vm_pageout.c revision 191626
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 191626 2009-04-28 11:45:36Z kib $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108#include <machine/mutex.h>
109
110/*
111 * System initialization
112 */
113
114/* the kernel process "vm_pageout"*/
115static void vm_pageout(void);
116static int vm_pageout_clean(vm_page_t);
117static void vm_pageout_scan(int pass);
118
119struct proc *pageproc;
120
121static struct kproc_desc page_kp = {
122	"pagedaemon",
123	vm_pageout,
124	&pageproc
125};
126SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127    &page_kp);
128
129#if !defined(NO_SWAPPING)
130/* the kernel process "vm_daemon"*/
131static void vm_daemon(void);
132static struct	proc *vmproc;
133
134static struct kproc_desc vm_kp = {
135	"vmdaemon",
136	vm_daemon,
137	&vmproc
138};
139SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140#endif
141
142
143int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144int vm_pageout_deficit;		/* Estimated number of pages deficit */
145int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146
147#if !defined(NO_SWAPPING)
148static int vm_pageout_req_swapout;	/* XXX */
149static int vm_daemon_needed;
150static struct mtx vm_daemon_mtx;
151/* Allow for use by vm_pageout before vm_daemon is initialized. */
152MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153#endif
154static int vm_max_launder = 32;
155static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156static int vm_pageout_full_stats_interval = 0;
157static int vm_pageout_algorithm=0;
158static int defer_swap_pageouts=0;
159static int disable_swap_pageouts=0;
160
161#if defined(NO_SWAPPING)
162static int vm_swap_enabled=0;
163static int vm_swap_idle_enabled=0;
164#else
165static int vm_swap_enabled=1;
166static int vm_swap_idle_enabled=0;
167#endif
168
169SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172SYSCTL_INT(_vm, OID_AUTO, max_launder,
173	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184#if defined(NO_SWAPPING)
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#else
190SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194#endif
195
196SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202static int pageout_lock_miss;
203SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206#define VM_PAGEOUT_PAGE_COUNT 16
207int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
210SYSCTL_INT(_vm, OID_AUTO, max_wired,
211	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213#if !defined(NO_SWAPPING)
214static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216static void vm_req_vmdaemon(int req);
217#endif
218static void vm_pageout_page_stats(void);
219
220/*
221 * vm_pageout_fallback_object_lock:
222 *
223 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224 * known to have failed and page queue must be either PQ_ACTIVE or
225 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226 * while locking the vm object.  Use marker page to detect page queue
227 * changes and maintain notion of next page on page queue.  Return
228 * TRUE if no changes were detected, FALSE otherwise.  vm object is
229 * locked on return.
230 *
231 * This function depends on both the lock portion of struct vm_object
232 * and normal struct vm_page being type stable.
233 */
234boolean_t
235vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236{
237	struct vm_page marker;
238	boolean_t unchanged;
239	u_short queue;
240	vm_object_t object;
241
242	/*
243	 * Initialize our marker
244	 */
245	bzero(&marker, sizeof(marker));
246	marker.flags = PG_FICTITIOUS | PG_MARKER;
247	marker.oflags = VPO_BUSY;
248	marker.queue = m->queue;
249	marker.wire_count = 1;
250
251	queue = m->queue;
252	object = m->object;
253
254	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255			   m, &marker, pageq);
256	vm_page_unlock_queues();
257	VM_OBJECT_LOCK(object);
258	vm_page_lock_queues();
259
260	/* Page queue might have changed. */
261	*next = TAILQ_NEXT(&marker, pageq);
262	unchanged = (m->queue == queue &&
263		     m->object == object &&
264		     &marker == TAILQ_NEXT(m, pageq));
265	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266		     &marker, pageq);
267	return (unchanged);
268}
269
270/*
271 * vm_pageout_clean:
272 *
273 * Clean the page and remove it from the laundry.
274 *
275 * We set the busy bit to cause potential page faults on this page to
276 * block.  Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
278 */
279static int
280vm_pageout_clean(m)
281	vm_page_t m;
282{
283	vm_object_t object;
284	vm_page_t mc[2*vm_pageout_page_count];
285	int pageout_count;
286	int ib, is, page_base;
287	vm_pindex_t pindex = m->pindex;
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292	/*
293	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294	 * with the new swapper, but we could have serious problems paging
295	 * out other object types if there is insufficient memory.
296	 *
297	 * Unfortunately, checking free memory here is far too late, so the
298	 * check has been moved up a procedural level.
299	 */
300
301	/*
302	 * Can't clean the page if it's busy or held.
303	 */
304	if ((m->hold_count != 0) ||
305	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306		return 0;
307	}
308
309	mc[vm_pageout_page_count] = m;
310	pageout_count = 1;
311	page_base = vm_pageout_page_count;
312	ib = 1;
313	is = 1;
314
315	/*
316	 * Scan object for clusterable pages.
317	 *
318	 * We can cluster ONLY if: ->> the page is NOT
319	 * clean, wired, busy, held, or mapped into a
320	 * buffer, and one of the following:
321	 * 1) The page is inactive, or a seldom used
322	 *    active page.
323	 * -or-
324	 * 2) we force the issue.
325	 *
326	 * During heavy mmap/modification loads the pageout
327	 * daemon can really fragment the underlying file
328	 * due to flushing pages out of order and not trying
329	 * align the clusters (which leave sporatic out-of-order
330	 * holes).  To solve this problem we do the reverse scan
331	 * first and attempt to align our cluster, then do a
332	 * forward scan if room remains.
