vm_pageout.c revision 177414
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 177414 2008-03-19 20:24:35Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108#include <machine/mutex.h>
109
110/*
111 * System initialization
112 */
113
114/* the kernel process "vm_pageout"*/
115static void vm_pageout(void);
116static int vm_pageout_clean(vm_page_t);
117static void vm_pageout_scan(int pass);
118
119struct proc *pageproc;
120
121static struct kproc_desc page_kp = {
122	"pagedaemon",
123	vm_pageout,
124	&pageproc
125};
126SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127    &page_kp);
128
129#if !defined(NO_SWAPPING)
130/* the kernel process "vm_daemon"*/
131static void vm_daemon(void);
132static struct	proc *vmproc;
133
134static struct kproc_desc vm_kp = {
135	"vmdaemon",
136	vm_daemon,
137	&vmproc
138};
139SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140#endif
141
142
143int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144int vm_pageout_deficit;		/* Estimated number of pages deficit */
145int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146
147#if !defined(NO_SWAPPING)
148static int vm_pageout_req_swapout;	/* XXX */
149static int vm_daemon_needed;
150static struct mtx vm_daemon_mtx;
151/* Allow for use by vm_pageout before vm_daemon is initialized. */
152MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153#endif
154static int vm_max_launder = 32;
155static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156static int vm_pageout_full_stats_interval = 0;
157static int vm_pageout_algorithm=0;
158static int defer_swap_pageouts=0;
159static int disable_swap_pageouts=0;
160
161#if defined(NO_SWAPPING)
162static int vm_swap_enabled=0;
163static int vm_swap_idle_enabled=0;
164#else
165static int vm_swap_enabled=1;
166static int vm_swap_idle_enabled=0;
167#endif
168
169SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172SYSCTL_INT(_vm, OID_AUTO, max_launder,
173	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184#if defined(NO_SWAPPING)
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RD, &vm_swap_enabled, 0, "");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
189#else
190SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194#endif
195
196SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202static int pageout_lock_miss;
203SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206#define VM_PAGEOUT_PAGE_COUNT 16
207int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
210SYSCTL_INT(_vm, OID_AUTO, max_wired,
211	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213#if !defined(NO_SWAPPING)
214static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216static void vm_req_vmdaemon(int req);
217#endif
218static void vm_pageout_page_stats(void);
219
220/*
221 * vm_pageout_fallback_object_lock:
222 *
223 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224 * known to have failed and page queue must be either PQ_ACTIVE or
225 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226 * while locking the vm object.  Use marker page to detect page queue
227 * changes and maintain notion of next page on page queue.  Return
228 * TRUE if no changes were detected, FALSE otherwise.  vm object is
229 * locked on return.
230 *
231 * This function depends on both the lock portion of struct vm_object
232 * and normal struct vm_page being type stable.
233 */
234boolean_t
235vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236{
237	struct vm_page marker;
238	boolean_t unchanged;
239	u_short queue;
240	vm_object_t object;
241
242	/*
243	 * Initialize our marker
244	 */
245	bzero(&marker, sizeof(marker));
246	marker.flags = PG_FICTITIOUS | PG_MARKER;
247	marker.oflags = VPO_BUSY;
248	marker.queue = m->queue;
249	marker.wire_count = 1;
250
251	queue = m->queue;
252	object = m->object;
253
254	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255			   m, &marker, pageq);
256	vm_page_unlock_queues();
257	VM_OBJECT_LOCK(object);
258	vm_page_lock_queues();
259
260	/* Page queue might have changed. */
261	*next = TAILQ_NEXT(&marker, pageq);
262	unchanged = (m->queue == queue &&
263		     m->object == object &&
264		     &marker == TAILQ_NEXT(m, pageq));
265	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266		     &marker, pageq);
267	return (unchanged);
268}
269
270/*
271 * vm_pageout_clean:
272 *
273 * Clean the page and remove it from the laundry.
274 *
275 * We set the busy bit to cause potential page faults on this page to
276 * block.  Note the careful timing, however, the busy bit isn't set till
277 * late and we cannot do anything that will mess with the page.
278 */
279static int
280vm_pageout_clean(m)
281	vm_page_t m;
282{
283	vm_object_t object;
284	vm_page_t mc[2*vm_pageout_page_count];
285	int pageout_count;
286	int ib, is, page_base;
287	vm_pindex_t pindex = m->pindex;
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292	/*
293	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294	 * with the new swapper, but we could have serious problems paging
295	 * out other object types if there is insufficient memory.
296	 *
297	 * Unfortunately, checking free memory here is far too late, so the
298	 * check has been moved up a procedural level.
299	 */
300
301	/*
302	 * Can't clean the page if it's busy or held.
303	 */
304	if ((m->hold_count != 0) ||
305	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306		return 0;
307	}
308
309	mc[vm_pageout_page_count] = m;
310	pageout_count = 1;
311	page_base = vm_pageout_page_count;
312	ib = 1;
313	is = 1;
314
315	/*
316	 * Scan object for clusterable pages.
317	 *
318	 * We can cluster ONLY if: ->> the page is NOT
319	 * clean, wired, busy, held, or mapped into a
320	 * buffer, and one of the following:
321	 * 1) The page is inactive, or a seldom used
322	 *    active page.
323	 * -or-
324	 * 2) we force the issue.
325	 *
326	 * During heavy mmap/modification loads the pageout
327	 * daemon can really fragment the underlying file
328	 * due to flushing pages out of order and not trying
329	 * align the clusters (which leave sporatic out-of-order
330	 * holes).  To solve this problem we do the reverse scan
331	 * first and attempt to align our cluster, then do a
332	 * forward scan if room remains.
