vm_pageout.c revision 183474
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 183474 2008-09-29 19:45:12Z kib $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108#include <machine/mutex.h>
109
110/*
111 * System initialization
112 */
113
114/* the kernel process "vm_pageout"*/
115static void vm_pageout(void);
116static int vm_pageout_clean(vm_page_t);
117static void vm_pageout_scan(int pass);
118
119struct proc *pageproc;
120
121static struct kproc_desc page_kp = {
122	"pagedaemon",
123	vm_pageout,
124	&pageproc
125};
126SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127    &page_kp);
128
129#if !defined(NO_SWAPPING)
130/* the kernel process "vm_daemon"*/
131static void vm_daemon(void);
132static struct	proc *vmproc;
133
134static struct kproc_desc vm_kp = {
135	"vmdaemon",
136	vm_daemon,
137	&vmproc
138};
139SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140#endif
141
142
143int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144int vm_pageout_deficit;		/* Estimated number of pages deficit */
145int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146
147#if !defined(NO_SWAPPING)
148static int vm_pageout_req_swapout;	/* XXX */
149static int vm_daemon_needed;
150static struct mtx vm_daemon_mtx;
151/* Allow for use by vm_pageout before vm_daemon is initialized. */
152MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153#endif
154static int vm_max_launder = 32;
155static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156static int vm_pageout_full_stats_interval = 0;
157static int vm_pageout_algorithm=0;
158static int defer_swap_pageouts=0;
159static int disable_swap_pageouts=0;
160
161#if defined(NO_SWAPPING)
162static int vm_swap_enabled=0;
163static int vm_swap_idle_enabled=0;
164#else
165static int vm_swap_enabled=1;
166static int vm_swap_idle_enabled=0;
167#endif
168
169SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172SYSCTL_INT(_vm, OID_AUTO, max_launder,
173	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184#if defined(NO_SWAPPING)
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#else
190SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194#endif
195
196SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202static int pageout_lock_miss;
203SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206#define VM_PAGEOUT_PAGE_COUNT 16
207int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
210SYSCTL_INT(_vm, OID_AUTO, max_wired,
211	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213#if !defined(NO_SWAPPING)
214static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216static void vm_req_vmdaemon(int req);
217#endif
218static void vm_pageout_page_stats(void);
219
220/*
221 * vm_pageout_fallback_object_lock:
222 *
223 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224 * known to have failed and page queue must be either PQ_ACTIVE or
225 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226 * while locking the vm object.  Use marker page to detect page queue
227 * changes and maintain notion of next page on page queue.  Return
228 * TRUE if no changes were detected, FALSE otherwise.  vm object is
229 * locked on return.
230 *
231 * This function depends on both the lock portion of struct vm_object
232 * and normal struct vm_page being type stable.
233 */
234boolean_t
235vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236{
237	struct vm_page marker;
238	boolean_t unchanged;
239	u_short queue;
240	vm_object_t object;
241
242	/*
243	 * Initialize our marker
244	 */
245	bzero(&marker, sizeof(marker));
246	marker.flags = PG_FICTITIOUS | PG_MARKER;
247	marker.oflags = VPO_BUSY;
248	marker.queue = m->queue;
249	marker.wire_count = 1;
250
251	queue = m->queue;
252	object = m->object;
253
254	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255			   m, &marker, pageq);
256	vm_page_unlock_queues();
257	VM_OBJECT_LOCK(object);
258	vm_page_lock_queues();
259
260	/* Page queue might have changed. */
261	*next = TAILQ_NEXT(&marker, pageq);
262	unchanged = (m->queue == queue &&
263		     m->object == object &&
264		     &marker == TAILQ_NEXT(m, pageq));
265	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266		     &marker, pageq);
267	return (unchanged);
268}
269
270/*
271 * vm_pageout_clean:
272 *
273 * Clean the page and remove it from the laundry.
274 *
275 * We set the busy bit to cause potential page faults on this page to
276 * block.  Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
278 */
279static int
280vm_pageout_clean(m)
281	vm_page_t m;
282{
283	vm_object_t object;
284	vm_page_t mc[2*vm_pageout_page_count];
285	int pageout_count;
286	int ib, is, page_base;
287	vm_pindex_t pindex = m->pindex;
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292	/*
293	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294	 * with the new swapper, but we could have serious problems paging
295	 * out other object types if there is insufficient memory.
296	 *
297	 * Unfortunately, checking free memory here is far too late, so the
298	 * check has been moved up a procedural level.
299	 */
300
301	/*
302	 * Can't clean the page if it's busy or held.
303	 */
304	if ((m->hold_count != 0) ||
305	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306		return 0;
307	}
308
309	mc[vm_pageout_page_count] = m;
310	pageout_count = 1;
311	page_base = vm_pageout_page_count;
312	ib = 1;
313	is = 1;
314
315	/*
316	 * Scan object for clusterable pages.
317	 *
318	 * We can cluster ONLY if: ->> the page is NOT
319	 * clean, wired, busy, held, or mapped into a
320	 * buffer, and one of the following:
321	 * 1) The page is inactive, or a seldom used
322	 *    active page.
323	 * -or-
324	 * 2) we force the issue.
325	 *
326	 * During heavy mmap/modification loads the pageout
327	 * daemon can really fragment the underlying file
328	 * due to flushing pages out of order and not trying
329	 * align the clusters (which leave sporatic out-of-order
330	 * holes).  To solve this problem we do the reverse scan
331	 * first and attempt to align our cluster, then do a
332	 * forward scan if room remains.