333	 */
334	object = m->object;
335more:
336	while (ib && pageout_count < vm_pageout_page_count) {
337		vm_page_t p;
338
339		if (ib > pindex) {
340			ib = 0;
341			break;
342		}
343
344		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345			ib = 0;
346			break;
347		}
348		if ((p->oflags & VPO_BUSY) || p->busy) {
349			ib = 0;
350			break;
351		}
352		vm_page_test_dirty(p);
353		if ((p->dirty & p->valid) == 0 ||
354		    p->queue != PQ_INACTIVE ||
355		    p->wire_count != 0 ||	/* may be held by buf cache */
356		    p->hold_count != 0) {	/* may be undergoing I/O */
357			ib = 0;
358			break;
359		}
360		mc[--page_base] = p;
361		++pageout_count;
362		++ib;
363		/*
364		 * alignment boundry, stop here and switch directions.  Do
365		 * not clear ib.
366		 */
367		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368			break;
369	}
370
371	while (pageout_count < vm_pageout_page_count &&
372	    pindex + is < object->size) {
373		vm_page_t p;
374
375		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376			break;
377		if ((p->oflags & VPO_BUSY) || p->busy) {
378			break;
379		}
380		vm_page_test_dirty(p);
381		if ((p->dirty & p->valid) == 0 ||
382		    p->queue != PQ_INACTIVE ||
383		    p->wire_count != 0 ||	/* may be held by buf cache */
384		    p->hold_count != 0) {	/* may be undergoing I/O */
385			break;
386		}
387		mc[page_base + pageout_count] = p;
388		++pageout_count;
389		++is;
390	}
391
392	/*
393	 * If we exhausted our forward scan, continue with the reverse scan
394	 * when possible, even past a page boundry.  This catches boundry
395	 * conditions.
396	 */
397	if (ib && pageout_count < vm_pageout_page_count)
398		goto more;
399
400	/*
401	 * we allow reads during pageouts...
402	 */
403	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404}
405
406/*
407 * vm_pageout_flush() - launder the given pages
408 *
409 *	The given pages are laundered.  Note that we setup for the start of
410 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
411 *	reference count all in here rather then in the parent.  If we want
412 *	the parent to do more sophisticated things we may have to change
413 *	the ordering.
414 */
415int
416vm_pageout_flush(vm_page_t *mc, int count, int flags)
417{
418	vm_object_t object = mc[0]->object;
419	int pageout_status[count];
420	int numpagedout = 0;
421	int i;
422
423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425	/*
426	 * Initiate I/O.  Bump the vm_page_t->busy counter and
427	 * mark the pages read-only.
428	 *
429	 * We do not have to fixup the clean/dirty bits here... we can
430	 * allow the pager to do it after the I/O completes.
431	 *
432	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433	 * edge case with file fragments.
434	 */
435	for (i = 0; i < count; i++) {
436		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
438			mc[i], i, count));
439		vm_page_io_start(mc[i]);
440		pmap_remove_write(mc[i]);
441	}
442	vm_page_unlock_queues();
443	vm_object_pip_add(object, count);
444
445	vm_pager_put_pages(object, mc, count, flags, pageout_status);
446
447	vm_page_lock_queues();
448	for (i = 0; i < count; i++) {
449		vm_page_t mt = mc[i];
450
451		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452		    (mt->flags & PG_WRITEABLE) == 0,
453		    ("vm_pageout_flush: page %p is not write protected", mt));
454		switch (pageout_status[i]) {
455		case VM_PAGER_OK:
456		case VM_PAGER_PEND:
457			numpagedout++;
458			break;
459		case VM_PAGER_BAD:
460			/*
461			 * Page outside of range of object. Right now we
462			 * essentially lose the changes by pretending it
463			 * worked.
464			 */
465			vm_page_undirty(mt);
466			break;
467		case VM_PAGER_ERROR:
468		case VM_PAGER_FAIL:
469			/*
470			 * If page couldn't be paged out, then reactivate the
471			 * page so it doesn't clog the inactive list.  (We
472			 * will try paging out it again later).
473			 */
474			vm_page_activate(mt);
475			break;
476		case VM_PAGER_AGAIN:
477			break;
478		}
479
480		/*
481		 * If the operation is still going, leave the page busy to
482		 * block all other accesses. Also, leave the paging in
483		 * progress indicator set so that we don't attempt an object
484		 * collapse.
485		 */
486		if (pageout_status[i] != VM_PAGER_PEND) {
487			vm_object_pip_wakeup(object);
488			vm_page_io_finish(mt);
489			if (vm_page_count_severe())
490				vm_page_try_to_cache(mt);
491		}
492	}
493	return numpagedout;
494}
495
496#if !defined(NO_SWAPPING)
497/*
498 *	vm_pageout_object_deactivate_pages
499 *
500 *	deactivate enough pages to satisfy the inactive target
501 *	requirements or if vm_page_proc_limit is set, then
502 *	deactivate all of the pages in the object and its
503 *	backing_objects.
504 *
505 *	The object and map must be locked.