333	 */
334	object = m->object;
335more:
336	while (ib && pageout_count < vm_pageout_page_count) {
337		vm_page_t p;
338
339		if (ib > pindex) {
340			ib = 0;
341			break;
342		}
343
344		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345			ib = 0;
346			break;
347		}
348		if ((p->oflags & VPO_BUSY) || p->busy) {
349			ib = 0;
350			break;
351		}
352		vm_page_test_dirty(p);
353		if ((p->dirty & p->valid) == 0 ||
354		    p->queue != PQ_INACTIVE ||
355		    p->wire_count != 0 ||	/* may be held by buf cache */
356		    p->hold_count != 0) {	/* may be undergoing I/O */
357			ib = 0;
358			break;
359		}
360		mc[--page_base] = p;
361		++pageout_count;
362		++ib;
363		/*
364		 * alignment boundry, stop here and switch directions.  Do
365		 * not clear ib.
366		 */
367		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368			break;
369	}
370
371	while (pageout_count < vm_pageout_page_count &&
372	    pindex + is < object->size) {
373		vm_page_t p;
374
375		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376			break;
377		if ((p->oflags & VPO_BUSY) || p->busy) {
378			break;
379		}
380		vm_page_test_dirty(p);
381		if ((p->dirty & p->valid) == 0 ||
382		    p->queue != PQ_INACTIVE ||
383		    p->wire_count != 0 ||	/* may be held by buf cache */
384		    p->hold_count != 0) {	/* may be undergoing I/O */
385			break;
386		}
387		mc[page_base + pageout_count] = p;
388		++pageout_count;
389		++is;
390	}
391
392	/*
393	 * If we exhausted our forward scan, continue with the reverse scan
394	 * when possible, even past a page boundry.  This catches boundry
395	 * conditions.
396	 */
397	if (ib && pageout_count < vm_pageout_page_count)
398		goto more;
399
400	/*
401	 * we allow reads during pageouts...
402	 */
403	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404}
405
406/*
407 * vm_pageout_flush() - launder the given pages
408 *
409 *	The given pages are laundered.  Note that we setup for the start of
410 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
411 *	reference count all in here rather then in the parent.  If we want
412 *	the parent to do more sophisticated things we may have to change
413 *	the ordering.
414 */
415int
416vm_pageout_flush(vm_page_t *mc, int count, int flags)
417{
418	vm_object_t object = mc[0]->object;
419	int pageout_status[count];
420	int numpagedout = 0;
421	int i;
422
423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425	/*
426	 * Initiate I/O.  Bump the vm_page_t->busy counter and
427	 * mark the pages read-only.
428	 *
429	 * We do not have to fixup the clean/dirty bits here... we can
430	 * allow the pager to do it after the I/O completes.
431	 *
432	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433	 * edge case with file fragments.
434	 */
435	for (i = 0; i < count; i++) {
436		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
438			mc[i], i, count));
439		vm_page_io_start(mc[i]);
440		pmap_remove_write(mc[i]);
441	}
442	vm_page_unlock_queues();
443	vm_object_pip_add(object, count);
444
445	vm_pager_put_pages(object, mc, count, flags, pageout_status);
446
447	vm_page_lock_queues();
448	for (i = 0; i < count; i++) {
449		vm_page_t mt = mc[i];
450
451		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452		    (mt->flags & PG_WRITEABLE) == 0,
453		    ("vm_pageout_flush: page %p is not write protected", mt));
454		switch (pageout_status[i]) {
455		case VM_PAGER_OK:
456		case VM_PAGER_PEND:
457			numpagedout++;
458			break;
459		case VM_PAGER_BAD:
460			/*
461			 * Page outside of range of object. Right now we
462			 * essentially lose the changes by pretending it
463			 * worked.
464			 */
465			pmap_clear_modify(mt);
466			vm_page_undirty(mt);
467			break;
468		case VM_PAGER_ERROR:
469		case VM_PAGER_FAIL:
470			/*
471			 * If page couldn't be paged out, then reactivate the
472			 * page so it doesn't clog the inactive list.  (We
473			 * will try paging out it again later).
474			 */
475			vm_page_activate(mt);
476			break;
477		case VM_PAGER_AGAIN:
478			break;
479		}
480
481		/*
482		 * If the operation is still going, leave the page busy to
483		 * block all other accesses. Also, leave the paging in
484		 * progress indicator set so that we don't attempt an object
485		 * collapse.
486		 */
487		if (pageout_status[i] != VM_PAGER_PEND) {
488			vm_object_pip_wakeup(object);
489			vm_page_io_finish(mt);
490			if (vm_page_count_severe())
491				vm_page_try_to_cache(mt);
492		}
493	}
494	return numpagedout;
495}
496
497#if !defined(NO_SWAPPING)
498/*
499 *	vm_pageout_object_deactivate_pages
500 *
501 *	deactivate enough pages to satisfy the inactive target
502 *	requirements or if vm_page_proc_limit is set, then
503 *	deactivate all of the pages in the object and its
504 *	backing_objects.
505 *
506 *	The object and map must be locked.
