cleaning too many pages.
1014			 */
1015			if (vm_pageout_clean(m) != 0) {
1016				--page_shortage;
1017				--maxlaunder;
1018			}
1019unlock_and_continue:
1020			VM_OBJECT_UNLOCK(object);
1021			if (mp != NULL) {
1022				vm_page_unlock_queues();
1023				if (vp != NULL)
1024					vput(vp);
1025				VFS_UNLOCK_GIANT(vfslocked);
1026				vm_object_deallocate(object);
1027				vn_finished_write(mp);
1028				vm_page_lock_queues();
1029			}
1030			next = TAILQ_NEXT(&marker, pageq);
1031			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1032				     &marker, pageq);
1033			continue;
1034		}
1035		VM_OBJECT_UNLOCK(object);
1036	}
1037
1038	/*
1039	 * Compute the number of pages we want to try to move from the
1040	 * active queue to the inactive queue.
1041	 */
1042	page_shortage = vm_paging_target() +
1043		cnt.v_inactive_target - cnt.v_inactive_count;
1044	page_shortage += addl_page_shortage;
1045
1046	/*
1047	 * Scan the active queue for things we can deactivate. We nominally
1048	 * track the per-page activity counter and use it to locate
1049	 * deactivation candidates.
1050	 */
1051	pcount = cnt.v_active_count;
1052	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1053
1054	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1055
1056		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1057		    ("vm_pageout_scan: page %p isn't active", m));
1058
1059		next = TAILQ_NEXT(m, pageq);
1060		object = m->object;
1061		if ((m->flags & PG_MARKER) != 0) {
1062			m = next;
1063			continue;
1064		}
1065		if (!VM_OBJECT_TRYLOCK(object) &&
1066		    !vm_pageout_fallback_object_lock(m, &next)) {
1067			VM_OBJECT_UNLOCK(object);
1068			m = next;
1069			continue;
1070		}
1071
1072		/*
1073		 * Don't deactivate pages that are busy.
1074		 */
1075		if ((m->busy != 0) ||
1076		    (m->oflags & VPO_BUSY) ||
1077		    (m->hold_count != 0)) {
1078			VM_OBJECT_UNLOCK(object);
1079			vm_page_requeue(m);
1080			m = next;
1081			continue;
1082		}
1083
1084		/*
1085		 * The count for pagedaemon pages is done after checking the
1086		 * page for eligibility...
1087		 */
1088		cnt.v_pdpages++;
1089
1090		/*
1091		 * Check to see "how much" the page has been used.
1092		 */
1093		actcount = 0;
1094		if (object->ref_count != 0) {
1095			if (m->flags & PG_REFERENCED) {
1096				actcount += 1;
1097			}
1098			actcount += pmap_ts_referenced(m);
1099			if (actcount) {
1100				m->act_count += ACT_ADVANCE + actcount;
1101				if (m->act_count > ACT_MAX)
1102					m->act_count = ACT_MAX;
1103			}
1104		}
1105
1106		/*
1107		 * Since we have "tested" this bit, we need to clear it now.
1108		 */
1109		vm_page_flag_clear(m, PG_REFERENCED);
1110
1111		/*
1112		 * Only if an object is currently being used, do we use the
1113		 * page activation count stats.
1114		 */
1115		if (actcount && (object->ref_count != 0)) {
1116			vm_page_requeue(m);
1117		} else {
1118			m->act_count -= min(m->act_count, ACT_DECLINE);
1119			if (vm_pageout_algorithm ||
1120			    object->ref_count == 0 ||
1121			    m->act_count == 0) {
1122				page_shortage--;
1123				if (object->ref_count == 0) {
1124					pmap_remove_all(m);
1125					if (m->dirty == 0)
1126						vm_page_cache(m);
1127					else
1128						vm_page_deactivate(m);
1129				} else {
1130					vm_page_deactivate(m);
1131				}
1132			} else {
1133				vm_page_requeue(m);
1134			}
1135		}
1136		VM_OBJECT_UNLOCK(object);
1137		m = next;
1138	}
1139	vm_page_unlock_queues();
1140#if !defined(NO_SWAPPING)
1141	/*
1142	 * Idle process swapout -- run once per second.