333	 */
334	object = m->object;
335more:
336	while (ib && pageout_count < vm_pageout_page_count) {
337		vm_page_t p;
338
339		if (ib > pindex) {
340			ib = 0;
341			break;
342		}
343
344		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345			ib = 0;
346			break;
347		}
348		if ((p->oflags & VPO_BUSY) || p->busy) {
349			ib = 0;
350			break;
351		}
352		vm_page_test_dirty(p);
353		if ((p->dirty & p->valid) == 0 ||
354		    p->queue != PQ_INACTIVE ||
355		    p->wire_count != 0 ||	/* may be held by buf cache */
356		    p->hold_count != 0) {	/* may be undergoing I/O */
357			ib = 0;
358			break;
359		}
360		mc[--page_base] = p;
361		++pageout_count;
362		++ib;
363		/*
364		 * alignment boundry, stop here and switch directions.  Do
365		 * not clear ib.
366		 */
367		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368			break;
369	}
370
371	while (pageout_count < vm_pageout_page_count &&
372	    pindex + is < object->size) {
373		vm_page_t p;
374
375		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376			break;
377		if ((p->oflags & VPO_BUSY) || p->busy) {
378			break;
379		}
380		vm_page_test_dirty(p);
381		if ((p->dirty & p->valid) == 0 ||
382		    p->queue != PQ_INACTIVE ||
383		    p->wire_count != 0 ||	/* may be held by buf cache */
384		    p->hold_count != 0) {	/* may be undergoing I/O */
385			break;
386		}
387		mc[page_base + pageout_count] = p;
388		++pageout_count;
389		++is;
390	}
391
392	/*
393	 * If we exhausted our forward scan, continue with the reverse scan
394	 * when possible, even past a page boundry.  This catches boundry
395	 * conditions.
396	 */
397	if (ib && pageout_count < vm_pageout_page_count)
398		goto more;
399
400	/*
401	 * we allow reads during pageouts...
402	 */
403	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404}
405
406/*
407 * vm_pageout_flush() - launder the given pages
408 *
409 *	The given pages are laundered.  Note that we setup for the start of
410 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
411 *	reference count all in here rather then in the parent.  If we want
412 *	the parent to do more sophisticated things we may have to change
413 *	the ordering.
414 */
415int
416vm_pageout_flush(vm_page_t *mc, int count, int flags)
417{
418	vm_object_t object = mc[0]->object;
419	int pageout_status[count];
420	int numpagedout = 0;
421	int i;
422
423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425	/*
426	 * Initiate I/O.  Bump the vm_page_t->busy counter and
427	 * mark the pages read-only.
428	 *
429	 * We do not have to fixup the clean/dirty bits here... we can
430	 * allow the pager to do it after the I/O completes.
431	 *
432	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433	 * edge case with file fragments.
434	 */
435	for (i = 0; i < count; i++) {
436		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
438			mc[i], i, count));
439		vm_page_io_start(mc[i]);
440		pmap_remove_write(mc[i]);
441	}
442	vm_page_unlock_queues();
443	vm_object_pip_add(object, count);
444
445	vm_pager_put_pages(object, mc, count, flags, pageout_status);
446
447	vm_page_lock_queues();
448	for (i = 0; i < count; i++) {
449		vm_page_t mt = mc[i];
450
451		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452		    (mt->flags & PG_WRITEABLE) == 0,
453		    ("vm_pageout_flush: page %p is not write protected", mt));
454		switch (pageout_status[i]) {
455		case VM_PAGER_OK:
456		case VM_PAGER_PEND:
457			numpagedout++;
458			break;
459		case VM_PAGER_BAD:
460			/*
461			 * Page outside of range of object. Right now we
462			 * essentially lose the changes by pretending it
463			 * worked.
464			 */
465			pmap_clear_modify(mt);
466			vm_page_undirty(mt);
467			break;
468		case VM_PAGER_ERROR:
469		case VM_PAGER_FAIL:
470			/*
471			 * If page couldn't be paged out, then reactivate the
472			 * page so it doesn't clog the inactive list.  (We
473			 * will try paging out it again later).
474			 */
475			vm_page_activate(mt);
476			break;
477		case VM_PAGER_AGAIN:
478			break;
479		}
480
481		/*
482		 * If the operation is still going, leave the page busy to
483		 * block all other accesses. Also, leave the paging in
484		 * progress indicator set so that we don't attempt an object
485		 * collapse.
486		 */
487		if (pageout_status[i] != VM_PAGER_PEND) {
488			vm_object_pip_wakeup(object);
489			vm_page_io_finish(mt);
490			if (vm_page_count_severe())
491				vm_page_try_to_cache(mt);
492		}
493	}
494	return numpagedout;
495}
496
497#if !defined(NO_SWAPPING)
498/*
499 *	vm_pageout_object_deactivate_pages
500 *
501 *	deactivate enough pages to satisfy the inactive target
502 *	requirements or if vm_page_proc_limit is set, then
503 *	deactivate all of the pages in the object and its
504 *	backing_objects.
505 *
506 *	The object and map must be locked.