507 */
508static void
509vm_pageout_object_deactivate_pages(pmap, first_object, desired)
510	pmap_t pmap;
511	vm_object_t first_object;
512	long desired;
513{
514	vm_object_t backing_object, object;
515	vm_page_t p, next;
516	int actcount, rcount, remove_mode;
517
518	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
519	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
520		return;
521	for (object = first_object;; object = backing_object) {
522		if (pmap_resident_count(pmap) <= desired)
523			goto unlock_return;
524		if (object->paging_in_progress)
525			goto unlock_return;
526
527		remove_mode = 0;
528		if (object->shadow_count > 1)
529			remove_mode = 1;
530		/*
531		 * scan the objects entire memory queue
532		 */
533		rcount = object->resident_page_count;
534		p = TAILQ_FIRST(&object->memq);
535		vm_page_lock_queues();
536		while (p && (rcount-- > 0)) {
537			if (pmap_resident_count(pmap) <= desired) {
538				vm_page_unlock_queues();
539				goto unlock_return;
540			}
541			next = TAILQ_NEXT(p, listq);
542			cnt.v_pdpages++;
543			if (p->wire_count != 0 ||
544			    p->hold_count != 0 ||
545			    p->busy != 0 ||
546			    (p->oflags & VPO_BUSY) ||
547			    (p->flags & PG_UNMANAGED) ||
548			    !pmap_page_exists_quick(pmap, p)) {
549				p = next;
550				continue;
551			}
552			actcount = pmap_ts_referenced(p);
553			if (actcount) {
554				vm_page_flag_set(p, PG_REFERENCED);
555			} else if (p->flags & PG_REFERENCED) {
556				actcount = 1;
557			}
558			if ((p->queue != PQ_ACTIVE) &&
559				(p->flags & PG_REFERENCED)) {
560				vm_page_activate(p);
561				p->act_count += actcount;
562				vm_page_flag_clear(p, PG_REFERENCED);
563			} else if (p->queue == PQ_ACTIVE) {
564				if ((p->flags & PG_REFERENCED) == 0) {
565					p->act_count -= min(p->act_count, ACT_DECLINE);
566					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
567						pmap_remove_all(p);
568						vm_page_deactivate(p);
569					} else {
570						vm_page_requeue(p);
571					}
572				} else {
573					vm_page_activate(p);
574					vm_page_flag_clear(p, PG_REFERENCED);
575					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576						p->act_count += ACT_ADVANCE;
577					vm_page_requeue(p);
578				}
579			} else if (p->queue == PQ_INACTIVE) {
580				pmap_remove_all(p);
581			}
582			p = next;
583		}
584		vm_page_unlock_queues();
585		if ((backing_object = object->backing_object) == NULL)
586			goto unlock_return;
587		VM_OBJECT_LOCK(backing_object);
588		if (object != first_object)
589			VM_OBJECT_UNLOCK(object);
590	}
591unlock_return:
592	if (object != first_object)
593		VM_OBJECT_UNLOCK(object);
594}
595
596/*
597 * deactivate some number of pages in a map, try to do it fairly, but
598 * that is really hard to do.
599 */
600static void
601vm_pageout_map_deactivate_pages(map, desired)
602	vm_map_t map;
603	long desired;
604{
605	vm_map_entry_t tmpe;
606	vm_object_t obj, bigobj;
607	int nothingwired;
608
609	if (!vm_map_trylock(map))
610		return;
611
612	bigobj = NULL;
613	nothingwired = TRUE;
614
615	/*
616	 * first, search out the biggest object, and try to free pages from
617	 * that.
618	 */
619	tmpe = map->header.next;
620	while (tmpe != &map->header) {
621		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
622			obj = tmpe->object.vm_object;
623			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
624				if (obj->shadow_count <= 1 &&
625				    (bigobj == NULL ||
626				     bigobj->resident_page_count < obj->resident_page_count)) {
627					if (bigobj != NULL)
628						VM_OBJECT_UNLOCK(bigobj);
629					bigobj = obj;
630				} else
631					VM_OBJECT_UNLOCK(obj);
632			}
633		}
634		if (tmpe->wired_count > 0)
635			nothingwired = FALSE;
636		tmpe = tmpe->next;
637	}
638
639	if (bigobj != NULL) {
640		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
641		VM_OBJECT_UNLOCK(bigobj);
642	}
643	/*
644	 * Next, hunt around for other pages to deactivate.  We actually
645	 * do this search sort of wrong -- .text first is not the best idea.
646	 */
647	tmpe = map->header.next;
648	while (tmpe != &map->header) {
649		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
650			break;
651		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
652			obj = tmpe->object.vm_object;
653			if (obj != NULL) {
654				VM_OBJECT_LOCK(obj);
655				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
656				VM_OBJECT_UNLOCK(obj);
657			}
658		}
659		tmpe = tmpe->next;
660	}
661
662	/*
663	 * Remove all mappings if a process is swapped out, this will free page
664	 * table pages.
665	 */
666	if (desired == 0 && nothingwired) {
667		pmap_remove(vm_map_pmap(map), vm_map_min(map),
668		    vm_map_max(map));
669	}
670	vm_map_unlock(map);
671}
672#endif		/* !defined(NO_SWAPPING) */
673
674/*
675 *	vm_pageout_scan does the dirty work for the pageout daemon.
676 */
677static void
678vm_pageout_scan(int pass)
679{
680	vm_page_t m, next;
681	struct vm_page marker;
682	int page_shortage, maxscan, pcount;
683	int addl_page_shortage, addl_page_shortage_init;
684	struct proc *p, *bigproc;
685	struct thread *td;
686	vm_offset_t size, bigsize;
687	vm_object_t object;
688	int actcount;
689	int vnodes_skipped = 0;
690	int maxlaunder;
691
692	/*
693	 * Decrease registered cache sizes.
694	 */
695	EVENTHANDLER_INVOKE(vm_lowmem, 0);
696	/*
697	 * We do this explicitly after the caches have been drained above.
698	 */
699	uma_reclaim();
700
701	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
702
703	/*
704	 * Calculate the number of pages we want to either free or move
705	 * to the cache.
706	 */
707	page_shortage = vm_paging_target() + addl_page_shortage_init;
708
709	/*
710	 * Initialize our marker
711	 */
712	bzero(&marker, sizeof(marker));
713	marker.flags = PG_FICTITIOUS | PG_MARKER;
714	marker.oflags = VPO_BUSY;
715	marker.queue = PQ_INACTIVE;
716	marker.wire_count = 1;
717
718	/*
719	 * Start scanning the inactive queue for pages we can move to the
720	 * cache or free.  The scan will stop when the target is reached or
721	 * we have scanned the entire inactive queue.  Note that m->act_count
722	 * is not used to form decisions for the inactive queue, only for the
723	 * active queue.