506 */
507static void
508vm_pageout_object_deactivate_pages(pmap, first_object, desired)
509	pmap_t pmap;
510	vm_object_t first_object;
511	long desired;
512{
513	vm_object_t backing_object, object;
514	vm_page_t p, next;
515	int actcount, rcount, remove_mode;
516
517	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
518	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
519		return;
520	for (object = first_object;; object = backing_object) {
521		if (pmap_resident_count(pmap) <= desired)
522			goto unlock_return;
523		if (object->paging_in_progress)
524			goto unlock_return;
525
526		remove_mode = 0;
527		if (object->shadow_count > 1)
528			remove_mode = 1;
529		/*
530		 * scan the objects entire memory queue
531		 */
532		rcount = object->resident_page_count;
533		p = TAILQ_FIRST(&object->memq);
534		vm_page_lock_queues();
535		while (p && (rcount-- > 0)) {
536			if (pmap_resident_count(pmap) <= desired) {
537				vm_page_unlock_queues();
538				goto unlock_return;
539			}
540			next = TAILQ_NEXT(p, listq);
541			cnt.v_pdpages++;
542			if (p->wire_count != 0 ||
543			    p->hold_count != 0 ||
544			    p->busy != 0 ||
545			    (p->oflags & VPO_BUSY) ||
546			    (p->flags & PG_UNMANAGED) ||
547			    !pmap_page_exists_quick(pmap, p)) {
548				p = next;
549				continue;
550			}
551			actcount = pmap_ts_referenced(p);
552			if (actcount) {
553				vm_page_flag_set(p, PG_REFERENCED);
554			} else if (p->flags & PG_REFERENCED) {
555				actcount = 1;
556			}
557			if ((p->queue != PQ_ACTIVE) &&
558				(p->flags & PG_REFERENCED)) {
559				vm_page_activate(p);
560				p->act_count += actcount;
561				vm_page_flag_clear(p, PG_REFERENCED);
562			} else if (p->queue == PQ_ACTIVE) {
563				if ((p->flags & PG_REFERENCED) == 0) {
564					p->act_count -= min(p->act_count, ACT_DECLINE);
565					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566						pmap_remove_all(p);
567						vm_page_deactivate(p);
568					} else {
569						vm_page_requeue(p);
570					}
571				} else {
572					vm_page_activate(p);
573					vm_page_flag_clear(p, PG_REFERENCED);
574					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575						p->act_count += ACT_ADVANCE;
576					vm_page_requeue(p);
577				}
578			} else if (p->queue == PQ_INACTIVE) {
579				pmap_remove_all(p);
580			}
581			p = next;
582		}
583		vm_page_unlock_queues();
584		if ((backing_object = object->backing_object) == NULL)
585			goto unlock_return;
586		VM_OBJECT_LOCK(backing_object);
587		if (object != first_object)
588			VM_OBJECT_UNLOCK(object);
589	}
590unlock_return:
591	if (object != first_object)
592		VM_OBJECT_UNLOCK(object);
593}
594
595/*
596 * deactivate some number of pages in a map, try to do it fairly, but
597 * that is really hard to do.
598 */
599static void
600vm_pageout_map_deactivate_pages(map, desired)
601	vm_map_t map;
602	long desired;
603{
604	vm_map_entry_t tmpe;
605	vm_object_t obj, bigobj;
606	int nothingwired;
607
608	if (!vm_map_trylock(map))
609		return;
610
611	bigobj = NULL;
612	nothingwired = TRUE;
613
614	/*
615	 * first, search out the biggest object, and try to free pages from
616	 * that.
617	 */
618	tmpe = map->header.next;
619	while (tmpe != &map->header) {
620		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621			obj = tmpe->object.vm_object;
622			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623				if (obj->shadow_count <= 1 &&
624				    (bigobj == NULL ||
625				     bigobj->resident_page_count < obj->resident_page_count)) {
626					if (bigobj != NULL)
627						VM_OBJECT_UNLOCK(bigobj);
628					bigobj = obj;
629				} else
630					VM_OBJECT_UNLOCK(obj);
631			}
632		}
633		if (tmpe->wired_count > 0)
634			nothingwired = FALSE;
635		tmpe = tmpe->next;
636	}
637
638	if (bigobj != NULL) {
639		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640		VM_OBJECT_UNLOCK(bigobj);
641	}
642	/*
643	 * Next, hunt around for other pages to deactivate.  We actually
644	 * do this search sort of wrong -- .text first is not the best idea.
645	 */
646	tmpe = map->header.next;
647	while (tmpe != &map->header) {
648		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649			break;
650		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651			obj = tmpe->object.vm_object;
652			if (obj != NULL) {
653				VM_OBJECT_LOCK(obj);
654				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655				VM_OBJECT_UNLOCK(obj);
656			}
657		}
658		tmpe = tmpe->next;
659	}
660
661	/*
662	 * Remove all mappings if a process is swapped out, this will free page
663	 * table pages.
664	 */
665	if (desired == 0 && nothingwired) {
666		pmap_remove(vm_map_pmap(map), vm_map_min(map),
667		    vm_map_max(map));
668	}
669	vm_map_unlock(map);
670}
671#endif		/* !defined(NO_SWAPPING) */
672
673/*
674 *	vm_pageout_scan does the dirty work for the pageout daemon.
675 */
676static void
677vm_pageout_scan(int pass)
678{
679	vm_page_t m, next;
680	struct vm_page marker;
681	int page_shortage, maxscan, pcount;
682	int addl_page_shortage, addl_page_shortage_init;
683	vm_object_t object;
684	int actcount;
685	int vnodes_skipped = 0;
686	int maxlaunder;
687
688	/*
689	 * Decrease registered cache sizes.
690	 */
691	EVENTHANDLER_INVOKE(vm_lowmem, 0);
692	/*
693	 * We do this explicitly after the caches have been drained above.
694	 */
695	uma_reclaim();
696
697	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699	/*
700	 * Calculate the number of pages we want to either free or move
701	 * to the cache.
702	 */
703	page_shortage = vm_paging_target() + addl_page_shortage_init;
704
705	/*
706	 * Initialize our marker
707	 */
708	bzero(&marker, sizeof(marker));
709	marker.flags = PG_FICTITIOUS | PG_MARKER;
710	marker.oflags = VPO_BUSY;
711	marker.queue = PQ_INACTIVE;
712	marker.wire_count = 1;
713
714	/*
715	 * Start scanning the inactive queue for pages we can move to the
716	 * cache or free.  The scan will stop when the target is reached or
717	 * we have scanned the entire inactive queue.  Note that m->act_count
718	 * is not used to form decisions for the inactive queue, only for the
719	 * active queue.
720	 *
721	 * maxlaunder limits the number of dirty pages we flush per scan.
722	 * For most systems a smaller value (16 or 32) is more robust under
723	 * extreme memory and disk pressure because any unnecessary writes
724	 * to disk can result in extreme performance degredation.  However,
725	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
726	 * used) will die horribly with limited laundering.  If the pageout
727	 * daemon cannot clean enough pages in the first pass, we let it go
728	 * all out in succeeding passes.