507 */
508static void
509vm_pageout_object_deactivate_pages(pmap, first_object, desired)
510	pmap_t pmap;
511	vm_object_t first_object;
512	long desired;
513{
514	vm_object_t backing_object, object;
515	vm_page_t p, next;
516	int actcount, rcount, remove_mode;
517
518	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
519	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
520		return;
521	for (object = first_object;; object = backing_object) {
522		if (pmap_resident_count(pmap) <= desired)
523			goto unlock_return;
524		if (object->paging_in_progress)
525			goto unlock_return;
526
527		remove_mode = 0;
528		if (object->shadow_count > 1)
529			remove_mode = 1;
530		/*
531		 * scan the objects entire memory queue
532		 */
533		rcount = object->resident_page_count;
534		p = TAILQ_FIRST(&object->memq);
535		vm_page_lock_queues();
536		while (p && (rcount-- > 0)) {
537			if (pmap_resident_count(pmap) <= desired) {
538				vm_page_unlock_queues();
539				goto unlock_return;
540			}
541			next = TAILQ_NEXT(p, listq);
542			cnt.v_pdpages++;
543			if (p->wire_count != 0 ||
544			    p->hold_count != 0 ||
545			    p->busy != 0 ||
546			    (p->oflags & VPO_BUSY) ||
547			    (p->flags & PG_UNMANAGED) ||
548			    !pmap_page_exists_quick(pmap, p)) {
549				p = next;
550				continue;
551			}
552			actcount = pmap_ts_referenced(p);
553			if (actcount) {
554				vm_page_flag_set(p, PG_REFERENCED);
555			} else if (p->flags & PG_REFERENCED) {
556				actcount = 1;
557			}
558			if ((p->queue != PQ_ACTIVE) &&
559				(p->flags & PG_REFERENCED)) {
560				vm_page_activate(p);
561				p->act_count += actcount;
562				vm_page_flag_clear(p, PG_REFERENCED);
563			} else if (p->queue == PQ_ACTIVE) {
564				if ((p->flags & PG_REFERENCED) == 0) {
565					p->act_count -= min(p->act_count, ACT_DECLINE);
566					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
567						pmap_remove_all(p);
568						vm_page_deactivate(p);
569					} else {
570						vm_page_requeue(p);
571					}
572				} else {
573					vm_page_activate(p);
574					vm_page_flag_clear(p, PG_REFERENCED);
575					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576						p->act_count += ACT_ADVANCE;
577					vm_page_requeue(p);
578				}
579			} else if (p->queue == PQ_INACTIVE) {
580				pmap_remove_all(p);
581			}
582			p = next;
583		}
584		vm_page_unlock_queues();
585		if ((backing_object = object->backing_object) == NULL)
586			goto unlock_return;
587		VM_OBJECT_LOCK(backing_object);
588		if (object != first_object)
589			VM_OBJECT_UNLOCK(object);
590	}
591unlock_return:
592	if (object != first_object)
593		VM_OBJECT_UNLOCK(object);
594}
595
596/*
597 * deactivate some number of pages in a map, try to do it fairly, but
598 * that is really hard to do.
599 */
600static void
601vm_pageout_map_deactivate_pages(map, desired)
602	vm_map_t map;
603	long desired;
604{
605	vm_map_entry_t tmpe;
606	vm_object_t obj, bigobj;
607	int nothingwired;
608
609	if (!vm_map_trylock(map))
610		return;
611
612	bigobj = NULL;
613	nothingwired = TRUE;
614
615	/*
616	 * first, search out the biggest object, and try to free pages from
617	 * that.
618	 */
619	tmpe = map->header.next;
620	while (tmpe != &map->header) {
621		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
622			obj = tmpe->object.vm_object;
623			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
624				if (obj->shadow_count <= 1 &&
625				    (bigobj == NULL ||
626				     bigobj->resident_page_count < obj->resident_page_count)) {
627					if (bigobj != NULL)
628						VM_OBJECT_UNLOCK(bigobj);
629					bigobj = obj;
630				} else
631					VM_OBJECT_UNLOCK(obj);
632			}
633		}
634		if (tmpe->wired_count > 0)
635			nothingwired = FALSE;
636		tmpe = tmpe->next;
637	}
638
639	if (bigobj != NULL) {
640		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
641		VM_OBJECT_UNLOCK(bigobj);
642	}
643	/*
644	 * Next, hunt around for other pages to deactivate.  We actually
645	 * do this search sort of wrong -- .text first is not the best idea.
646	 */
647	tmpe = map->header.next;
648	while (tmpe != &map->header) {
649		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
650			break;
651		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
652			obj = tmpe->object.vm_object;
653			if (obj != NULL) {
654				VM_OBJECT_LOCK(obj);
655				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
656				VM_OBJECT_UNLOCK(obj);
657			}
658		}
659		tmpe = tmpe->next;
660	}
661
662	/*
663	 * Remove all mappings if a process is swapped out, this will free page
664	 * table pages.
665	 */
666	if (desired == 0 && nothingwired) {
667		pmap_remove(vm_map_pmap(map), vm_map_min(map),
668		    vm_map_max(map));
669	}
670	vm_map_unlock(map);
671}
672#endif		/* !defined(NO_SWAPPING) */
673
674/*
675 *	vm_pageout_scan does the dirty work for the pageout daemon.
676 */
677static void
678vm_pageout_scan(int pass)
679{
680	vm_page_t m, next;
681	struct vm_page marker;
682	int page_shortage, maxscan, pcount;
683	int addl_page_shortage, addl_page_shortage_init;
684	vm_object_t object;
685	int actcount;
686	int vnodes_skipped = 0;
687	int maxlaunder;
688
689	/*
690	 * Decrease registered cache sizes.
691	 */
692	EVENTHANDLER_INVOKE(vm_lowmem, 0);
693	/*
694	 * We do this explicitly after the caches have been drained above.
695	 */
696	uma_reclaim();
697
698	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
699
700	/*
701	 * Calculate the number of pages we want to either free or move
702	 * to the cache.
703	 */
704	page_shortage = vm_paging_target() + addl_page_shortage_init;
705
706	/*
707	 * Initialize our marker
708	 */
709	bzero(&marker, sizeof(marker));
710	marker.flags = PG_FICTITIOUS | PG_MARKER;
711	marker.oflags = VPO_BUSY;
712	marker.queue = PQ_INACTIVE;
713	marker.wire_count = 1;
714
715	/*
716	 * Start scanning the inactive queue for pages we can move to the
717	 * cache or free.  The scan will stop when the target is reached or
718	 * we have scanned the entire inactive queue.  Note that m->act_count
719	 * is not used to form decisions for the inactive queue, only for the
720	 * active queue.
721	 *
722	 * maxlaunder limits the number of dirty pages we flush per scan.
723	 * For most systems a smaller value (16 or 32) is more robust under
724	 * extreme memory and disk pressure because any unnecessary writes
725	 * to disk can result in extreme performance degredation.  However,
726	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
727	 * used) will die horribly with limited laundering.  If the pageout
728	 * daemon cannot clean enough pages in the first pass, we let it go
729	 * all out in succeeding passes.