724	 *
725	 * maxlaunder limits the number of dirty pages we flush per scan.
726	 * For most systems a smaller value (16 or 32) is more robust under
727	 * extreme memory and disk pressure because any unnecessary writes
728	 * to disk can result in extreme performance degredation.  However,
729	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
730	 * used) will die horribly with limited laundering.  If the pageout
731	 * daemon cannot clean enough pages in the first pass, we let it go
732	 * all out in succeeding passes.
733	 */
734	if ((maxlaunder = vm_max_launder) <= 1)
735		maxlaunder = 1;
736	if (pass)
737		maxlaunder = 10000;
738	vm_page_lock_queues();
739rescan0:
740	addl_page_shortage = addl_page_shortage_init;
741	maxscan = cnt.v_inactive_count;
742
743	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
744	     m != NULL && maxscan-- > 0 && page_shortage > 0;
745	     m = next) {
746
747		cnt.v_pdpages++;
748
749		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
750			goto rescan0;
751		}
752
753		next = TAILQ_NEXT(m, pageq);
754		object = m->object;
755
756		/*
757		 * skip marker pages
758		 */
759		if (m->flags & PG_MARKER)
760			continue;
761
762		/*
763		 * A held page may be undergoing I/O, so skip it.
764		 */
765		if (m->hold_count) {
766			vm_page_requeue(m);
767			addl_page_shortage++;
768			continue;
769		}
770		/*
771		 * Don't mess with busy pages, keep in the front of the
772		 * queue, most likely are being paged out.
773		 */
774		if (!VM_OBJECT_TRYLOCK(object) &&
775		    (!vm_pageout_fallback_object_lock(m, &next) ||
776		     m->hold_count != 0)) {
777			VM_OBJECT_UNLOCK(object);
778			addl_page_shortage++;
779			continue;
780		}
781		if (m->busy || (m->oflags & VPO_BUSY)) {
782			VM_OBJECT_UNLOCK(object);
783			addl_page_shortage++;
784			continue;
785		}
786
787		/*
788		 * If the object is not being used, we ignore previous
789		 * references.
790		 */
791		if (object->ref_count == 0) {
792			vm_page_flag_clear(m, PG_REFERENCED);
793			pmap_clear_reference(m);
794
795		/*
796		 * Otherwise, if the page has been referenced while in the
797		 * inactive queue, we bump the "activation count" upwards,
798		 * making it less likely that the page will be added back to
799		 * the inactive queue prematurely again.  Here we check the
800		 * page tables (or emulated bits, if any), given the upper
801		 * level VM system not knowing anything about existing
802		 * references.
803		 */
804		} else if (((m->flags & PG_REFERENCED) == 0) &&
805			(actcount = pmap_ts_referenced(m))) {
806			vm_page_activate(m);
807			VM_OBJECT_UNLOCK(object);
808			m->act_count += (actcount + ACT_ADVANCE);
809			continue;
810		}
811
812		/*
813		 * If the upper level VM system knows about any page
814		 * references, we activate the page.  We also set the
815		 * "activation count" higher than normal so that we will less
816		 * likely place pages back onto the inactive queue again.
817		 */
818		if ((m->flags & PG_REFERENCED) != 0) {
819			vm_page_flag_clear(m, PG_REFERENCED);
820			actcount = pmap_ts_referenced(m);
821			vm_page_activate(m);
822			VM_OBJECT_UNLOCK(object);
823			m->act_count += (actcount + ACT_ADVANCE + 1);
824			continue;
825		}
826
827		/*
828		 * If the upper level VM system doesn't know anything about
829		 * the page being dirty, we have to check for it again.  As
830		 * far as the VM code knows, any partially dirty pages are
831		 * fully dirty.
832		 */
833		if (m->dirty == 0 && !pmap_is_modified(m)) {
834			/*
835			 * Avoid a race condition: Unless write access is
836			 * removed from the page, another processor could
837			 * modify it before all access is removed by the call
838			 * to vm_page_cache() below.  If vm_page_cache() finds
839			 * that the page has been modified when it removes all
840			 * access, it panics because it cannot cache dirty
841			 * pages.  In principle, we could eliminate just write
842			 * access here rather than all access.  In the expected
843			 * case, when there are no last instant modifications
844			 * to the page, removing all access will be cheaper
845			 * overall.
846			 */
847			if ((m->flags & PG_WRITEABLE) != 0)
848				pmap_remove_all(m);
849		} else {
850			vm_page_dirty(m);
851		}
852
853		if (m->valid == 0) {
854			/*
855			 * Invalid pages can be easily freed
856			 */
857			vm_page_free(m);
858			cnt.v_dfree++;
859			--page_shortage;
860		} else if (m->dirty == 0) {
861			/*
862			 * Clean pages can be placed onto the cache queue.
863			 * This effectively frees them.
864			 */
865			vm_page_cache(m);
866			--page_shortage;
867		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
868			/*
869			 * Dirty pages need to be paged out, but flushing
870			 * a page is extremely expensive verses freeing
871			 * a clean page.  Rather then artificially limiting
872			 * the number of pages we can flush, we instead give
873			 * dirty pages extra priority on the inactive queue
874			 * by forcing them to be cycled through the queue
875			 * twice before being flushed, after which the
876			 * (now clean) page will cycle through once more
877			 * before being freed.  This significantly extends
878			 * the thrash point for a heavily loaded machine.
879			 */
880			vm_page_flag_set(m, PG_WINATCFLS);
881			vm_page_requeue(m);
882		} else if (maxlaunder > 0) {
883			/*
884			 * We always want to try to flush some dirty pages if
885			 * we encounter them, to keep the system stable.
886			 * Normally this number is small, but under extreme
887			 * pressure where there are insufficient clean pages
888			 * on the inactive queue, we may have to go all out.