729	 */
730	if ((maxlaunder = vm_max_launder) <= 1)
731		maxlaunder = 1;
732	if (pass)
733		maxlaunder = 10000;
734	vm_page_lock_queues();
735rescan0:
736	addl_page_shortage = addl_page_shortage_init;
737	maxscan = cnt.v_inactive_count;
738
739	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
740	     m != NULL && maxscan-- > 0 && page_shortage > 0;
741	     m = next) {
742
743		cnt.v_pdpages++;
744
745		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
746			goto rescan0;
747		}
748
749		next = TAILQ_NEXT(m, pageq);
750		object = m->object;
751
752		/*
753		 * skip marker pages
754		 */
755		if (m->flags & PG_MARKER)
756			continue;
757
758		/*
759		 * A held page may be undergoing I/O, so skip it.
760		 */
761		if (m->hold_count) {
762			vm_page_requeue(m);
763			addl_page_shortage++;
764			continue;
765		}
766		/*
767		 * Don't mess with busy pages, keep in the front of the
768		 * queue, most likely are being paged out.
769		 */
770		if (!VM_OBJECT_TRYLOCK(object) &&
771		    (!vm_pageout_fallback_object_lock(m, &next) ||
772		     m->hold_count != 0)) {
773			VM_OBJECT_UNLOCK(object);
774			addl_page_shortage++;
775			continue;
776		}
777		if (m->busy || (m->oflags & VPO_BUSY)) {
778			VM_OBJECT_UNLOCK(object);
779			addl_page_shortage++;
780			continue;
781		}
782
783		/*
784		 * If the object is not being used, we ignore previous
785		 * references.
786		 */
787		if (object->ref_count == 0) {
788			vm_page_flag_clear(m, PG_REFERENCED);
789			pmap_clear_reference(m);
790
791		/*
792		 * Otherwise, if the page has been referenced while in the
793		 * inactive queue, we bump the "activation count" upwards,
794		 * making it less likely that the page will be added back to
795		 * the inactive queue prematurely again.  Here we check the
796		 * page tables (or emulated bits, if any), given the upper
797		 * level VM system not knowing anything about existing
798		 * references.
799		 */
800		} else if (((m->flags & PG_REFERENCED) == 0) &&
801			(actcount = pmap_ts_referenced(m))) {
802			vm_page_activate(m);
803			VM_OBJECT_UNLOCK(object);
804			m->act_count += (actcount + ACT_ADVANCE);
805			continue;
806		}
807
808		/*
809		 * If the upper level VM system knows about any page
810		 * references, we activate the page.  We also set the
811		 * "activation count" higher than normal so that we will less
812		 * likely place pages back onto the inactive queue again.
813		 */
814		if ((m->flags & PG_REFERENCED) != 0) {
815			vm_page_flag_clear(m, PG_REFERENCED);
816			actcount = pmap_ts_referenced(m);
817			vm_page_activate(m);
818			VM_OBJECT_UNLOCK(object);
819			m->act_count += (actcount + ACT_ADVANCE + 1);
820			continue;
821		}
822
823		/*
824		 * If the upper level VM system doesn't know anything about
825		 * the page being dirty, we have to check for it again.  As
826		 * far as the VM code knows, any partially dirty pages are
827		 * fully dirty.
828		 */
829		if (m->dirty == 0 && !pmap_is_modified(m)) {
830			/*
831			 * Avoid a race condition: Unless write access is
832			 * removed from the page, another processor could
833			 * modify it before all access is removed by the call
834			 * to vm_page_cache() below.  If vm_page_cache() finds
835			 * that the page has been modified when it removes all
836			 * access, it panics because it cannot cache dirty
837			 * pages.  In principle, we could eliminate just write
838			 * access here rather than all access.  In the expected
839			 * case, when there are no last instant modifications
840			 * to the page, removing all access will be cheaper
841			 * overall.
842			 */
843			if ((m->flags & PG_WRITEABLE) != 0)
844				pmap_remove_all(m);
845		} else {
846			vm_page_dirty(m);
847		}
848
849		if (m->valid == 0) {
850			/*
851			 * Invalid pages can be easily freed
852			 */
853			vm_page_free(m);
854			cnt.v_dfree++;
855			--page_shortage;
856		} else if (m->dirty == 0) {
857			/*
858			 * Clean pages can be placed onto the cache queue.
859			 * This effectively frees them.
860			 */
861			vm_page_cache(m);
862			--page_shortage;
863		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
864			/*
865			 * Dirty pages need to be paged out, but flushing
866			 * a page is extremely expensive verses freeing
867			 * a clean page.  Rather then artificially limiting
868			 * the number of pages we can flush, we instead give
869			 * dirty pages extra priority on the inactive queue
870			 * by forcing them to be cycled through the queue
871			 * twice before being flushed, after which the
872			 * (now clean) page will cycle through once more
873			 * before being freed.  This significantly extends
874			 * the thrash point for a heavily loaded machine.
875			 */
876			vm_page_flag_set(m, PG_WINATCFLS);
877			vm_page_requeue(m);
878		} else if (maxlaunder > 0) {
879			/*
880			 * We always want to try to flush some dirty pages if
881			 * we encounter them, to keep the system stable.
882			 * Normally this number is small, but under extreme
883			 * pressure where there are insufficient clean pages
884			 * on the inactive queue, we may have to go all out.
885			 */
886			int swap_pageouts_ok, vfslocked = 0;
887			struct vnode *vp = NULL;
888			struct mount *mp = NULL;
889
890			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
891				swap_pageouts_ok = 1;
892			} else {
893				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
894				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
895				vm_page_count_min());
896
897			}
898
899			/*
900			 * We don't bother paging objects that are "dead".
901			 * Those objects are in a "rundown" state.
902			 */
903			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
904				VM_OBJECT_UNLOCK(object);
905				vm_page_requeue(m);
906				continue;
907			}
908
909			/*
910			 * Following operations may unlock
911			 * vm_page_queue_mtx, invalidating the 'next'
912			 * pointer.  To prevent an inordinate number
913			 * of restarts we use our marker to remember
914			 * our place.