1143	 */
1144	if (vm_swap_idle_enabled) {
1145		static long lsec;
1146		if (time_second != lsec) {
1147			vm_req_vmdaemon(VM_SWAP_IDLE);
1148			lsec = time_second;
1149		}
1150	}
1151#endif
1152
1153	/*
1154	 * If we didn't get enough free pages, and we have skipped a vnode
1155	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1156	 * if we did not get enough free pages.
1157	 */
1158	if (vm_paging_target() > 0) {
1159		if (vnodes_skipped && vm_page_count_min())
1160			(void) speedup_syncer();
1161#if !defined(NO_SWAPPING)
1162		if (vm_swap_enabled && vm_page_count_target())
1163			vm_req_vmdaemon(VM_SWAP_NORMAL);
1164#endif
1165	}
1166
1167	/*
1168	 * If we are critically low on one of RAM or swap and low on
1169	 * the other, kill the largest process.  However, we avoid
1170	 * doing this on the first pass in order to give ourselves a
1171	 * chance to flush out dirty vnode-backed pages and to allow
1172	 * active pages to be moved to the inactive queue and reclaimed.
1173	 */
1174	if (pass != 0 &&
1175	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1176	     (swap_pager_full && vm_paging_target() > 0)))
1177		vm_pageout_oom(VM_OOM_MEM);
1178}
1179
1180
1181void
1182vm_pageout_oom(int shortage)
1183{
1184	struct proc *p, *bigproc;
1185	vm_offset_t size, bigsize;
1186	struct thread *td;
1187	struct vmspace *vm;
1188
1189	/*
1190	 * We keep the process bigproc locked once we find it to keep anyone
1191	 * from messing with it; however, there is a possibility of
1192	 * deadlock if process B is bigproc and one of it's child processes
1193	 * attempts to propagate a signal to B while we are waiting for A's
1194	 * lock while walking this list.  To avoid this, we don't block on
1195	 * the process lock but just skip a process if it is already locked.
1196	 */
1197	bigproc = NULL;
1198	bigsize = 0;
1199	sx_slock(&allproc_lock);
1200	FOREACH_PROC_IN_SYSTEM(p) {
1201		int breakout;
1202
1203		if (PROC_TRYLOCK(p) == 0)
1204			continue;
1205		/*
1206		 * If this is a system or protected process, skip it.
1207		 */
1208		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1209		    (p->p_pid == 1) ||
1210		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1211			PROC_UNLOCK(p);
1212			continue;
1213		}
1214		/*
1215		 * If the process is in a non-running type state,
1216		 * don't touch it.  Check all the threads individually.
1217		 */
1218		breakout = 0;
1219		FOREACH_THREAD_IN_PROC(p, td) {
1220			thread_lock(td);
1221			if (!TD_ON_RUNQ(td) &&
1222			    !TD_IS_RUNNING(td) &&
1223			    !TD_IS_SLEEPING(td)) {
1224				thread_unlock(td);
1225				breakout = 1;
1226				break;
1227			}
1228			thread_unlock(td);
1229		}
1230		if (breakout) {
1231			PROC_UNLOCK(p);
1232			continue;
1233		}
1234		/*
1235		 * get the process size
1236		 */
1237		vm = vmspace_acquire_ref(p);
1238		if (vm == NULL) {
1239			PROC_UNLOCK(p);
1240			continue;
1241		}
1242		if (!vm_map_trylock_read(&vm->vm_map)) {
1243			vmspace_free(vm);
1244			PROC_UNLOCK(p);
1245			continue;
1246		}
1247		size = vmspace_swap_count(vm);
1248		vm_map_unlock_read(&vm->vm_map);
1249		if (shortage == VM_OOM_MEM)
1250			size += vmspace_resident_count(vm);
1251		vmspace_free(vm);
1252		/*
1253		 * if the this process is bigger than the biggest one
1254		 * remember it.