730	 */
731	if ((maxlaunder = vm_max_launder) <= 1)
732		maxlaunder = 1;
733	if (pass)
734		maxlaunder = 10000;
735	vm_page_lock_queues();
736rescan0:
737	addl_page_shortage = addl_page_shortage_init;
738	maxscan = cnt.v_inactive_count;
739
740	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
741	     m != NULL && maxscan-- > 0 && page_shortage > 0;
742	     m = next) {
743
744		cnt.v_pdpages++;
745
746		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
747			goto rescan0;
748		}
749
750		next = TAILQ_NEXT(m, pageq);
751		object = m->object;
752
753		/*
754		 * skip marker pages
755		 */
756		if (m->flags & PG_MARKER)
757			continue;
758
759		/*
760		 * A held page may be undergoing I/O, so skip it.
761		 */
762		if (m->hold_count) {
763			vm_page_requeue(m);
764			addl_page_shortage++;
765			continue;
766		}
767		/*
768		 * Don't mess with busy pages, keep in the front of the
769		 * queue, most likely are being paged out.
770		 */
771		if (!VM_OBJECT_TRYLOCK(object) &&
772		    (!vm_pageout_fallback_object_lock(m, &next) ||
773		     m->hold_count != 0)) {
774			VM_OBJECT_UNLOCK(object);
775			addl_page_shortage++;
776			continue;
777		}
778		if (m->busy || (m->oflags & VPO_BUSY)) {
779			VM_OBJECT_UNLOCK(object);
780			addl_page_shortage++;
781			continue;
782		}
783
784		/*
785		 * If the object is not being used, we ignore previous
786		 * references.
787		 */
788		if (object->ref_count == 0) {
789			vm_page_flag_clear(m, PG_REFERENCED);
790			pmap_clear_reference(m);
791
792		/*
793		 * Otherwise, if the page has been referenced while in the
794		 * inactive queue, we bump the "activation count" upwards,
795		 * making it less likely that the page will be added back to
796		 * the inactive queue prematurely again.  Here we check the
797		 * page tables (or emulated bits, if any), given the upper
798		 * level VM system not knowing anything about existing
799		 * references.
800		 */
801		} else if (((m->flags & PG_REFERENCED) == 0) &&
802			(actcount = pmap_ts_referenced(m))) {
803			vm_page_activate(m);
804			VM_OBJECT_UNLOCK(object);
805			m->act_count += (actcount + ACT_ADVANCE);
806			continue;
807		}
808
809		/*
810		 * If the upper level VM system knows about any page
811		 * references, we activate the page.  We also set the
812		 * "activation count" higher than normal so that we will less
813		 * likely place pages back onto the inactive queue again.
814		 */
815		if ((m->flags & PG_REFERENCED) != 0) {
816			vm_page_flag_clear(m, PG_REFERENCED);
817			actcount = pmap_ts_referenced(m);
818			vm_page_activate(m);
819			VM_OBJECT_UNLOCK(object);
820			m->act_count += (actcount + ACT_ADVANCE + 1);
821			continue;
822		}
823
824		/*
825		 * If the upper level VM system doesn't know anything about
826		 * the page being dirty, we have to check for it again.  As
827		 * far as the VM code knows, any partially dirty pages are
828		 * fully dirty.
829		 */
830		if (m->dirty == 0 && !pmap_is_modified(m)) {
831			/*
832			 * Avoid a race condition: Unless write access is
833			 * removed from the page, another processor could
834			 * modify it before all access is removed by the call
835			 * to vm_page_cache() below.  If vm_page_cache() finds
836			 * that the page has been modified when it removes all
837			 * access, it panics because it cannot cache dirty
838			 * pages.  In principle, we could eliminate just write
839			 * access here rather than all access.  In the expected
840			 * case, when there are no last instant modifications
841			 * to the page, removing all access will be cheaper
842			 * overall.
843			 */
844			if ((m->flags & PG_WRITEABLE) != 0)
845				pmap_remove_all(m);
846		} else {
847			vm_page_dirty(m);
848		}
849
850		if (m->valid == 0) {
851			/*
852			 * Invalid pages can be easily freed
853			 */
854			vm_page_free(m);
855			cnt.v_dfree++;
856			--page_shortage;
857		} else if (m->dirty == 0) {
858			/*
859			 * Clean pages can be placed onto the cache queue.
860			 * This effectively frees them.
861			 */
862			vm_page_cache(m);
863			--page_shortage;
864		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
865			/*
866			 * Dirty pages need to be paged out, but flushing
867			 * a page is extremely expensive verses freeing
868			 * a clean page.  Rather then artificially limiting
869			 * the number of pages we can flush, we instead give
870			 * dirty pages extra priority on the inactive queue
871			 * by forcing them to be cycled through the queue
872			 * twice before being flushed, after which the
873			 * (now clean) page will cycle through once more
874			 * before being freed.  This significantly extends
875			 * the thrash point for a heavily loaded machine.
876			 */
877			vm_page_flag_set(m, PG_WINATCFLS);
878			vm_page_requeue(m);
879		} else if (maxlaunder > 0) {
880			/*
881			 * We always want to try to flush some dirty pages if
882			 * we encounter them, to keep the system stable.
883			 * Normally this number is small, but under extreme
884			 * pressure where there are insufficient clean pages
885			 * on the inactive queue, we may have to go all out.
886			 */
887			int swap_pageouts_ok, vfslocked = 0;
888			struct vnode *vp = NULL;
889			struct mount *mp = NULL;
890
891			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
892				swap_pageouts_ok = 1;
893			} else {
894				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
895				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
896				vm_page_count_min());
897
898			}
899
900			/*
901			 * We don't bother paging objects that are "dead".
902			 * Those objects are in a "rundown" state.