889			 */
890			int swap_pageouts_ok, vfslocked = 0;
891			struct vnode *vp = NULL;
892			struct mount *mp = NULL;
893
894			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
895				swap_pageouts_ok = 1;
896			} else {
897				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
898				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
899				vm_page_count_min());
900
901			}
902
903			/*
904			 * We don't bother paging objects that are "dead".
905			 * Those objects are in a "rundown" state.
906			 */
907			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
908				VM_OBJECT_UNLOCK(object);
909				vm_page_requeue(m);
910				continue;
911			}
912
913			/*
914			 * Following operations may unlock
915			 * vm_page_queue_mtx, invalidating the 'next'
916			 * pointer.  To prevent an inordinate number
917			 * of restarts we use our marker to remember
918			 * our place.
919			 *
920			 */
921			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
922					   m, &marker, pageq);
923			/*
924			 * The object is already known NOT to be dead.   It
925			 * is possible for the vget() to block the whole
926			 * pageout daemon, but the new low-memory handling
927			 * code should prevent it.
928			 *
929			 * The previous code skipped locked vnodes and, worse,
930			 * reordered pages in the queue.  This results in
931			 * completely non-deterministic operation and, on a
932			 * busy system, can lead to extremely non-optimal
933			 * pageouts.  For example, it can cause clean pages
934			 * to be freed and dirty pages to be moved to the end
935			 * of the queue.  Since dirty pages are also moved to
936			 * the end of the queue once-cleaned, this gives
937			 * way too large a weighting to defering the freeing
938			 * of dirty pages.
939			 *
940			 * We can't wait forever for the vnode lock, we might
941			 * deadlock due to a vn_read() getting stuck in
942			 * vm_wait while holding this vnode.  We skip the
943			 * vnode if we can't get it in a reasonable amount
944			 * of time.
945			 */
946			if (object->type == OBJT_VNODE) {
947				vp = object->handle;
948				if (vp->v_type == VREG &&
949				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
950					KASSERT(mp == NULL,
951					    ("vm_pageout_scan: mp != NULL"));
952					++pageout_lock_miss;
953					if (object->flags & OBJ_MIGHTBEDIRTY)
954						vnodes_skipped++;
955					goto unlock_and_continue;
956				}
957				vm_page_unlock_queues();
958				vm_object_reference_locked(object);
959				VM_OBJECT_UNLOCK(object);
960				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
961				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
962				    curthread)) {
963					VM_OBJECT_LOCK(object);
964					vm_page_lock_queues();
965					++pageout_lock_miss;
966					if (object->flags & OBJ_MIGHTBEDIRTY)
967						vnodes_skipped++;
968					vp = NULL;
969					goto unlock_and_continue;
970				}
971				VM_OBJECT_LOCK(object);
972				vm_page_lock_queues();
973				/*
974				 * The page might have been moved to another
975				 * queue during potential blocking in vget()
976				 * above.  The page might have been freed and
977				 * reused for another vnode.
978				 */
979				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
980				    m->object != object ||
981				    TAILQ_NEXT(m, pageq) != &marker) {
982					if (object->flags & OBJ_MIGHTBEDIRTY)
983						vnodes_skipped++;
984					goto unlock_and_continue;
985				}
986
987				/*
988				 * The page may have been busied during the
989				 * blocking in vget().  We don't move the
990				 * page back onto the end of the queue so that
991				 * statistics are more correct if we don't.
992				 */
993				if (m->busy || (m->oflags & VPO_BUSY)) {
994					goto unlock_and_continue;
995				}
996
997				/*
998				 * If the page has become held it might
999				 * be undergoing I/O, so skip it
1000				 */
1001				if (m->hold_count) {
1002					vm_page_requeue(m);
1003					if (object->flags & OBJ_MIGHTBEDIRTY)
1004						vnodes_skipped++;
1005					goto unlock_and_continue;
1006				}
1007			}
1008
1009			/*
1010			 * If a page is dirty, then it is either being washed
1011			 * (but not yet cleaned) or it is still in the
1012			 * laundry.  If it is still in the laundry, then we
1013			 * start the cleaning operation.
1014			 *
1015			 * decrement page_shortage on success to account for
1016			 * the (future) cleaned page.  Otherwise we could wind
1017			 * up laundering or cleaning too many pages.
1018			 */
1019			if (vm_pageout_clean(m) != 0) {
1020				--page_shortage;
1021				--maxlaunder;
1022			}
1023unlock_and_continue:
1024			VM_OBJECT_UNLOCK(object);
1025			if (mp != NULL) {
1026				vm_page_unlock_queues();
1027				if (vp != NULL)
1028					vput(vp);
1029				VFS_UNLOCK_GIANT(vfslocked);
1030				vm_object_deallocate(object);
1031				vn_finished_write(mp);
1032				vm_page_lock_queues();
1033			}
1034			next = TAILQ_NEXT(&marker, pageq);
1035			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1036				     &marker, pageq);
1037			continue;
1038		}
1039		VM_OBJECT_UNLOCK(object);
1040	}
1041
1042	/*
1043	 * Compute the number of pages we want to try to move from the
1044	 * active queue to the inactive queue.
1045	 */
1046	page_shortage = vm_paging_target() +
1047		cnt.v_inactive_target - cnt.v_inactive_count;
1048	page_shortage += addl_page_shortage;
1049
1050	/*
1051	 * Scan the active queue for things we can deactivate. We nominally
1052	 * track the per-page activity counter and use it to locate
1053	 * deactivation candidates.
1054	 */
1055	pcount = cnt.v_active_count;
1056	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1057
1058	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1059
1060		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1061		    ("vm_pageout_scan: page %p isn't active", m));
1062
1063		next = TAILQ_NEXT(m, pageq);
1064		object = m->object;
1065		if ((m->flags & PG_MARKER) != 0) {
1066			m = next;
1067			continue;
1068		}
1069		if (!VM_OBJECT_TRYLOCK(object) &&
1070		    !vm_pageout_fallback_object_lock(m, &next)) {
1071			VM_OBJECT_UNLOCK(object);
1072			m = next;
1073			continue;
1074		}
1075
1076		/*
1077		 * Don't deactivate pages that are busy.