1255		 */
1256		if (size > bigsize) {
1257			if (bigproc != NULL)
1258				PROC_UNLOCK(bigproc);
1259			bigproc = p;
1260			bigsize = size;
1261		} else
1262			PROC_UNLOCK(p);
1263	}
1264	sx_sunlock(&allproc_lock);
1265	if (bigproc != NULL) {
1266		killproc(bigproc, "out of swap space");
1267		sched_nice(bigproc, PRIO_MIN);
1268		PROC_UNLOCK(bigproc);
1269		wakeup(&cnt.v_free_count);
1270	}
1271}
1272
1273/*
1274 * This routine tries to maintain the pseudo LRU active queue,
1275 * so that during long periods of time where there is no paging,
1276 * that some statistic accumulation still occurs.  This code
1277 * helps the situation where paging just starts to occur.
1278 */
1279static void
1280vm_pageout_page_stats()
1281{
1282	vm_object_t object;
1283	vm_page_t m,next;
1284	int pcount,tpcount;		/* Number of pages to check */
1285	static int fullintervalcount = 0;
1286	int page_shortage;
1287
1288	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1289	page_shortage =
1290	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1291	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1292
1293	if (page_shortage <= 0)
1294		return;
1295
1296	pcount = cnt.v_active_count;
1297	fullintervalcount += vm_pageout_stats_interval;
1298	if (fullintervalcount < vm_pageout_full_stats_interval) {
1299		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1300		    cnt.v_page_count;
1301		if (pcount > tpcount)
1302			pcount = tpcount;
1303	} else {
1304		fullintervalcount = 0;
1305	}
1306
1307	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1308	while ((m != NULL) && (pcount-- > 0)) {
1309		int actcount;
1310
1311		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1312		    ("vm_pageout_page_stats: page %p isn't active", m));
1313
1314		next = TAILQ_NEXT(m, pageq);
1315		object = m->object;
1316
1317		if ((m->flags & PG_MARKER) != 0) {
1318			m = next;
1319			continue;
1320		}
1321		if (!VM_OBJECT_TRYLOCK(object) &&
1322		    !vm_pageout_fallback_object_lock(m, &next)) {
1323			VM_OBJECT_UNLOCK(object);
1324			m = next;
1325			continue;
1326		}
1327
1328		/*
1329		 * Don't deactivate pages that are busy.
1330		 */
1331		if ((m->busy != 0) ||
1332		    (m->oflags & VPO_BUSY) ||
1333		    (m->hold_count != 0)) {
1334			VM_OBJECT_UNLOCK(object);
1335			vm_page_requeue(m);
1336			m = next;
1337			continue;
1338		}
1339
1340		actcount = 0;
1341		if (m->flags & PG_REFERENCED) {
1342			vm_page_flag_clear(m, PG_REFERENCED);
1343			actcount += 1;
1344		}
1345
1346		actcount += pmap_ts_referenced(m);
1347		if (actcount) {
1348			m->act_count += ACT_ADVANCE + actcount;
1349			if (m->act_count > ACT_MAX)
1350				m->act_count = ACT_MAX;
1351			vm_page_requeue(m);
1352		} else {
1353			if (m->act_count == 0) {
1354				/*
1355				 * We turn off page access, so that we have
1356				 * more accurate RSS stats.  We don't do this
1357				 * in the normal page deactivation when the
1358				 * system is loaded VM wise, because the
1359				 * cost of the large number of page protect
1360				 * operations would be higher than the value
1361				 * of doing the operation.
1362				 */
1363				pmap_remove_all(m);
1364				vm_page_deactivate(m);
1365			} else {
1366				m->act_count -= min(m->act_count, ACT_DECLINE);
1367				vm_page_requeue(m);
1368			}
1369		}
1370		VM_OBJECT_UNLOCK(object);
1371		m = next;
1372	}
1373}
1374
1375/*
1376 *	vm_pageout is the high level pageout daemon.
1377 */
1378static void
1379vm_pageout()
1380{
1381	int error, pass;
1382
1383	/*
1384	 * Initialize some paging parameters.