903			 */
904			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
905				VM_OBJECT_UNLOCK(object);
906				vm_page_requeue(m);
907				continue;
908			}
909
910			/*
911			 * Following operations may unlock
912			 * vm_page_queue_mtx, invalidating the 'next'
913			 * pointer.  To prevent an inordinate number
914			 * of restarts we use our marker to remember
915			 * our place.
916			 *
917			 */
918			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
919					   m, &marker, pageq);
920			/*
921			 * The object is already known NOT to be dead.   It
922			 * is possible for the vget() to block the whole
923			 * pageout daemon, but the new low-memory handling
924			 * code should prevent it.
925			 *
926			 * The previous code skipped locked vnodes and, worse,
927			 * reordered pages in the queue.  This results in
928			 * completely non-deterministic operation and, on a
929			 * busy system, can lead to extremely non-optimal
930			 * pageouts.  For example, it can cause clean pages
931			 * to be freed and dirty pages to be moved to the end
932			 * of the queue.  Since dirty pages are also moved to
933			 * the end of the queue once-cleaned, this gives
934			 * way too large a weighting to defering the freeing
935			 * of dirty pages.
936			 *
937			 * We can't wait forever for the vnode lock, we might
938			 * deadlock due to a vn_read() getting stuck in
939			 * vm_wait while holding this vnode.  We skip the
940			 * vnode if we can't get it in a reasonable amount
941			 * of time.
942			 */
943			if (object->type == OBJT_VNODE) {
944				vp = object->handle;
945				if (vp->v_type == VREG &&
946				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
947					KASSERT(mp == NULL,
948					    ("vm_pageout_scan: mp != NULL"));
949					++pageout_lock_miss;
950					if (object->flags & OBJ_MIGHTBEDIRTY)
951						vnodes_skipped++;
952					goto unlock_and_continue;
953				}
954				vm_page_unlock_queues();
955				vm_object_reference_locked(object);
956				VM_OBJECT_UNLOCK(object);
957				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
958				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
959				    curthread)) {
960					VM_OBJECT_LOCK(object);
961					vm_page_lock_queues();
962					++pageout_lock_miss;
963					if (object->flags & OBJ_MIGHTBEDIRTY)
964						vnodes_skipped++;
965					vp = NULL;
966					goto unlock_and_continue;
967				}
968				VM_OBJECT_LOCK(object);
969				vm_page_lock_queues();
970				/*
971				 * The page might have been moved to another
972				 * queue during potential blocking in vget()
973				 * above.  The page might have been freed and
974				 * reused for another vnode.
975				 */
976				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
977				    m->object != object ||
978				    TAILQ_NEXT(m, pageq) != &marker) {
979					if (object->flags & OBJ_MIGHTBEDIRTY)
980						vnodes_skipped++;
981					goto unlock_and_continue;
982				}
983
984				/*
985				 * The page may have been busied during the
986				 * blocking in vget().  We don't move the
987				 * page back onto the end of the queue so that
988				 * statistics are more correct if we don't.
989				 */
990				if (m->busy || (m->oflags & VPO_BUSY)) {
991					goto unlock_and_continue;
992				}
993
994				/*
995				 * If the page has become held it might
996				 * be undergoing I/O, so skip it
997				 */
998				if (m->hold_count) {
999					vm_page_requeue(m);
1000					if (object->flags & OBJ_MIGHTBEDIRTY)
1001						vnodes_skipped++;
1002					goto unlock_and_continue;
1003				}
1004			}
1005
1006			/*
1007			 * If a page is dirty, then it is either being washed
1008			 * (but not yet cleaned) or it is still in the
1009			 * laundry.  If it is still in the laundry, then we
1010			 * start the cleaning operation.
1011			 *
1012			 * decrement page_shortage on success to account for
1013			 * the (future) cleaned page.  Otherwise we could wind
1014			 * up laundering or cleaning too many pages.
1015			 */
1016			if (vm_pageout_clean(m) != 0) {
1017				--page_shortage;
1018				--maxlaunder;
1019			}
1020unlock_and_continue:
1021			VM_OBJECT_UNLOCK(object);
1022			if (mp != NULL) {
1023				vm_page_unlock_queues();
1024				if (vp != NULL)
1025					vput(vp);
1026				VFS_UNLOCK_GIANT(vfslocked);
1027				vm_object_deallocate(object);
1028				vn_finished_write(mp);
1029				vm_page_lock_queues();
1030			}
1031			next = TAILQ_NEXT(&marker, pageq);
1032			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1033				     &marker, pageq);
1034			continue;
1035		}
1036		VM_OBJECT_UNLOCK(object);
1037	}
1038
1039	/*
1040	 * Compute the number of pages we want to try to move from the
1041	 * active queue to the inactive queue.
1042	 */
1043	page_shortage = vm_paging_target() +
1044		cnt.v_inactive_target - cnt.v_inactive_count;
1045	page_shortage += addl_page_shortage;
1046
1047	/*
1048	 * Scan the active queue for things we can deactivate. We nominally
1049	 * track the per-page activity counter and use it to locate
1050	 * deactivation candidates.
1051	 */
1052	pcount = cnt.v_active_count;
1053	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1054
1055	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1056
1057		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1058		    ("vm_pageout_scan: page %p isn't active", m));
1059
1060		next = TAILQ_NEXT(m, pageq);
1061		object = m->object;
1062		if ((m->flags & PG_MARKER) != 0) {
1063			m = next;
1064			continue;
1065		}
1066		if (!VM_OBJECT_TRYLOCK(object) &&
1067		    !vm_pageout_fallback_object_lock(m, &next)) {
1068			VM_OBJECT_UNLOCK(object);
1069			m = next;
1070			continue;
1071		}
1072
1073		/*
1074		 * Don't deactivate pages that are busy.
