vm_pageout.c revision 18526
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.85 1996/09/08 20:44:48 dyson Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/malloc.h>
81#include <sys/kernel.h>
82#include <sys/signalvar.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85#include <sys/sysctl.h>
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <vm/lock.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_pager.h>
97#include <vm/swap_pager.h>
98#include <vm/vm_extern.h>
99
100/*
101 * System initialization
102 */
103
104/* the kernel process "vm_pageout"*/
105static void vm_pageout __P((void));
106static int vm_pageout_clean __P((vm_page_t, int));
107static int vm_pageout_scan __P((void));
108static int vm_pageout_free_page_calc __P((vm_size_t count));
109struct proc *pageproc;
110
111static struct kproc_desc page_kp = {
112	"pagedaemon",
113	vm_pageout,
114	&pageproc
115};
116SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117
118#if !defined(NO_SWAPPING)
119/* the kernel process "vm_daemon"*/
120static void vm_daemon __P((void));
121static struct	proc *vmproc;
122
123static struct kproc_desc vm_kp = {
124	"vmdaemon",
125	vm_daemon,
126	&vmproc
127};
128SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129#endif
130
131
132int vm_pages_needed;		/* Event on which pageout daemon sleeps */
133
134int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
135
136extern int npendingio;
137#if !defined(NO_SWAPPING)
138static int vm_pageout_req_swapout;	/* XXX */
139static int vm_daemon_needed;
140#endif
141extern int nswiodone;
142extern int vm_swap_size;
143extern int vfs_update_wakeup;
144int vm_pageout_algorithm_lru=0;
145#if defined(NO_SWAPPING)
146int vm_swapping_enabled=0;
147#else
148int vm_swapping_enabled=1;
149#endif
150
151SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
152	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
153
154#if defined(NO_SWAPPING)
155SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled,
156	CTLFLAG_RD, &vm_swapping_enabled, 0, "");
157#else
158SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled,
159	CTLFLAG_RW, &vm_swapping_enabled, 0, "");
160#endif
161
162#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
163
164#define VM_PAGEOUT_PAGE_COUNT 16
165int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
166
167int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
168
169#if !defined(NO_SWAPPING)
170typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
171static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
172static freeer_fcn_t vm_pageout_object_deactivate_pages;
173static void vm_req_vmdaemon __P((void));
174#endif
175
176/*
177 * vm_pageout_clean:
178 *
179 * Clean the page and remove it from the laundry.
180 *
181 * We set the busy bit to cause potential page faults on this page to
182 * block.
183 *
184 * And we set pageout-in-progress to keep the object from disappearing
185 * during pageout.  This guarantees that the page won't move from the
186 * inactive queue.  (However, any other page on the inactive queue may
187 * move!)
188 */
189static int
190vm_pageout_clean(m, sync)
191	vm_page_t m;
192	int sync;
193{
194	register vm_object_t object;
195	vm_page_t mc[2*vm_pageout_page_count];
196	int pageout_count;
197	int i, forward_okay, backward_okay, page_base;
198	vm_pindex_t pindex = m->pindex;
199
200	object = m->object;
201
202	/*
203	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
204	 * Try to avoid the deadlock.
205	 */
206	if ((sync != VM_PAGEOUT_FORCE) &&
207	    (object->type == OBJT_DEFAULT) &&
208	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
209		return 0;
210
211	/*
212	 * Don't mess with the page if it's busy.
213	 */
214	if ((!sync && m->hold_count != 0) ||
215	    ((m->busy != 0) || (m->flags & PG_BUSY)))
216		return 0;
217
218	/*
219	 * Try collapsing before it's too late.
220	 */
221	if (!sync && object->backing_object) {
222		vm_object_collapse(object);
223	}
224	mc[vm_pageout_page_count] = m;
225	pageout_count = 1;
226	page_base = vm_pageout_page_count;
227	forward_okay = TRUE;
228	if (pindex != 0)
229		backward_okay = TRUE;
230	else
231		backward_okay = FALSE;
232	/*
233	 * Scan object for clusterable pages.