1385	 */
1386	cnt.v_interrupt_free_min = 2;
1387	if (cnt.v_page_count < 2000)
1388		vm_pageout_page_count = 8;
1389
1390	/*
1391	 * v_free_reserved needs to include enough for the largest
1392	 * swap pager structures plus enough for any pv_entry structs
1393	 * when paging.
1394	 */
1395	if (cnt.v_page_count > 1024)
1396		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1397	else
1398		cnt.v_free_min = 4;
1399	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1400	    cnt.v_interrupt_free_min;
1401	cnt.v_free_reserved = vm_pageout_page_count +
1402	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1403	cnt.v_free_severe = cnt.v_free_min / 2;
1404	cnt.v_free_min += cnt.v_free_reserved;
1405	cnt.v_free_severe += cnt.v_free_reserved;
1406
1407	/*
1408	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1409	 * that these are more a measure of the VM cache queue hysteresis
1410	 * then the VM free queue.  Specifically, v_free_target is the
1411	 * high water mark (free+cache pages).
1412	 *
1413	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1414	 * low water mark, while v_free_min is the stop.  v_cache_min must
1415	 * be big enough to handle memory needs while the pageout daemon
1416	 * is signalled and run to free more pages.
1417	 */
1418	if (cnt.v_free_count > 6144)
1419		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1420	else
1421		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1422
1423	if (cnt.v_free_count > 2048) {
1424		cnt.v_cache_min = cnt.v_free_target;
1425		cnt.v_cache_max = 2 * cnt.v_cache_min;
1426		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1427	} else {
1428		cnt.v_cache_min = 0;
1429		cnt.v_cache_max = 0;
1430		cnt.v_inactive_target = cnt.v_free_count / 4;
1431	}
1432	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1433		cnt.v_inactive_target = cnt.v_free_count / 3;
1434
1435	/* XXX does not really belong here */
1436	if (vm_page_max_wired == 0)
1437		vm_page_max_wired = cnt.v_free_count / 3;
1438
1439	if (vm_pageout_stats_max == 0)
1440		vm_pageout_stats_max = cnt.v_free_target;
1441
1442	/*
1443	 * Set interval in seconds for stats scan.
1444	 */
1445	if (vm_pageout_stats_interval == 0)
1446		vm_pageout_stats_interval = 5;
1447	if (vm_pageout_full_stats_interval == 0)
1448		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1449
1450	swap_pager_swap_init();
1451	pass = 0;
1452	/*
1453	 * The pageout daemon is never done, so loop forever.
1454	 */
1455	while (TRUE) {
1456		/*
1457		 * If we have enough free memory, wakeup waiters.  Do
1458		 * not clear vm_pages_needed until we reach our target,
1459		 * otherwise we may be woken up over and over again and
1460		 * waste a lot of cpu.
1461		 */
1462		mtx_lock(&vm_page_queue_free_mtx);
1463		if (vm_pages_needed && !vm_page_count_min()) {
1464			if (!vm_paging_needed())
1465				vm_pages_needed = 0;
1466			wakeup(&cnt.v_free_count);
1467		}
1468		if (vm_pages_needed) {
1469			/*
1470			 * Still not done, take a second pass without waiting
1471			 * (unlimited dirty cleaning), otherwise sleep a bit
1472			 * and try again.
1473			 */
1474			++pass;
1475			if (pass > 1)
1476				msleep(&vm_pages_needed,
1477				    &vm_page_queue_free_mtx, PVM, "psleep",
1478				    hz / 2);
1479		} else {
1480			/*
1481			 * Good enough, sleep & handle stats.  Prime the pass
1482			 * for the next run.