1075		 */
1076		if ((m->busy != 0) ||
1077		    (m->oflags & VPO_BUSY) ||
1078		    (m->hold_count != 0)) {
1079			VM_OBJECT_UNLOCK(object);
1080			vm_page_requeue(m);
1081			m = next;
1082			continue;
1083		}
1084
1085		/*
1086		 * The count for pagedaemon pages is done after checking the
1087		 * page for eligibility...
1088		 */
1089		cnt.v_pdpages++;
1090
1091		/*
1092		 * Check to see "how much" the page has been used.
1093		 */
1094		actcount = 0;
1095		if (object->ref_count != 0) {
1096			if (m->flags & PG_REFERENCED) {
1097				actcount += 1;
1098			}
1099			actcount += pmap_ts_referenced(m);
1100			if (actcount) {
1101				m->act_count += ACT_ADVANCE + actcount;
1102				if (m->act_count > ACT_MAX)
1103					m->act_count = ACT_MAX;
1104			}
1105		}
1106
1107		/*
1108		 * Since we have "tested" this bit, we need to clear it now.
1109		 */
1110		vm_page_flag_clear(m, PG_REFERENCED);
1111
1112		/*
1113		 * Only if an object is currently being used, do we use the
1114		 * page activation count stats.
1115		 */
1116		if (actcount && (object->ref_count != 0)) {
1117			vm_page_requeue(m);
1118		} else {
1119			m->act_count -= min(m->act_count, ACT_DECLINE);
1120			if (vm_pageout_algorithm ||
1121			    object->ref_count == 0 ||
1122			    m->act_count == 0) {
1123				page_shortage--;
1124				if (object->ref_count == 0) {
1125					pmap_remove_all(m);
1126					if (m->dirty == 0)
1127						vm_page_cache(m);
1128					else
1129						vm_page_deactivate(m);
1130				} else {
1131					vm_page_deactivate(m);
1132				}
1133			} else {
1134				vm_page_requeue(m);
1135			}
1136		}
1137		VM_OBJECT_UNLOCK(object);
1138		m = next;
1139	}
1140	vm_page_unlock_queues();
1141#if !defined(NO_SWAPPING)
1142	/*
1143	 * Idle process swapout -- run once per second.
1144	 */
1145	if (vm_swap_idle_enabled) {
1146		static long lsec;
1147		if (time_second != lsec) {
1148			vm_req_vmdaemon(VM_SWAP_IDLE);
1149			lsec = time_second;
1150		}
1151	}
1152#endif
1153
1154	/*
1155	 * If we didn't get enough free pages, and we have skipped a vnode
1156	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1157	 * if we did not get enough free pages.
1158	 */
1159	if (vm_paging_target() > 0) {
1160		if (vnodes_skipped && vm_page_count_min())
1161			(void) speedup_syncer();
1162#if !defined(NO_SWAPPING)
1163		if (vm_swap_enabled && vm_page_count_target())
1164			vm_req_vmdaemon(VM_SWAP_NORMAL);
1165#endif
1166	}
1167
1168	/*
1169	 * If we are critically low on one of RAM or swap and low on
1170	 * the other, kill the largest process.  However, we avoid
1171	 * doing this on the first pass in order to give ourselves a
1172	 * chance to flush out dirty vnode-backed pages and to allow
1173	 * active pages to be moved to the inactive queue and reclaimed.
1174	 */
1175	if (pass != 0 &&
1176	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1177	     (swap_pager_full && vm_paging_target() > 0)))
1178		vm_pageout_oom(VM_OOM_MEM);
1179}
1180
1181
1182void
1183vm_pageout_oom(int shortage)
1184{
1185	struct proc *p, *bigproc;
1186	vm_offset_t size, bigsize;
1187	struct thread *td;
1188
1189	/*
1190	 * We keep the process bigproc locked once we find it to keep anyone
1191	 * from messing with it; however, there is a possibility of
1192	 * deadlock if process B is bigproc and one of it's child processes
1193	 * attempts to propagate a signal to B while we are waiting for A's
1194	 * lock while walking this list.  To avoid this, we don't block on
1195	 * the process lock but just skip a process if it is already locked.
1196	 */
1197	bigproc = NULL;
1198	bigsize = 0;
1199	sx_slock(&allproc_lock);
1200	FOREACH_PROC_IN_SYSTEM(p) {
1201		int breakout;
1202
1203		if (PROC_TRYLOCK(p) == 0)
1204			continue;
1205		/*
1206		 * If this is a system or protected process, skip it.
1207		 */
1208		if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1209		    (p->p_flag & P_PROTECTED) ||
1210		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1211			PROC_UNLOCK(p);
1212			continue;
1213		}
1214		/*
1215		 * If the process is in a non-running type state,
1216		 * don't touch it.  Check all the threads individually.
1217		 */
1218		breakout = 0;
1219		FOREACH_THREAD_IN_PROC(p, td) {
1220			thread_lock(td);
1221			if (!TD_ON_RUNQ(td) &&
1222			    !TD_IS_RUNNING(td) &&
1223			    !TD_IS_SLEEPING(td)) {
1224				thread_unlock(td);
1225				breakout = 1;
1226				break;
1227			}
1228			thread_unlock(td);
1229		}
1230		if (breakout) {
1231			PROC_UNLOCK(p);
1232			continue;
1233		}
1234		/*
1235		 * get the process size
1236		 */
1237		if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1238			PROC_UNLOCK(p);
1239			continue;
1240		}
1241		size = vmspace_swap_count(p->p_vmspace);
1242		vm_map_unlock_read(&p->p_vmspace->vm_map);
1243		if (shortage == VM_OOM_MEM)
1244			size += vmspace_resident_count(p->p_vmspace);
1245		/*
1246		 * if the this process is bigger than the biggest one
1247		 * remember it.