1078		 */
1079		if ((m->busy != 0) ||
1080		    (m->oflags & VPO_BUSY) ||
1081		    (m->hold_count != 0)) {
1082			VM_OBJECT_UNLOCK(object);
1083			vm_page_requeue(m);
1084			m = next;
1085			continue;
1086		}
1087
1088		/*
1089		 * The count for pagedaemon pages is done after checking the
1090		 * page for eligibility...
1091		 */
1092		cnt.v_pdpages++;
1093
1094		/*
1095		 * Check to see "how much" the page has been used.
1096		 */
1097		actcount = 0;
1098		if (object->ref_count != 0) {
1099			if (m->flags & PG_REFERENCED) {
1100				actcount += 1;
1101			}
1102			actcount += pmap_ts_referenced(m);
1103			if (actcount) {
1104				m->act_count += ACT_ADVANCE + actcount;
1105				if (m->act_count > ACT_MAX)
1106					m->act_count = ACT_MAX;
1107			}
1108		}
1109
1110		/*
1111		 * Since we have "tested" this bit, we need to clear it now.
1112		 */
1113		vm_page_flag_clear(m, PG_REFERENCED);
1114
1115		/*
1116		 * Only if an object is currently being used, do we use the
1117		 * page activation count stats.
1118		 */
1119		if (actcount && (object->ref_count != 0)) {
1120			vm_page_requeue(m);
1121		} else {
1122			m->act_count -= min(m->act_count, ACT_DECLINE);
1123			if (vm_pageout_algorithm ||
1124			    object->ref_count == 0 ||
1125			    m->act_count == 0) {
1126				page_shortage--;
1127				if (object->ref_count == 0) {
1128					pmap_remove_all(m);
1129					if (m->dirty == 0)
1130						vm_page_cache(m);
1131					else
1132						vm_page_deactivate(m);
1133				} else {
1134					vm_page_deactivate(m);
1135				}
1136			} else {
1137				vm_page_requeue(m);
1138			}
1139		}
1140		VM_OBJECT_UNLOCK(object);
1141		m = next;
1142	}
1143	vm_page_unlock_queues();
1144#if !defined(NO_SWAPPING)
1145	/*
1146	 * Idle process swapout -- run once per second.
1147	 */
1148	if (vm_swap_idle_enabled) {
1149		static long lsec;
1150		if (time_second != lsec) {
1151			vm_req_vmdaemon(VM_SWAP_IDLE);
1152			lsec = time_second;
1153		}
1154	}
1155#endif
1156
1157	/*
1158	 * If we didn't get enough free pages, and we have skipped a vnode
1159	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1160	 * if we did not get enough free pages.
1161	 */
1162	if (vm_paging_target() > 0) {
1163		if (vnodes_skipped && vm_page_count_min())
1164			(void) speedup_syncer();
1165#if !defined(NO_SWAPPING)
1166		if (vm_swap_enabled && vm_page_count_target())
1167			vm_req_vmdaemon(VM_SWAP_NORMAL);
1168#endif
1169	}
1170
1171	/*
1172	 * If we are critically low on one of RAM or swap and low on
1173	 * the other, kill the largest process.  However, we avoid
1174	 * doing this on the first pass in order to give ourselves a
1175	 * chance to flush out dirty vnode-backed pages and to allow
1176	 * active pages to be moved to the inactive queue and reclaimed.
1177	 *
1178	 * We keep the process bigproc locked once we find it to keep anyone
1179	 * from messing with it; however, there is a possibility of
1180	 * deadlock if process B is bigproc and one of it's child processes
1181	 * attempts to propagate a signal to B while we are waiting for A's
1182	 * lock while walking this list.  To avoid this, we don't block on
1183	 * the process lock but just skip a process if it is already locked.
1184	 */
1185	if (pass != 0 &&
1186	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1187	     (swap_pager_full && vm_paging_target() > 0))) {
1188		bigproc = NULL;
1189		bigsize = 0;
1190		sx_slock(&allproc_lock);
1191		FOREACH_PROC_IN_SYSTEM(p) {
1192			int breakout;
1193
1194			if (PROC_TRYLOCK(p) == 0)
1195				continue;
1196			/*
1197			 * If this is a system or protected process, skip it.
1198			 */
1199			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1200			    (p->p_flag & P_PROTECTED) ||
1201			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1202				PROC_UNLOCK(p);
1203				continue;
1204			}
1205			/*
1206			 * If the process is in a non-running type state,
1207			 * don't touch it.  Check all the threads individually.
1208			 */
1209			breakout = 0;
1210			FOREACH_THREAD_IN_PROC(p, td) {
1211				thread_lock(td);
1212				if (!TD_ON_RUNQ(td) &&
1213				    !TD_IS_RUNNING(td) &&
1214				    !TD_IS_SLEEPING(td)) {
1215					thread_unlock(td);
1216					breakout = 1;
1217					break;
1218				}
1219				thread_unlock(td);
1220			}
1221			if (breakout) {
1222				PROC_UNLOCK(p);
1223				continue;
1224			}
1225			/*
1226			 * get the process size
1227			 */
1228			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1229				PROC_UNLOCK(p);
1230				continue;
1231			}
1232			size = vmspace_swap_count(p->p_vmspace);
1233			vm_map_unlock_read(&p->p_vmspace->vm_map);
1234			size += vmspace_resident_count(p->p_vmspace);
1235			/*
1236			 * if the this process is bigger than the biggest one
1237			 * remember it.