234	 *
235	 * We can cluster ONLY if: ->> the page is NOT
236	 * clean, wired, busy, held, or mapped into a
237	 * buffer, and one of the following:
238	 * 1) The page is inactive, or a seldom used
239	 *    active page.
240	 * -or-
241	 * 2) we force the issue.
242	 */
243	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
244		vm_page_t p;
245
246		/*
247		 * See if forward page is clusterable.
248		 */
249		if (forward_okay) {
250			/*
251			 * Stop forward scan at end of object.
252			 */
253			if ((pindex + i) > object->size) {
254				forward_okay = FALSE;
255				goto do_backward;
256			}
257			p = vm_page_lookup(object, pindex + i);
258			if (p) {
259				if (((p->queue - p->pc) == PQ_CACHE) ||
260					(p->flags & PG_BUSY) || p->busy) {
261					forward_okay = FALSE;
262					goto do_backward;
263				}
264				vm_page_test_dirty(p);
265				if ((p->dirty & p->valid) != 0 &&
266				    ((p->queue == PQ_INACTIVE) ||
267				     (sync == VM_PAGEOUT_FORCE)) &&
268				    (p->wire_count == 0) &&
269				    (p->hold_count == 0)) {
270					mc[vm_pageout_page_count + i] = p;
271					pageout_count++;
272					if (pageout_count == vm_pageout_page_count)
273						break;
274				} else {
275					forward_okay = FALSE;
276				}
277			} else {
278				forward_okay = FALSE;
279			}
280		}
281do_backward:
282		/*
283		 * See if backward page is clusterable.
284		 */
285		if (backward_okay) {
286			/*
287			 * Stop backward scan at beginning of object.
288			 */
289			if ((pindex - i) == 0) {
290				backward_okay = FALSE;
291			}
292			p = vm_page_lookup(object, pindex - i);
293			if (p) {
294				if (((p->queue - p->pc) == PQ_CACHE) ||
295					(p->flags & PG_BUSY) || p->busy) {
296					backward_okay = FALSE;
297					continue;
298				}
299				vm_page_test_dirty(p);
300				if ((p->dirty & p->valid) != 0 &&
301				    ((p->queue == PQ_INACTIVE) ||
302				     (sync == VM_PAGEOUT_FORCE)) &&
303				    (p->wire_count == 0) &&
304				    (p->hold_count == 0)) {
305					mc[vm_pageout_page_count - i] = p;
306					pageout_count++;
307					page_base--;
308					if (pageout_count == vm_pageout_page_count)
309						break;
310				} else {
311					backward_okay = FALSE;
312				}
313			} else {
314				backward_okay = FALSE;
315			}
316		}
317	}
318
319	/*
320	 * we allow reads during pageouts...
321	 */
322	for (i = page_base; i < (page_base + pageout_count); i++) {
323		mc[i]->flags |= PG_BUSY;
324		vm_page_protect(mc[i], VM_PROT_READ);
325	}
326
327	return vm_pageout_flush(&mc[page_base], pageout_count, sync);
328}
329
330int
331vm_pageout_flush(mc, count, sync)
332	vm_page_t *mc;
333	int count;
334	int sync;
335{
336	register vm_object_t object;
337	int pageout_status[count];
338	int anyok = 0;
339	int i;
340
341	object = mc[0]->object;
342	object->paging_in_progress += count;
343
344	vm_pager_put_pages(object, mc, count,
345	    ((sync || (object == kernel_object)) ? TRUE : FALSE),
346	    pageout_status);
347
348	for (i = 0; i < count; i++) {
349		vm_page_t mt = mc[i];
350
351		switch (pageout_status[i]) {
352		case VM_PAGER_OK:
353			++anyok;
354			break;
355		case VM_PAGER_PEND:
356			++anyok;
357			break;
358		case VM_PAGER_BAD:
359			/*
360			 * Page outside of range of object. Right now we
361			 * essentially lose the changes by pretending it
362			 * worked.
363			 */
364			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
365			mt->dirty = 0;
366			break;
367		case VM_PAGER_ERROR:
368		case VM_PAGER_FAIL:
369			/*
370			 * If page couldn't be paged out, then reactivate the
371			 * page so it doesn't clog the inactive list.  (We
372			 * will try paging out it again later).