915			 *
916			 */
917			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
918					   m, &marker, pageq);
919			/*
920			 * The object is already known NOT to be dead.   It
921			 * is possible for the vget() to block the whole
922			 * pageout daemon, but the new low-memory handling
923			 * code should prevent it.
924			 *
925			 * The previous code skipped locked vnodes and, worse,
926			 * reordered pages in the queue.  This results in
927			 * completely non-deterministic operation and, on a
928			 * busy system, can lead to extremely non-optimal
929			 * pageouts.  For example, it can cause clean pages
930			 * to be freed and dirty pages to be moved to the end
931			 * of the queue.  Since dirty pages are also moved to
932			 * the end of the queue once-cleaned, this gives
933			 * way too large a weighting to defering the freeing
934			 * of dirty pages.
935			 *
936			 * We can't wait forever for the vnode lock, we might
937			 * deadlock due to a vn_read() getting stuck in
938			 * vm_wait while holding this vnode.  We skip the
939			 * vnode if we can't get it in a reasonable amount
940			 * of time.
941			 */
942			if (object->type == OBJT_VNODE) {
943				vp = object->handle;
944				if (vp->v_type == VREG &&
945				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
946					mp = NULL;
947					++pageout_lock_miss;
948					if (object->flags & OBJ_MIGHTBEDIRTY)
949						vnodes_skipped++;
950					goto unlock_and_continue;
951				}
952				vm_page_unlock_queues();
953				vm_object_reference_locked(object);
954				VM_OBJECT_UNLOCK(object);
955				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
956				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
957				    curthread)) {
958					VM_OBJECT_LOCK(object);
959					vm_page_lock_queues();
960					++pageout_lock_miss;
961					if (object->flags & OBJ_MIGHTBEDIRTY)
962						vnodes_skipped++;
963					vp = NULL;
964					goto unlock_and_continue;
965				}
966				VM_OBJECT_LOCK(object);
967				vm_page_lock_queues();
968				/*
969				 * The page might have been moved to another
970				 * queue during potential blocking in vget()
971				 * above.  The page might have been freed and
972				 * reused for another vnode.
973				 */
974				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
975				    m->object != object ||
976				    TAILQ_NEXT(m, pageq) != &marker) {
977					if (object->flags & OBJ_MIGHTBEDIRTY)
978						vnodes_skipped++;
979					goto unlock_and_continue;
980				}
981
982				/*
983				 * The page may have been busied during the
984				 * blocking in vget().  We don't move the
985				 * page back onto the end of the queue so that
986				 * statistics are more correct if we don't.
987				 */
988				if (m->busy || (m->oflags & VPO_BUSY)) {
989					goto unlock_and_continue;
990				}
991
992				/*
993				 * If the page has become held it might
994				 * be undergoing I/O, so skip it
995				 */
996				if (m->hold_count) {
997					vm_page_requeue(m);
998					if (object->flags & OBJ_MIGHTBEDIRTY)
999						vnodes_skipped++;
1000					goto unlock_and_continue;
1001				}
1002			}
1003
1004			/*
1005			 * If a page is dirty, then it is either being washed
1006			 * (but not yet cleaned) or it is still in the
1007			 * laundry.  If it is still in the laundry, then we
1008			 * start the cleaning operation.
1009			 *
1010			 * decrement page_shortage on success to account for
1011			 * the (future) cleaned page.  Otherwise we could wind
1012			 * up laundering or cleaning too many pages.
1013			 */
1014			if (vm_pageout_clean(m) != 0) {
1015				--page_shortage;
1016				--maxlaunder;
1017			}
1018unlock_and_continue:
1019			VM_OBJECT_UNLOCK(object);
1020			if (mp != NULL) {
1021				vm_page_unlock_queues();
1022				if (vp != NULL)
1023					vput(vp);
1024				VFS_UNLOCK_GIANT(vfslocked);
1025				vm_object_deallocate(object);
1026				vn_finished_write(mp);
1027				vm_page_lock_queues();
1028			}
1029			next = TAILQ_NEXT(&marker, pageq);
1030			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1031				     &marker, pageq);
1032			continue;
1033		}
1034		VM_OBJECT_UNLOCK(object);
1035	}
1036
1037	/*
1038	 * Compute the number of pages we want to try to move from the
1039	 * active queue to the inactive queue.
1040	 */
1041	page_shortage = vm_paging_target() +
1042		cnt.v_inactive_target - cnt.v_inactive_count;
1043	page_shortage += addl_page_shortage;
1044
1045	/*
1046	 * Scan the active queue for things we can deactivate. We nominally
1047	 * track the per-page activity counter and use it to locate
1048	 * deactivation candidates.
1049	 */
1050	pcount = cnt.v_active_count;
1051	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1052
1053	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1054
1055		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1056		    ("vm_pageout_scan: page %p isn't active", m));
1057
1058		next = TAILQ_NEXT(m, pageq);
1059		object = m->object;
1060		if ((m->flags & PG_MARKER) != 0) {
1061			m = next;
1062			continue;
1063		}
1064		if (!VM_OBJECT_TRYLOCK(object) &&
1065		    !vm_pageout_fallback_object_lock(m, &next)) {
1066			VM_OBJECT_UNLOCK(object);
1067			m = next;
1068			continue;
1069		}
1070
1071		/*
1072		 * Don't deactivate pages that are busy.
1073		 */
1074		if ((m->busy != 0) ||
1075		    (m->oflags & VPO_BUSY) ||
1076		    (m->hold_count != 0)) {
1077			VM_OBJECT_UNLOCK(object);
1078			vm_page_requeue(m);
1079			m = next;
1080			continue;
1081		}
1082
1083		/*
1084		 * The count for pagedaemon pages is done after checking the
1085		 * page for eligibility...