1483			 */
1484			if (pass > 1)
1485				pass = 1;
1486			else
1487				pass = 0;
1488			error = msleep(&vm_pages_needed,
1489			    &vm_page_queue_free_mtx, PVM, "psleep",
1490			    vm_pageout_stats_interval * hz);
1491			if (error && !vm_pages_needed) {
1492				mtx_unlock(&vm_page_queue_free_mtx);
1493				pass = 0;
1494				vm_page_lock_queues();
1495				vm_pageout_page_stats();
1496				vm_page_unlock_queues();
1497				continue;
1498			}
1499		}
1500		if (vm_pages_needed)
1501			cnt.v_pdwakeups++;
1502		mtx_unlock(&vm_page_queue_free_mtx);
1503		vm_pageout_scan(pass);
1504	}
1505}
1506
1507/*
1508 * Unless the free page queue lock is held by the caller, this function
1509 * should be regarded as advisory.  Specifically, the caller should
1510 * not msleep() on &cnt.v_free_count following this function unless
1511 * the free page queue lock is held until the msleep() is performed.
1512 */
1513void
1514pagedaemon_wakeup()
1515{
1516
1517	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1518		vm_pages_needed = 1;
1519		wakeup(&vm_pages_needed);
1520	}
1521}
1522
1523#if !defined(NO_SWAPPING)
1524static void
1525vm_req_vmdaemon(int req)
1526{
1527	static int lastrun = 0;
1528
1529	mtx_lock(&vm_daemon_mtx);
1530	vm_pageout_req_swapout |= req;
1531	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1532		wakeup(&vm_daemon_needed);
1533		lastrun = ticks;
1534	}
1535	mtx_unlock(&vm_daemon_mtx);
1536}
1537
1538static void
1539vm_daemon()
1540{
1541	struct rlimit rsslim;
1542	struct proc *p;
1543	struct thread *td;
1544	struct vmspace *vm;
1545	int breakout, swapout_flags;
1546
1547	while (TRUE) {
1548		mtx_lock(&vm_daemon_mtx);
1549		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1550		swapout_flags = vm_pageout_req_swapout;
1551		vm_pageout_req_swapout = 0;
1552		mtx_unlock(&vm_daemon_mtx);
1553		if (swapout_flags)
1554			swapout_procs(swapout_flags);
1555
1556		/*
1557		 * scan the processes for exceeding their rlimits or if
1558		 * process is swapped out -- deactivate pages
1559		 */
1560		sx_slock(&allproc_lock);
1561		FOREACH_PROC_IN_SYSTEM(p) {
1562			vm_pindex_t limit, size;
1563
1564			/*
1565			 * if this is a system process or if we have already
1566			 * looked at this process, skip it.
1567			 */
1568			PROC_LOCK(p);
1569			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1570				PROC_UNLOCK(p);
1571				continue;
1572			}
1573			/*
1574			 * if the process is in a non-running type state,
1575			 * don't touch it.
1576			 */
1577			breakout = 0;
1578			FOREACH_THREAD_IN_PROC(p, td) {
1579				thread_lock(td);
1580				if (!TD_ON_RUNQ(td) &&
1581				    !TD_IS_RUNNING(td) &&
1582				    !TD_IS_SLEEPING(td)) {
1583					thread_unlock(td);
1584					breakout = 1;
1585					break;
1586				}
1587				thread_unlock(td);
1588			}
1589			if (breakout) {
1590				PROC_UNLOCK(p);
1591				continue;
1592			}
1593			/*
1594			 * get a limit
1595			 */
1596			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1597			limit = OFF_TO_IDX(
1598			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1599
1600			/*
1601			 * let processes that are swapped out really be
1602			 * swapped out set the limit to nothing (will force a
1603			 * swap-out.)
1604			 */
1605			if ((p->p_flag & P_INMEM) == 0)
1606				limit = 0;	/* XXX */
1607			vm = vmspace_acquire_ref(p);
1608			PROC_UNLOCK(p);
1609			if (vm == NULL)
1610				continue;
1611
1612			size = vmspace_resident_count(vm);
1613			if (limit >= 0 && size >= limit) {
1614				vm_pageout_map_deactivate_pages(
1615				    &vm->vm_map, limit);
1616			}
1617			vmspace_free(vm);
1618		}
1619		sx_sunlock(&allproc_lock);
1620	}
1621}
1622#endif			/* !defined(NO_SWAPPING) */
1623