373			 */
374			if (mt->queue == PQ_INACTIVE)
375				vm_page_activate(mt);
376			break;
377		case VM_PAGER_AGAIN:
378			break;
379		}
380
381
382		/*
383		 * If the operation is still going, leave the page busy to
384		 * block all other accesses. Also, leave the paging in
385		 * progress indicator set so that we don't attempt an object
386		 * collapse.
387		 */
388		if (pageout_status[i] != VM_PAGER_PEND) {
389			vm_object_pip_wakeup(object);
390			PAGE_WAKEUP(mt);
391		}
392	}
393	return anyok;
394}
395
396#if !defined(NO_SWAPPING)
397/*
398 *	vm_pageout_object_deactivate_pages
399 *
400 *	deactivate enough pages to satisfy the inactive target
401 *	requirements or if vm_page_proc_limit is set, then
402 *	deactivate all of the pages in the object and its
403 *	backing_objects.
404 *
405 *	The object and map must be locked.
406 */
407static void
408vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
409	vm_map_t map;
410	vm_object_t object;
411	vm_pindex_t desired;
412	int map_remove_only;
413{
414	register vm_page_t p, next;
415	int rcount;
416	int remove_mode;
417	int s;
418
419	if (object->type == OBJT_DEVICE)
420		return;
421
422	while (object) {
423		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
424			return;
425		if (object->paging_in_progress)
426			return;
427
428		remove_mode = map_remove_only;
429		if (object->shadow_count > 1)
430			remove_mode = 1;
431	/*
432	 * scan the objects entire memory queue
433	 */
434		rcount = object->resident_page_count;
435		p = TAILQ_FIRST(&object->memq);
436		while (p && (rcount-- > 0)) {
437			int refcount;
438			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
439				return;
440			next = TAILQ_NEXT(p, listq);
441			cnt.v_pdpages++;
442			if (p->wire_count != 0 ||
443			    p->hold_count != 0 ||
444			    p->busy != 0 ||
445			    (p->flags & PG_BUSY) ||
446			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
447				p = next;
448				continue;
449			}
450
451			refcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
452			if (refcount) {
453				p->flags |= PG_REFERENCED;
454			} else if (p->flags & PG_REFERENCED) {
455				refcount = 1;
456			}
457
458			if ((p->queue != PQ_ACTIVE) &&
459				(p->flags & PG_REFERENCED)) {
460				vm_page_activate(p);
461				p->act_count += refcount;
462				p->flags &= ~PG_REFERENCED;
463			} else if (p->queue == PQ_ACTIVE) {
464				if ((p->flags & PG_REFERENCED) == 0) {
465					p->act_count -= min(p->act_count, ACT_DECLINE);
466					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
467						vm_page_protect(p, VM_PROT_NONE);
468						vm_page_deactivate(p);
469					} else {
470						s = splvm();
471						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
472						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
473						splx(s);
474					}
475				} else {
476					p->flags &= ~PG_REFERENCED;
477					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
478						p->act_count += ACT_ADVANCE;
479					s = splvm();
480					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
481					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
482					splx(s);
483				}
484			} else if (p->queue == PQ_INACTIVE) {
485				vm_page_protect(p, VM_PROT_NONE);
486			}
487			p = next;
488		}
489		object = object->backing_object;
490	}
491	return;
492}
493
494/*
495 * deactivate some number of pages in a map, try to do it fairly, but
496 * that is really hard to do.
497 */
498static void
499vm_pageout_map_deactivate_pages(map, desired)
500	vm_map_t map;
501	vm_pindex_t desired;
502{
503	vm_map_entry_t tmpe;
504	vm_object_t obj, bigobj;
505
506	vm_map_reference(map);
507	if (!lock_try_write(&map->lock)) {
508		vm_map_deallocate(map);
509		return;
510	}
511
512	bigobj = NULL;
513
514	/*
515	 * first, search out the biggest object, and try to free pages from
516	 * that.