1086		 */
1087		cnt.v_pdpages++;
1088
1089		/*
1090		 * Check to see "how much" the page has been used.
1091		 */
1092		actcount = 0;
1093		if (object->ref_count != 0) {
1094			if (m->flags & PG_REFERENCED) {
1095				actcount += 1;
1096			}
1097			actcount += pmap_ts_referenced(m);
1098			if (actcount) {
1099				m->act_count += ACT_ADVANCE + actcount;
1100				if (m->act_count > ACT_MAX)
1101					m->act_count = ACT_MAX;
1102			}
1103		}
1104
1105		/*
1106		 * Since we have "tested" this bit, we need to clear it now.
1107		 */
1108		vm_page_flag_clear(m, PG_REFERENCED);
1109
1110		/*
1111		 * Only if an object is currently being used, do we use the
1112		 * page activation count stats.
1113		 */
1114		if (actcount && (object->ref_count != 0)) {
1115			vm_page_requeue(m);
1116		} else {
1117			m->act_count -= min(m->act_count, ACT_DECLINE);
1118			if (vm_pageout_algorithm ||
1119			    object->ref_count == 0 ||
1120			    m->act_count == 0) {
1121				page_shortage--;
1122				if (object->ref_count == 0) {
1123					pmap_remove_all(m);
1124					if (m->dirty == 0)
1125						vm_page_cache(m);
1126					else
1127						vm_page_deactivate(m);
1128				} else {
1129					vm_page_deactivate(m);
1130				}
1131			} else {
1132				vm_page_requeue(m);
1133			}
1134		}
1135		VM_OBJECT_UNLOCK(object);
1136		m = next;
1137	}
1138	vm_page_unlock_queues();
1139#if !defined(NO_SWAPPING)
1140	/*
1141	 * Idle process swapout -- run once per second.
1142	 */
1143	if (vm_swap_idle_enabled) {
1144		static long lsec;
1145		if (time_second != lsec) {
1146			vm_req_vmdaemon(VM_SWAP_IDLE);
1147			lsec = time_second;
1148		}
1149	}
1150#endif
1151
1152	/*
1153	 * If we didn't get enough free pages, and we have skipped a vnode
1154	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1155	 * if we did not get enough free pages.
1156	 */
1157	if (vm_paging_target() > 0) {
1158		if (vnodes_skipped && vm_page_count_min())
1159			(void) speedup_syncer();
1160#if !defined(NO_SWAPPING)
1161		if (vm_swap_enabled && vm_page_count_target())
1162			vm_req_vmdaemon(VM_SWAP_NORMAL);
1163#endif
1164	}
1165
1166	/*
1167	 * If we are critically low on one of RAM or swap and low on
1168	 * the other, kill the largest process.  However, we avoid
1169	 * doing this on the first pass in order to give ourselves a
1170	 * chance to flush out dirty vnode-backed pages and to allow
1171	 * active pages to be moved to the inactive queue and reclaimed.
1172	 */
1173	if (pass != 0 &&
1174	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1175	     (swap_pager_full && vm_paging_target() > 0)))
1176		vm_pageout_oom(VM_OOM_MEM);
1177}
1178
1179
1180void
1181vm_pageout_oom(int shortage)
1182{
1183	struct proc *p, *bigproc;
1184	vm_offset_t size, bigsize;
1185	struct thread *td;
1186	struct vmspace *vm;
1187
1188	/*
1189	 * We keep the process bigproc locked once we find it to keep anyone
1190	 * from messing with it; however, there is a possibility of
1191	 * deadlock if process B is bigproc and one of it's child processes
1192	 * attempts to propagate a signal to B while we are waiting for A's
1193	 * lock while walking this list.  To avoid this, we don't block on
1194	 * the process lock but just skip a process if it is already locked.
1195	 */
1196	bigproc = NULL;
1197	bigsize = 0;
1198	sx_slock(&allproc_lock);
1199	FOREACH_PROC_IN_SYSTEM(p) {
1200		int breakout;
1201
1202		if (PROC_TRYLOCK(p) == 0)
1203			continue;
1204		/*
1205		 * If this is a system or protected process, skip it.
1206		 */
1207		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1208		    (p->p_pid == 1) ||
1209		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1210			PROC_UNLOCK(p);
1211			continue;
1212		}
1213		/*
1214		 * If the process is in a non-running type state,
1215		 * don't touch it.  Check all the threads individually.
1216		 */
1217		breakout = 0;
1218		FOREACH_THREAD_IN_PROC(p, td) {
1219			thread_lock(td);
1220			if (!TD_ON_RUNQ(td) &&
1221			    !TD_IS_RUNNING(td) &&
1222			    !TD_IS_SLEEPING(td)) {
1223				thread_unlock(td);
1224				breakout = 1;
1225				break;
1226			}
1227			thread_unlock(td);
1228		}
1229		if (breakout) {
1230			PROC_UNLOCK(p);
1231			continue;
1232		}
1233		/*
1234		 * get the process size
1235		 */
1236		vm = vmspace_acquire_ref(p);
1237		if (vm == NULL) {
1238			PROC_UNLOCK(p);
1239			continue;
1240		}
1241		if (!vm_map_trylock_read(&vm->vm_map)) {
1242			vmspace_free(vm);
1243			PROC_UNLOCK(p);
1244			continue;
1245		}
1246		size = vmspace_swap_count(vm);
1247		vm_map_unlock_read(&vm->vm_map);
1248		if (shortage == VM_OOM_MEM)
1249			size += vmspace_resident_count(vm);
1250		vmspace_free(vm);
1251		/*
1252		 * if the this process is bigger than the biggest one
1253		 * remember it.