1238			 */
1239			if (size > bigsize) {
1240				if (bigproc != NULL)
1241					PROC_UNLOCK(bigproc);
1242				bigproc = p;
1243				bigsize = size;
1244			} else
1245				PROC_UNLOCK(p);
1246		}
1247		sx_sunlock(&allproc_lock);
1248		if (bigproc != NULL) {
1249			killproc(bigproc, "out of swap space");
1250			sched_nice(bigproc, PRIO_MIN);
1251			PROC_UNLOCK(bigproc);
1252			wakeup(&cnt.v_free_count);
1253		}
1254	}
1255}
1256
1257/*
1258 * This routine tries to maintain the pseudo LRU active queue,
1259 * so that during long periods of time where there is no paging,
1260 * that some statistic accumulation still occurs.  This code
1261 * helps the situation where paging just starts to occur.
1262 */
1263static void
1264vm_pageout_page_stats()
1265{
1266	vm_object_t object;
1267	vm_page_t m,next;
1268	int pcount,tpcount;		/* Number of pages to check */
1269	static int fullintervalcount = 0;
1270	int page_shortage;
1271
1272	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1273	page_shortage =
1274	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1275	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1276
1277	if (page_shortage <= 0)
1278		return;
1279
1280	pcount = cnt.v_active_count;
1281	fullintervalcount += vm_pageout_stats_interval;
1282	if (fullintervalcount < vm_pageout_full_stats_interval) {
1283		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1284		if (pcount > tpcount)
1285			pcount = tpcount;
1286	} else {
1287		fullintervalcount = 0;
1288	}
1289
1290	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1291	while ((m != NULL) && (pcount-- > 0)) {
1292		int actcount;
1293
1294		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1295		    ("vm_pageout_page_stats: page %p isn't active", m));
1296
1297		next = TAILQ_NEXT(m, pageq);
1298		object = m->object;
1299
1300		if ((m->flags & PG_MARKER) != 0) {
1301			m = next;
1302			continue;
1303		}
1304		if (!VM_OBJECT_TRYLOCK(object) &&
1305		    !vm_pageout_fallback_object_lock(m, &next)) {
1306			VM_OBJECT_UNLOCK(object);
1307			m = next;
1308			continue;
1309		}
1310
1311		/*
1312		 * Don't deactivate pages that are busy.
1313		 */
1314		if ((m->busy != 0) ||
1315		    (m->oflags & VPO_BUSY) ||
1316		    (m->hold_count != 0)) {
1317			VM_OBJECT_UNLOCK(object);
1318			vm_page_requeue(m);
1319			m = next;
1320			continue;
1321		}
1322
1323		actcount = 0;
1324		if (m->flags & PG_REFERENCED) {
1325			vm_page_flag_clear(m, PG_REFERENCED);
1326			actcount += 1;
1327		}
1328
1329		actcount += pmap_ts_referenced(m);
1330		if (actcount) {
1331			m->act_count += ACT_ADVANCE + actcount;
1332			if (m->act_count > ACT_MAX)
1333				m->act_count = ACT_MAX;
1334			vm_page_requeue(m);
1335		} else {
1336			if (m->act_count == 0) {
1337				/*
1338				 * We turn off page access, so that we have
1339				 * more accurate RSS stats.  We don't do this
1340				 * in the normal page deactivation when the
1341				 * system is loaded VM wise, because the
1342				 * cost of the large number of page protect
1343				 * operations would be higher than the value
1344				 * of doing the operation.
1345				 */
1346				pmap_remove_all(m);
1347				vm_page_deactivate(m);
1348			} else {
1349				m->act_count -= min(m->act_count, ACT_DECLINE);
1350				vm_page_requeue(m);
1351			}
1352		}
1353		VM_OBJECT_UNLOCK(object);
1354		m = next;
1355	}
1356}
1357
1358/*
1359 *	vm_pageout is the high level pageout daemon.
1360 */
1361static void
1362vm_pageout()
1363{
1364	int error, pass;
1365
1366	/*
1367	 * Initialize some paging parameters.
1368	 */
1369	cnt.v_interrupt_free_min = 2;
1370	if (cnt.v_page_count < 2000)
1371		vm_pageout_page_count = 8;
1372
1373	/*
1374	 * v_free_reserved needs to include enough for the largest
1375	 * swap pager structures plus enough for any pv_entry structs
1376	 * when paging.
1377	 */
1378	if (cnt.v_page_count > 1024)
1379		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1380	else
1381		cnt.v_free_min = 4;
1382	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1383	    cnt.v_interrupt_free_min;
1384	cnt.v_free_reserved = vm_pageout_page_count +
1385	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1386	cnt.v_free_severe = cnt.v_free_min / 2;
1387	cnt.v_free_min += cnt.v_free_reserved;
1388	cnt.v_free_severe += cnt.v_free_reserved;
1389
1390	/*
1391	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1392	 * that these are more a measure of the VM cache queue hysteresis
1393	 * then the VM free queue.  Specifically, v_free_target is the
1394	 * high water mark (free+cache pages).
1395	 *
1396	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1397	 * low water mark, while v_free_min is the stop.  v_cache_min must
1398	 * be big enough to handle memory needs while the pageout daemon
1399	 * is signalled and run to free more pages.
1400	 */
1401	if (cnt.v_free_count > 6144)
1402		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1403	else
1404		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1405
1406	if (cnt.v_free_count > 2048) {
1407		cnt.v_cache_min = cnt.v_free_target;
1408		cnt.v_cache_max = 2 * cnt.v_cache_min;
1409		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1410	} else {
1411		cnt.v_cache_min = 0;
1412		cnt.v_cache_max = 0;
1413		cnt.v_inactive_target = cnt.v_free_count / 4;
1414	}
1415	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1416		cnt.v_inactive_target = cnt.v_free_count / 3;
1417
1418	/* XXX does not really belong here */
1419	if (vm_page_max_wired == 0)
1420		vm_page_max_wired = cnt.v_free_count / 3;
1421
1422	if (vm_pageout_stats_max == 0)
1423		vm_pageout_stats_max = cnt.v_free_target;
1424
1425	/*
1426	 * Set interval in seconds for stats scan.