517	 */
518	tmpe = map->header.next;
519	while (tmpe != &map->header) {
520		if ((tmpe->is_sub_map == 0) && (tmpe->is_a_map == 0)) {
521			obj = tmpe->object.vm_object;
522			if ((obj != NULL) && (obj->shadow_count <= 1) &&
523				((bigobj == NULL) ||
524				 (bigobj->resident_page_count < obj->resident_page_count))) {
525				bigobj = obj;
526			}
527		}
528		tmpe = tmpe->next;
529	}
530
531	if (bigobj)
532		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
533
534	/*
535	 * Next, hunt around for other pages to deactivate.  We actually
536	 * do this search sort of wrong -- .text first is not the best idea.
537	 */
538	tmpe = map->header.next;
539	while (tmpe != &map->header) {
540		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
541			break;
542		if ((tmpe->is_sub_map == 0) && (tmpe->is_a_map == 0)) {
543			obj = tmpe->object.vm_object;
544			if (obj)
545				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
546		}
547		tmpe = tmpe->next;
548	};
549
550	/*
551	 * Remove all mappings if a process is swapped out, this will free page
552	 * table pages.
553	 */
554	if (desired == 0)
555		pmap_remove(vm_map_pmap(map),
556			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
557	vm_map_unlock(map);
558	vm_map_deallocate(map);
559	return;
560}
561#endif
562
563/*
564 *	vm_pageout_scan does the dirty work for the pageout daemon.
565 */
566static int
567vm_pageout_scan()
568{
569	vm_page_t m, next;
570	int page_shortage, addl_page_shortage, maxscan, maxlaunder, pcount;
571	int pages_freed;
572	struct proc *p, *bigproc;
573	vm_offset_t size, bigsize;
574	vm_object_t object;
575	int force_wakeup = 0;
576	int vnodes_skipped = 0;
577	int s;
578
579	/*
580	 * Start scanning the inactive queue for pages we can free. We keep
581	 * scanning until we have enough free pages or we have scanned through
582	 * the entire queue.  If we encounter dirty pages, we start cleaning
583	 * them.
584	 */
585
586	pages_freed = 0;
587	addl_page_shortage = 0;
588
589	maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
590	    MAXLAUNDER : cnt.v_inactive_target;
591rescan0:
592	maxscan = cnt.v_inactive_count;
593	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
594
595		(m != NULL) && (maxscan-- > 0) &&
596			((cnt.v_cache_count + cnt.v_free_count) <
597			(cnt.v_cache_min + cnt.v_free_target));
598
599		m = next) {
600
601		cnt.v_pdpages++;
602
603		if (m->queue != PQ_INACTIVE) {
604			goto rescan0;
605		}
606
607		next = TAILQ_NEXT(m, pageq);
608
609		if (m->hold_count) {
610			s = splvm();
611			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
612			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
613			splx(s);
614			addl_page_shortage++;
615			continue;
616		}
617		/*
618		 * Dont mess with busy pages, keep in the front of the
619		 * queue, most likely are being paged out.
620		 */
621		if (m->busy || (m->flags & PG_BUSY)) {
622			addl_page_shortage++;
623			continue;
624		}
625
626		if (m->object->ref_count == 0) {
627			m->flags &= ~PG_REFERENCED;
628			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
629		} else if (((m->flags & PG_REFERENCED) == 0) &&
630			pmap_ts_referenced(VM_PAGE_TO_PHYS(m))) {
631			vm_page_activate(m);
632			continue;
633		}
634
635		if ((m->flags & PG_REFERENCED) != 0) {
636			m->flags &= ~PG_REFERENCED;
637			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
638			vm_page_activate(m);
639			continue;
640		}
641
642		if (m->dirty == 0) {
643			vm_page_test_dirty(m);
644		} else if (m->dirty != 0) {
645			m->dirty = VM_PAGE_BITS_ALL;
646		}
647
648		if (m->valid == 0) {
649			vm_page_protect(m, VM_PROT_NONE);
650			vm_page_free(m);
651			cnt.v_dfree++;
652			++pages_freed;
653		} else if (m->dirty == 0) {
654			vm_page_cache(m);
655			++pages_freed;
656		} else if (maxlaunder > 0) {
657			int written;
658			struct vnode *vp = NULL;
659
660			object = m->object;
661			if (object->flags & OBJ_DEAD) {
662				s = splvm();
663				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
664				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
665				splx(s);
666				continue;
667			}
668
669			if (object->type == OBJT_VNODE) {
670				vp = object->handle;
671				if (VOP_ISLOCKED(vp) || vget(vp, 1)) {
672					if ((m->queue == PQ_INACTIVE) &&
673						(m->hold_count == 0) &&
674						(m->busy == 0) &&
675						(m->flags & PG_BUSY) == 0) {
676						s = splvm();
677						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
678						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
679						splx(s);
680					}
681					if (object->flags & OBJ_MIGHTBEDIRTY)
682						++vnodes_skipped;
683					continue;
684				}
685
686				/*
687				 * The page might have been moved to another queue
688				 * during potential blocking in vget() above.