1254		 */
1255		if (size > bigsize) {
1256			if (bigproc != NULL)
1257				PROC_UNLOCK(bigproc);
1258			bigproc = p;
1259			bigsize = size;
1260		} else
1261			PROC_UNLOCK(p);
1262	}
1263	sx_sunlock(&allproc_lock);
1264	if (bigproc != NULL) {
1265		killproc(bigproc, "out of swap space");
1266		sched_nice(bigproc, PRIO_MIN);
1267		PROC_UNLOCK(bigproc);
1268		wakeup(&cnt.v_free_count);
1269	}
1270}
1271
1272/*
1273 * This routine tries to maintain the pseudo LRU active queue,
1274 * so that during long periods of time where there is no paging,
1275 * that some statistic accumulation still occurs.  This code
1276 * helps the situation where paging just starts to occur.
1277 */
1278static void
1279vm_pageout_page_stats()
1280{
1281	vm_object_t object;
1282	vm_page_t m,next;
1283	int pcount,tpcount;		/* Number of pages to check */
1284	static int fullintervalcount = 0;
1285	int page_shortage;
1286
1287	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1288	page_shortage =
1289	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1290	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1291
1292	if (page_shortage <= 0)
1293		return;
1294
1295	pcount = cnt.v_active_count;
1296	fullintervalcount += vm_pageout_stats_interval;
1297	if (fullintervalcount < vm_pageout_full_stats_interval) {
1298		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1299		    cnt.v_page_count;
1300		if (pcount > tpcount)
1301			pcount = tpcount;
1302	} else {
1303		fullintervalcount = 0;
1304	}
1305
1306	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1307	while ((m != NULL) && (pcount-- > 0)) {
1308		int actcount;
1309
1310		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1311		    ("vm_pageout_page_stats: page %p isn't active", m));
1312
1313		next = TAILQ_NEXT(m, pageq);
1314		object = m->object;
1315
1316		if ((m->flags & PG_MARKER) != 0) {
1317			m = next;
1318			continue;
1319		}
1320		if (!VM_OBJECT_TRYLOCK(object) &&
1321		    !vm_pageout_fallback_object_lock(m, &next)) {
1322			VM_OBJECT_UNLOCK(object);
1323			m = next;
1324			continue;
1325		}
1326
1327		/*
1328		 * Don't deactivate pages that are busy.
1329		 */
1330		if ((m->busy != 0) ||
1331		    (m->oflags & VPO_BUSY) ||
1332		    (m->hold_count != 0)) {
1333			VM_OBJECT_UNLOCK(object);
1334			vm_page_requeue(m);
1335			m = next;
1336			continue;
1337		}
1338
1339		actcount = 0;
1340		if (m->flags & PG_REFERENCED) {
1341			vm_page_flag_clear(m, PG_REFERENCED);
1342			actcount += 1;
1343		}
1344
1345		actcount += pmap_ts_referenced(m);
1346		if (actcount) {
1347			m->act_count += ACT_ADVANCE + actcount;
1348			if (m->act_count > ACT_MAX)
1349				m->act_count = ACT_MAX;
1350			vm_page_requeue(m);
1351		} else {
1352			if (m->act_count == 0) {
1353				/*
1354				 * We turn off page access, so that we have
1355				 * more accurate RSS stats.  We don't do this
1356				 * in the normal page deactivation when the
1357				 * system is loaded VM wise, because the
1358				 * cost of the large number of page protect
1359				 * operations would be higher than the value
1360				 * of doing the operation.
1361				 */
1362				pmap_remove_all(m);
1363				vm_page_deactivate(m);
1364			} else {
1365				m->act_count -= min(m->act_count, ACT_DECLINE);
1366				vm_page_requeue(m);
1367			}
1368		}
1369		VM_OBJECT_UNLOCK(object);
1370		m = next;
1371	}
1372}
1373
1374/*
1375 *	vm_pageout is the high level pageout daemon.
1376 */
1377static void
1378vm_pageout()
1379{
1380	int error, pass;
1381
1382	/*
1383	 * Initialize some paging parameters.
1384	 */
1385	cnt.v_interrupt_free_min = 2;
1386	if (cnt.v_page_count < 2000)
1387		vm_pageout_page_count = 8;
1388
1389	/*
1390	 * v_free_reserved needs to include enough for the largest
1391	 * swap pager structures plus enough for any pv_entry structs
1392	 * when paging.
1393	 */
1394	if (cnt.v_page_count > 1024)
1395		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1396	else
1397		cnt.v_free_min = 4;
1398	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1399	    cnt.v_interrupt_free_min;
1400	cnt.v_free_reserved = vm_pageout_page_count +
1401	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1402	cnt.v_free_severe = cnt.v_free_min / 2;
1403	cnt.v_free_min += cnt.v_free_reserved;
1404	cnt.v_free_severe += cnt.v_free_reserved;
1405
1406	/*
1407	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1408	 * that these are more a measure of the VM cache queue hysteresis
1409	 * then the VM free queue.  Specifically, v_free_target is the
1410	 * high water mark (free+cache pages).
1411	 *
1412	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1413	 * low water mark, while v_free_min is the stop.  v_cache_min must
1414	 * be big enough to handle memory needs while the pageout daemon
1415	 * is signalled and run to free more pages.
1416	 */
1417	if (cnt.v_free_count > 6144)
1418		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1419	else
1420		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1421
1422	if (cnt.v_free_count > 2048) {
1423		cnt.v_cache_min = cnt.v_free_target;
1424		cnt.v_cache_max = 2 * cnt.v_cache_min;
1425		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1426	} else {
1427		cnt.v_cache_min = 0;
1428		cnt.v_cache_max = 0;
1429		cnt.v_inactive_target = cnt.v_free_count / 4;
1430	}
1431	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1432		cnt.v_inactive_target = cnt.v_free_count / 3;
1433
1434	/* XXX does not really belong here */
1435	if (vm_page_max_wired == 0)
1436		vm_page_max_wired = cnt.v_free_count / 3;
1437
1438	if (vm_pageout_stats_max == 0)
1439		vm_pageout_stats_max = cnt.v_free_target;
1440
1441	/*
1442	 * Set interval in seconds for stats scan.