1427	 */
1428	if (vm_pageout_stats_interval == 0)
1429		vm_pageout_stats_interval = 5;
1430	if (vm_pageout_full_stats_interval == 0)
1431		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1432
1433	swap_pager_swap_init();
1434	pass = 0;
1435	/*
1436	 * The pageout daemon is never done, so loop forever.
1437	 */
1438	while (TRUE) {
1439		/*
1440		 * If we have enough free memory, wakeup waiters.  Do
1441		 * not clear vm_pages_needed until we reach our target,
1442		 * otherwise we may be woken up over and over again and
1443		 * waste a lot of cpu.
1444		 */
1445		mtx_lock(&vm_page_queue_free_mtx);
1446		if (vm_pages_needed && !vm_page_count_min()) {
1447			if (!vm_paging_needed())
1448				vm_pages_needed = 0;
1449			wakeup(&cnt.v_free_count);
1450		}
1451		if (vm_pages_needed) {
1452			/*
1453			 * Still not done, take a second pass without waiting
1454			 * (unlimited dirty cleaning), otherwise sleep a bit
1455			 * and try again.
1456			 */
1457			++pass;
1458			if (pass > 1)
1459				msleep(&vm_pages_needed,
1460				    &vm_page_queue_free_mtx, PVM, "psleep",
1461				    hz / 2);
1462		} else {
1463			/*
1464			 * Good enough, sleep & handle stats.  Prime the pass
1465			 * for the next run.
1466			 */
1467			if (pass > 1)
1468				pass = 1;
1469			else
1470				pass = 0;
1471			error = msleep(&vm_pages_needed,
1472			    &vm_page_queue_free_mtx, PVM, "psleep",
1473			    vm_pageout_stats_interval * hz);
1474			if (error && !vm_pages_needed) {
1475				mtx_unlock(&vm_page_queue_free_mtx);
1476				pass = 0;
1477				vm_page_lock_queues();
1478				vm_pageout_page_stats();
1479				vm_page_unlock_queues();
1480				continue;
1481			}
1482		}
1483		if (vm_pages_needed)
1484			cnt.v_pdwakeups++;
1485		mtx_unlock(&vm_page_queue_free_mtx);
1486		vm_pageout_scan(pass);
1487	}
1488}
1489
1490/*
1491 * Unless the free page queue lock is held by the caller, this function
1492 * should be regarded as advisory.  Specifically, the caller should
1493 * not msleep() on &cnt.v_free_count following this function unless
1494 * the free page queue lock is held until the msleep() is performed.
1495 */
1496void
1497pagedaemon_wakeup()
1498{
1499
1500	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1501		vm_pages_needed = 1;
1502		wakeup(&vm_pages_needed);
1503	}
1504}
1505
1506#if !defined(NO_SWAPPING)
1507static void
1508vm_req_vmdaemon(int req)
1509{
1510	static int lastrun = 0;
1511
1512	mtx_lock(&vm_daemon_mtx);
1513	vm_pageout_req_swapout |= req;
1514	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515		wakeup(&vm_daemon_needed);
1516		lastrun = ticks;
1517	}
1518	mtx_unlock(&vm_daemon_mtx);
1519}
1520
1521static void
1522vm_daemon()
1523{
1524	struct rlimit rsslim;
1525	struct proc *p;
1526	struct thread *td;
1527	int breakout, swapout_flags;
1528
1529	while (TRUE) {
1530		mtx_lock(&vm_daemon_mtx);
1531		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1532		swapout_flags = vm_pageout_req_swapout;
1533		vm_pageout_req_swapout = 0;
1534		mtx_unlock(&vm_daemon_mtx);
1535		if (swapout_flags)
1536			swapout_procs(swapout_flags);
1537
1538		/*
1539		 * scan the processes for exceeding their rlimits or if
1540		 * process is swapped out -- deactivate pages
1541		 */
1542		sx_slock(&allproc_lock);
1543		FOREACH_PROC_IN_SYSTEM(p) {
1544			vm_pindex_t limit, size;
1545
1546			/*
1547			 * if this is a system process or if we have already
1548			 * looked at this process, skip it.
1549			 */
1550			PROC_LOCK(p);
1551			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1552				PROC_UNLOCK(p);
1553				continue;
1554			}
1555			/*
1556			 * if the process is in a non-running type state,
1557			 * don't touch it.
1558			 */
1559			breakout = 0;
1560			FOREACH_THREAD_IN_PROC(p, td) {
1561				thread_lock(td);
1562				if (!TD_ON_RUNQ(td) &&
1563				    !TD_IS_RUNNING(td) &&
1564				    !TD_IS_SLEEPING(td)) {
1565					thread_unlock(td);
1566					breakout = 1;
1567					break;
1568				}
1569				thread_unlock(td);
1570			}
1571			if (breakout) {
1572				PROC_UNLOCK(p);
1573				continue;
1574			}
1575			/*
1576			 * get a limit
1577			 */
1578			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1579			limit = OFF_TO_IDX(
1580			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1581
1582			/*
1583			 * let processes that are swapped out really be
1584			 * swapped out set the limit to nothing (will force a
1585			 * swap-out.)
1586			 */
1587			if ((p->p_flag & P_INMEM) == 0)
1588				limit = 0;	/* XXX */
1589			PROC_UNLOCK(p);
1590
1591			size = vmspace_resident_count(p->p_vmspace);
1592			if (limit >= 0 && size >= limit) {
1593				vm_pageout_map_deactivate_pages(
1594				    &p->p_vmspace->vm_map, limit);
1595			}
1596		}
1597		sx_sunlock(&allproc_lock);
1598	}
1599}
1600#endif			/* !defined(NO_SWAPPING) */
1601