689				 */
690				if (m->queue != PQ_INACTIVE) {
691					if (object->flags & OBJ_MIGHTBEDIRTY)
692						++vnodes_skipped;
693					vput(vp);
694					continue;
695				}
696
697				/*
698				 * The page may have been busied during the blocking in
699				 * vput();  We don't move the page back onto the end of
700				 * the queue so that statistics are more correct if we don't.
701				 */
702				if (m->busy || (m->flags & PG_BUSY)) {
703					vput(vp);
704					continue;
705				}
706
707				/*
708				 * If the page has become held, then skip it
709				 */
710				if (m->hold_count) {
711					s = splvm();
712					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
713					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
714					splx(s);
715					if (object->flags & OBJ_MIGHTBEDIRTY)
716						++vnodes_skipped;
717					vput(vp);
718					continue;
719				}
720			}
721
722			/*
723			 * If a page is dirty, then it is either being washed
724			 * (but not yet cleaned) or it is still in the
725			 * laundry.  If it is still in the laundry, then we
726			 * start the cleaning operation.
727			 */
728			written = vm_pageout_clean(m, 0);
729
730			if (vp)
731				vput(vp);
732
733			maxlaunder -= written;
734		}
735	}
736
737	/*
738	 * Compute the page shortage.  If we are still very low on memory be
739	 * sure that we will move a minimal amount of pages from active to
740	 * inactive.
741	 */
742
743	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
744	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
745	if (page_shortage <= 0) {
746		if (pages_freed == 0) {
747			page_shortage = cnt.v_free_min - cnt.v_free_count;
748		} else {
749			page_shortage = 1;
750		}
751	}
752	if (addl_page_shortage) {
753		if (page_shortage < 0)
754			page_shortage = 0;
755		page_shortage += addl_page_shortage;
756	}
757
758	pcount = cnt.v_active_count;
759	m = TAILQ_FIRST(&vm_page_queue_active);
760	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
761		int refcount;
762
763		if (m->queue != PQ_ACTIVE) {
764			break;
765		}
766
767		next = TAILQ_NEXT(m, pageq);
768		/*
769		 * Don't deactivate pages that are busy.
770		 */
771		if ((m->busy != 0) ||
772		    (m->flags & PG_BUSY) ||
773		    (m->hold_count != 0)) {
774			s = splvm();
775			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
776			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
777			splx(s);
778			m = next;
779			continue;
780		}
781
782		/*
783		 * The count for pagedaemon pages is done after checking the
784		 * page for eligbility...
785		 */
786		cnt.v_pdpages++;
787
788		refcount = 0;
789		if (m->object->ref_count != 0) {
790			if (m->flags & PG_REFERENCED) {
791				refcount += 1;
792			}
793			refcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
794			if (refcount) {
795				m->act_count += ACT_ADVANCE + refcount;
796				if (m->act_count > ACT_MAX)
797					m->act_count = ACT_MAX;
798			}
799		}
800
801		m->flags &= ~PG_REFERENCED;
802
803		if (refcount && (m->object->ref_count != 0)) {
804			s = splvm();
805			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
806			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
807			splx(s);
808		} else {
809			m->act_count -= min(m->act_count, ACT_DECLINE);
810			if (vm_pageout_algorithm_lru ||
811				(m->object->ref_count == 0) || (m->act_count == 0)) {
812				--page_shortage;
813				vm_page_protect(m, VM_PROT_NONE);
814				if ((m->dirty == 0) &&
815					(m->object->ref_count == 0)) {
816					vm_page_cache(m);
817				} else {
818					vm_page_deactivate(m);
819				}
820			} else {
821				s = splvm();
822				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
823				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
824				splx(s);
825			}
826		}
827		m = next;
828	}
829
830	s = splvm();
831	/*
832	 * We try to maintain some *really* free pages, this allows interrupt
833	 * code to be guaranteed space.