1443	 */
1444	if (vm_pageout_stats_interval == 0)
1445		vm_pageout_stats_interval = 5;
1446	if (vm_pageout_full_stats_interval == 0)
1447		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1448
1449	swap_pager_swap_init();
1450	pass = 0;
1451	/*
1452	 * The pageout daemon is never done, so loop forever.
1453	 */
1454	while (TRUE) {
1455		/*
1456		 * If we have enough free memory, wakeup waiters.  Do
1457		 * not clear vm_pages_needed until we reach our target,
1458		 * otherwise we may be woken up over and over again and
1459		 * waste a lot of cpu.
1460		 */
1461		mtx_lock(&vm_page_queue_free_mtx);
1462		if (vm_pages_needed && !vm_page_count_min()) {
1463			if (!vm_paging_needed())
1464				vm_pages_needed = 0;
1465			wakeup(&cnt.v_free_count);
1466		}
1467		if (vm_pages_needed) {
1468			/*
1469			 * Still not done, take a second pass without waiting
1470			 * (unlimited dirty cleaning), otherwise sleep a bit
1471			 * and try again.
1472			 */
1473			++pass;
1474			if (pass > 1)
1475				msleep(&vm_pages_needed,
1476				    &vm_page_queue_free_mtx, PVM, "psleep",
1477				    hz / 2);
1478		} else {
1479			/*
1480			 * Good enough, sleep & handle stats.  Prime the pass
1481			 * for the next run.
1482			 */
1483			if (pass > 1)
1484				pass = 1;
1485			else
1486				pass = 0;
1487			error = msleep(&vm_pages_needed,
1488			    &vm_page_queue_free_mtx, PVM, "psleep",
1489			    vm_pageout_stats_interval * hz);
1490			if (error && !vm_pages_needed) {
1491				mtx_unlock(&vm_page_queue_free_mtx);
1492				pass = 0;
1493				vm_page_lock_queues();
1494				vm_pageout_page_stats();
1495				vm_page_unlock_queues();
1496				continue;
1497			}
1498		}
1499		if (vm_pages_needed)
1500			cnt.v_pdwakeups++;
1501		mtx_unlock(&vm_page_queue_free_mtx);
1502		vm_pageout_scan(pass);
1503	}
1504}
1505
1506/*
1507 * Unless the free page queue lock is held by the caller, this function
1508 * should be regarded as advisory.  Specifically, the caller should
1509 * not msleep() on &cnt.v_free_count following this function unless
1510 * the free page queue lock is held until the msleep() is performed.
1511 */
1512void
1513pagedaemon_wakeup()
1514{
1515
1516	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1517		vm_pages_needed = 1;
1518		wakeup(&vm_pages_needed);
1519	}
1520}
1521
1522#if !defined(NO_SWAPPING)
1523static void
1524vm_req_vmdaemon(int req)
1525{
1526	static int lastrun = 0;
1527
1528	mtx_lock(&vm_daemon_mtx);
1529	vm_pageout_req_swapout |= req;
1530	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1531		wakeup(&vm_daemon_needed);
1532		lastrun = ticks;
1533	}
1534	mtx_unlock(&vm_daemon_mtx);
1535}
1536
1537static void
1538vm_daemon()
1539{
1540	struct rlimit rsslim;
1541	struct proc *p;
1542	struct thread *td;
1543	struct vmspace *vm;
1544	int breakout, swapout_flags;
1545
1546	while (TRUE) {
1547		mtx_lock(&vm_daemon_mtx);
1548		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1549		swapout_flags = vm_pageout_req_swapout;
1550		vm_pageout_req_swapout = 0;
1551		mtx_unlock(&vm_daemon_mtx);
1552		if (swapout_flags)
1553			swapout_procs(swapout_flags);
1554
1555		/*
1556		 * scan the processes for exceeding their rlimits or if
1557		 * process is swapped out -- deactivate pages
1558		 */
1559		sx_slock(&allproc_lock);
1560		FOREACH_PROC_IN_SYSTEM(p) {
1561			vm_pindex_t limit, size;
1562
1563			/*
1564			 * if this is a system process or if we have already
1565			 * looked at this process, skip it.
1566			 */
1567			PROC_LOCK(p);
1568			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1569				PROC_UNLOCK(p);
1570				continue;
1571			}
1572			/*
1573			 * if the process is in a non-running type state,
1574			 * don't touch it.
1575			 */
1576			breakout = 0;
1577			FOREACH_THREAD_IN_PROC(p, td) {
1578				thread_lock(td);
1579				if (!TD_ON_RUNQ(td) &&
1580				    !TD_IS_RUNNING(td) &&
1581				    !TD_IS_SLEEPING(td)) {
1582					thread_unlock(td);
1583					breakout = 1;
1584					break;
1585				}
1586				thread_unlock(td);
1587			}
1588			if (breakout) {
1589				PROC_UNLOCK(p);
1590				continue;
1591			}
1592			/*
1593			 * get a limit
1594			 */
1595			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1596			limit = OFF_TO_IDX(
1597			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1598
1599			/*
1600			 * let processes that are swapped out really be
1601			 * swapped out set the limit to nothing (will force a
1602			 * swap-out.)
1603			 */
1604			if ((p->p_flag & P_INMEM) == 0)
1605				limit = 0;	/* XXX */
1606			vm = vmspace_acquire_ref(p);
1607			PROC_UNLOCK(p);
1608			if (vm == NULL)
1609				continue;
1610
1611			size = vmspace_resident_count(vm);
1612			if (limit >= 0 && size >= limit) {
1613				vm_pageout_map_deactivate_pages(
1614				    &vm->vm_map, limit);
1615			}
1616			vmspace_free(vm);
1617		}
1618		sx_sunlock(&allproc_lock);
1619	}
1620}
1621#endif			/* !defined(NO_SWAPPING) */
1622