1248		 */
1249		if (size > bigsize) {
1250			if (bigproc != NULL)
1251				PROC_UNLOCK(bigproc);
1252			bigproc = p;
1253			bigsize = size;
1254		} else
1255			PROC_UNLOCK(p);
1256	}
1257	sx_sunlock(&allproc_lock);
1258	if (bigproc != NULL) {
1259		killproc(bigproc, "out of swap space");
1260		sched_nice(bigproc, PRIO_MIN);
1261		PROC_UNLOCK(bigproc);
1262		wakeup(&cnt.v_free_count);
1263	}
1264}
1265
1266/*
1267 * This routine tries to maintain the pseudo LRU active queue,
1268 * so that during long periods of time where there is no paging,
1269 * that some statistic accumulation still occurs.  This code
1270 * helps the situation where paging just starts to occur.
1271 */
1272static void
1273vm_pageout_page_stats()
1274{
1275	vm_object_t object;
1276	vm_page_t m,next;
1277	int pcount,tpcount;		/* Number of pages to check */
1278	static int fullintervalcount = 0;
1279	int page_shortage;
1280
1281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1282	page_shortage =
1283	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1284	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1285
1286	if (page_shortage <= 0)
1287		return;
1288
1289	pcount = cnt.v_active_count;
1290	fullintervalcount += vm_pageout_stats_interval;
1291	if (fullintervalcount < vm_pageout_full_stats_interval) {
1292		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1293		    cnt.v_page_count;
1294		if (pcount > tpcount)
1295			pcount = tpcount;
1296	} else {
1297		fullintervalcount = 0;
1298	}
1299
1300	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1301	while ((m != NULL) && (pcount-- > 0)) {
1302		int actcount;
1303
1304		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1305		    ("vm_pageout_page_stats: page %p isn't active", m));
1306
1307		next = TAILQ_NEXT(m, pageq);
1308		object = m->object;
1309
1310		if ((m->flags & PG_MARKER) != 0) {
1311			m = next;
1312			continue;
1313		}
1314		if (!VM_OBJECT_TRYLOCK(object) &&
1315		    !vm_pageout_fallback_object_lock(m, &next)) {
1316			VM_OBJECT_UNLOCK(object);
1317			m = next;
1318			continue;
1319		}
1320
1321		/*
1322		 * Don't deactivate pages that are busy.
1323		 */
1324		if ((m->busy != 0) ||
1325		    (m->oflags & VPO_BUSY) ||
1326		    (m->hold_count != 0)) {
1327			VM_OBJECT_UNLOCK(object);
1328			vm_page_requeue(m);
1329			m = next;
1330			continue;
1331		}
1332
1333		actcount = 0;
1334		if (m->flags & PG_REFERENCED) {
1335			vm_page_flag_clear(m, PG_REFERENCED);
1336			actcount += 1;
1337		}
1338
1339		actcount += pmap_ts_referenced(m);
1340		if (actcount) {
1341			m->act_count += ACT_ADVANCE + actcount;
1342			if (m->act_count > ACT_MAX)
1343				m->act_count = ACT_MAX;
1344			vm_page_requeue(m);
1345		} else {
1346			if (m->act_count == 0) {
1347				/*
1348				 * We turn off page access, so that we have
1349				 * more accurate RSS stats.  We don't do this
1350				 * in the normal page deactivation when the
1351				 * system is loaded VM wise, because the
1352				 * cost of the large number of page protect
1353				 * operations would be higher than the value
1354				 * of doing the operation.
1355				 */
1356				pmap_remove_all(m);
1357				vm_page_deactivate(m);
1358			} else {
1359				m->act_count -= min(m->act_count, ACT_DECLINE);
1360				vm_page_requeue(m);
1361			}
1362		}
1363		VM_OBJECT_UNLOCK(object);
1364		m = next;
1365	}
1366}
1367
1368/*
1369 *	vm_pageout is the high level pageout daemon.
1370 */
1371static void
1372vm_pageout()
1373{
1374	int error, pass;
1375
1376	/*
1377	 * Initialize some paging parameters.
1378	 */
1379	cnt.v_interrupt_free_min = 2;
1380	if (cnt.v_page_count < 2000)
1381		vm_pageout_page_count = 8;
1382
1383	/*
1384	 * v_free_reserved needs to include enough for the largest
1385	 * swap pager structures plus enough for any pv_entry structs
1386	 * when paging.
1387	 */
1388	if (cnt.v_page_count > 1024)
1389		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1390	else
1391		cnt.v_free_min = 4;
1392	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1393	    cnt.v_interrupt_free_min;
1394	cnt.v_free_reserved = vm_pageout_page_count +
1395	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1396	cnt.v_free_severe = cnt.v_free_min / 2;
1397	cnt.v_free_min += cnt.v_free_reserved;
1398	cnt.v_free_severe += cnt.v_free_reserved;
1399
1400	/*
1401	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1402	 * that these are more a measure of the VM cache queue hysteresis
1403	 * then the VM free queue.  Specifically, v_free_target is the
1404	 * high water mark (free+cache pages).
1405	 *
1406	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1407	 * low water mark, while v_free_min is the stop.  v_cache_min must
1408	 * be big enough to handle memory needs while the pageout daemon
1409	 * is signalled and run to free more pages.
1410	 */
1411	if (cnt.v_free_count > 6144)
1412		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1413	else
1414		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1415
1416	if (cnt.v_free_count > 2048) {
1417		cnt.v_cache_min = cnt.v_free_target;
1418		cnt.v_cache_max = 2 * cnt.v_cache_min;
1419		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1420	} else {
1421		cnt.v_cache_min = 0;
1422		cnt.v_cache_max = 0;
1423		cnt.v_inactive_target = cnt.v_free_count / 4;
1424	}
1425	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1426		cnt.v_inactive_target = cnt.v_free_count / 3;
1427
1428	/* XXX does not really belong here */
1429	if (vm_page_max_wired == 0)
1430		vm_page_max_wired = cnt.v_free_count / 3;
1431
1432	if (vm_pageout_stats_max == 0)
1433		vm_pageout_stats_max = cnt.v_free_target;
1434
1435	/*
1436	 * Set interval in seconds for stats scan.