834	 */
835	while (cnt.v_free_count < cnt.v_free_reserved) {
836		static int cache_rover = 0;
837		m = vm_page_list_find(PQ_CACHE, cache_rover);
838		if (!m)
839			break;
840		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
841		vm_page_free(m);
842		cnt.v_dfree++;
843	}
844	splx(s);
845
846	/*
847	 * If we didn't get enough free pages, and we have skipped a vnode
848	 * in a writeable object, wakeup the sync daemon.  And kick swapout
849	 * if we did not get enough free pages.
850	 */
851	if ((cnt.v_cache_count + cnt.v_free_count) <
852		(cnt.v_free_target + cnt.v_cache_min) ) {
853		if (vnodes_skipped &&
854		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
855			if (!vfs_update_wakeup) {
856				vfs_update_wakeup = 1;
857				wakeup(&vfs_update_wakeup);
858			}
859		}
860#if !defined(NO_SWAPPING)
861		if (vm_swapping_enabled &&
862			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
863			vm_req_vmdaemon();
864			vm_pageout_req_swapout = 1;
865		}
866#endif
867	}
868
869
870	/*
871	 * make sure that we have swap space -- if we are low on memory and
872	 * swap -- then kill the biggest process.
873	 */
874	if ((vm_swap_size == 0 || swap_pager_full) &&
875	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
876		bigproc = NULL;
877		bigsize = 0;
878		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
879			/*
880			 * if this is a system process, skip it
881			 */
882			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
883			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
884				continue;
885			}
886			/*
887			 * if the process is in a non-running type state,
888			 * don't touch it.
889			 */
890			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
891				continue;
892			}
893			/*
894			 * get the process size
895			 */
896			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
897			/*
898			 * if the this process is bigger than the biggest one
899			 * remember it.
900			 */
901			if (size > bigsize) {
902				bigproc = p;
903				bigsize = size;
904			}
905		}
906		if (bigproc != NULL) {
907			killproc(bigproc, "out of swap space");
908			bigproc->p_estcpu = 0;
909			bigproc->p_nice = PRIO_MIN;
910			resetpriority(bigproc);
911			wakeup(&cnt.v_free_count);
912		}
913	}
914	return force_wakeup;
915}
916
917static int
918vm_pageout_free_page_calc(count)
919vm_size_t count;
920{
921	if (count < cnt.v_page_count)
922		 return 0;
923	/*
924	 * free_reserved needs to include enough for the largest swap pager
925	 * structures plus enough for any pv_entry structs when paging.
926	 */
927	if (cnt.v_page_count > 1024)
928		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
929	else
930		cnt.v_free_min = 4;
931	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
932		cnt.v_interrupt_free_min;
933	cnt.v_free_reserved = vm_pageout_page_count +
934		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
935	cnt.v_free_min += cnt.v_free_reserved;
936	return 1;
937}
938
939
940#ifdef unused
941int
942vm_pageout_free_pages(object, add)
943vm_object_t object;
944int add;
945{
946	return vm_pageout_free_page_calc(object->size);
947}
948#endif
949
950/*
951 *	vm_pageout is the high level pageout daemon.
952 */
953static void
954vm_pageout()
955{
956	(void) spl0();
957
958	/*
959	 * Initialize some paging parameters.
960	 */
961
962	cnt.v_interrupt_free_min = 2;
963	if (cnt.v_page_count < 2000)
964		vm_pageout_page_count = 8;
965
966	vm_pageout_free_page_calc(cnt.v_page_count);
967	/*
968	 * free_reserved needs to include enough for the largest swap pager
969	 * structures plus enough for any pv_entry structs when paging.