1437	 */
1438	if (vm_pageout_stats_interval == 0)
1439		vm_pageout_stats_interval = 5;
1440	if (vm_pageout_full_stats_interval == 0)
1441		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1442
1443	swap_pager_swap_init();
1444	pass = 0;
1445	/*
1446	 * The pageout daemon is never done, so loop forever.
1447	 */
1448	while (TRUE) {
1449		/*
1450		 * If we have enough free memory, wakeup waiters.  Do
1451		 * not clear vm_pages_needed until we reach our target,
1452		 * otherwise we may be woken up over and over again and
1453		 * waste a lot of cpu.
1454		 */
1455		mtx_lock(&vm_page_queue_free_mtx);
1456		if (vm_pages_needed && !vm_page_count_min()) {
1457			if (!vm_paging_needed())
1458				vm_pages_needed = 0;
1459			wakeup(&cnt.v_free_count);
1460		}
1461		if (vm_pages_needed) {
1462			/*
1463			 * Still not done, take a second pass without waiting
1464			 * (unlimited dirty cleaning), otherwise sleep a bit
1465			 * and try again.
1466			 */
1467			++pass;
1468			if (pass > 1)
1469				msleep(&vm_pages_needed,
1470				    &vm_page_queue_free_mtx, PVM, "psleep",
1471				    hz / 2);
1472		} else {
1473			/*
1474			 * Good enough, sleep & handle stats.  Prime the pass
1475			 * for the next run.
1476			 */
1477			if (pass > 1)
1478				pass = 1;
1479			else
1480				pass = 0;
1481			error = msleep(&vm_pages_needed,
1482			    &vm_page_queue_free_mtx, PVM, "psleep",
1483			    vm_pageout_stats_interval * hz);
1484			if (error && !vm_pages_needed) {
1485				mtx_unlock(&vm_page_queue_free_mtx);
1486				pass = 0;
1487				vm_page_lock_queues();
1488				vm_pageout_page_stats();
1489				vm_page_unlock_queues();
1490				continue;
1491			}
1492		}
1493		if (vm_pages_needed)
1494			cnt.v_pdwakeups++;
1495		mtx_unlock(&vm_page_queue_free_mtx);
1496		vm_pageout_scan(pass);
1497	}
1498}
1499
1500/*
1501 * Unless the free page queue lock is held by the caller, this function
1502 * should be regarded as advisory.  Specifically, the caller should
1503 * not msleep() on &cnt.v_free_count following this function unless
1504 * the free page queue lock is held until the msleep() is performed.
1505 */
1506void
1507pagedaemon_wakeup()
1508{
1509
1510	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1511		vm_pages_needed = 1;
1512		wakeup(&vm_pages_needed);
1513	}
1514}
1515
1516#if !defined(NO_SWAPPING)
1517static void
1518vm_req_vmdaemon(int req)
1519{
1520	static int lastrun = 0;
1521
1522	mtx_lock(&vm_daemon_mtx);
1523	vm_pageout_req_swapout |= req;
1524	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1525		wakeup(&vm_daemon_needed);
1526		lastrun = ticks;
1527	}
1528	mtx_unlock(&vm_daemon_mtx);
1529}
1530
1531static void
1532vm_daemon()
1533{
1534	struct rlimit rsslim;
1535	struct proc *p;
1536	struct thread *td;
1537	int breakout, swapout_flags;
1538
1539	while (TRUE) {
1540		mtx_lock(&vm_daemon_mtx);
1541		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1542		swapout_flags = vm_pageout_req_swapout;
1543		vm_pageout_req_swapout = 0;
1544		mtx_unlock(&vm_daemon_mtx);
1545		if (swapout_flags)
1546			swapout_procs(swapout_flags);
1547
1548		/*
1549		 * scan the processes for exceeding their rlimits or if
1550		 * process is swapped out -- deactivate pages
1551		 */
1552		sx_slock(&allproc_lock);
1553		FOREACH_PROC_IN_SYSTEM(p) {
1554			vm_pindex_t limit, size;
1555
1556			/*
1557			 * if this is a system process or if we have already
1558			 * looked at this process, skip it.
1559			 */
1560			PROC_LOCK(p);
1561			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1562				PROC_UNLOCK(p);
1563				continue;
1564			}
1565			/*
1566			 * if the process is in a non-running type state,
1567			 * don't touch it.
1568			 */
1569			breakout = 0;
1570			FOREACH_THREAD_IN_PROC(p, td) {
1571				thread_lock(td);
1572				if (!TD_ON_RUNQ(td) &&
1573				    !TD_IS_RUNNING(td) &&
1574				    !TD_IS_SLEEPING(td)) {
1575					thread_unlock(td);
1576					breakout = 1;
1577					break;
1578				}
1579				thread_unlock(td);
1580			}
1581			if (breakout) {
1582				PROC_UNLOCK(p);
1583				continue;
1584			}
1585			/*
1586			 * get a limit
1587			 */
1588			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1589			limit = OFF_TO_IDX(
1590			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1591
1592			/*
1593			 * let processes that are swapped out really be
1594			 * swapped out set the limit to nothing (will force a
1595			 * swap-out.)
1596			 */
1597			if ((p->p_flag & P_INMEM) == 0)
1598				limit = 0;	/* XXX */
1599			PROC_UNLOCK(p);
1600
1601			size = vmspace_resident_count(p->p_vmspace);
1602			if (limit >= 0 && size >= limit) {
1603				vm_pageout_map_deactivate_pages(
1604				    &p->p_vmspace->vm_map, limit);
1605			}
1606		}
1607		sx_sunlock(&allproc_lock);
1608	}
1609}
1610#endif			/* !defined(NO_SWAPPING) */
1611