970	 */
971	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
972
973	if (cnt.v_free_count > 1024) {
974		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
975		cnt.v_cache_min = (cnt.v_free_count - 1024) / 8;
976		cnt.v_inactive_target = 2*cnt.v_cache_min + 192;
977	} else {
978		cnt.v_cache_min = 0;
979		cnt.v_cache_max = 0;
980		cnt.v_inactive_target = cnt.v_free_count / 4;
981	}
982
983	/* XXX does not really belong here */
984	if (vm_page_max_wired == 0)
985		vm_page_max_wired = cnt.v_free_count / 3;
986
987
988	swap_pager_swap_init();
989	/*
990	 * The pageout daemon is never done, so loop forever.
991	 */
992	while (TRUE) {
993		int inactive_target;
994		int s = splvm();
995		if (!vm_pages_needed ||
996			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
997			vm_pages_needed = 0;
998			tsleep(&vm_pages_needed, PVM, "psleep", 0);
999		} else if (!vm_pages_needed) {
1000			tsleep(&vm_pages_needed, PVM, "psleep", hz/10);
1001		}
1002		inactive_target =
1003			(cnt.v_page_count - cnt.v_wire_count) / 4;
1004		if (inactive_target < 2*cnt.v_free_min)
1005			inactive_target = 2*cnt.v_free_min;
1006		cnt.v_inactive_target = inactive_target;
1007		if (vm_pages_needed)
1008			cnt.v_pdwakeups++;
1009		vm_pages_needed = 0;
1010		splx(s);
1011		vm_pager_sync();
1012		vm_pageout_scan();
1013		vm_pager_sync();
1014		wakeup(&cnt.v_free_count);
1015	}
1016}
1017
1018#if !defined(NO_SWAPPING)
1019static void
1020vm_req_vmdaemon()
1021{
1022	static int lastrun = 0;
1023
1024	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1025		wakeup(&vm_daemon_needed);
1026		lastrun = ticks;
1027	}
1028}
1029
1030static void
1031vm_daemon()
1032{
1033	vm_object_t object;
1034	struct proc *p;
1035
1036	(void) spl0();
1037
1038	while (TRUE) {
1039		tsleep(&vm_daemon_needed, PUSER, "psleep", 0);
1040		if (vm_pageout_req_swapout) {
1041			swapout_procs();
1042			vm_pageout_req_swapout = 0;
1043		}
1044		/*
1045		 * scan the processes for exceeding their rlimits or if
1046		 * process is swapped out -- deactivate pages
1047		 */
1048
1049		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1050			quad_t limit;
1051			vm_offset_t size;
1052
1053			/*
1054			 * if this is a system process or if we have already
1055			 * looked at this process, skip it.
1056			 */
1057			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1058				continue;
1059			}
1060			/*
1061			 * if the process is in a non-running type state,
1062			 * don't touch it.
1063			 */
1064			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1065				continue;
1066			}
1067			/*
1068			 * get a limit
1069			 */
1070			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1071			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1072
1073			/*
1074			 * let processes that are swapped out really be
1075			 * swapped out set the limit to nothing (will force a
1076			 * swap-out.)
1077			 */
1078			if ((p->p_flag & P_INMEM) == 0)
1079				limit = 0;	/* XXX */
1080
1081			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1082			if (limit >= 0 && size >= limit) {
1083				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1084				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1085			}
1086		}
1087
1088		/*
1089		 * we remove cached objects that have no RSS...
1090		 */
1091restart:
1092		object = TAILQ_FIRST(&vm_object_cached_list);
1093		while (object) {
1094			/*
1095			 * if there are no resident pages -- get rid of the object
1096			 */
1097			if (object->resident_page_count == 0) {
1098				vm_object_reference(object);
1099				pager_cache(object, FALSE);
1100				goto restart;
1101			}
1102			object = TAILQ_NEXT(object, cached_list);
1103		}
1104	}
1105}
1106#endif
1107