vm_pageout.c revision 172207
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 172207 2007-09-17 05:31:39Z jeff $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/resourcevar.h>
90#include <sys/sched.h>
91#include <sys/signalvar.h>
92#include <sys/vnode.h>
93#include <sys/vmmeter.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_pager.h>
104#include <vm/swap_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/uma.h>
107
108#include <machine/mutex.h>
109
110/*
111 * System initialization
112 */
113
114/* the kernel process "vm_pageout"*/
115static void vm_pageout(void);
116static int vm_pageout_clean(vm_page_t);
117static void vm_pageout_scan(int pass);
118
119struct proc *pageproc;
120
121static struct kproc_desc page_kp = {
122	"pagedaemon",
123	vm_pageout,
124	&pageproc
125};
126SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
127
128#if !defined(NO_SWAPPING)
129/* the kernel process "vm_daemon"*/
130static void vm_daemon(void);
131static struct	proc *vmproc;
132
133static struct kproc_desc vm_kp = {
134	"vmdaemon",
135	vm_daemon,
136	&vmproc
137};
138SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
139#endif
140
141
142int vm_pages_needed;		/* Event on which pageout daemon sleeps */
143int vm_pageout_deficit;		/* Estimated number of pages deficit */
144int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
145
146#if !defined(NO_SWAPPING)
147static int vm_pageout_req_swapout;	/* XXX */
148static int vm_daemon_needed;
149static struct mtx vm_daemon_mtx;
150/* Allow for use by vm_pageout before vm_daemon is initialized. */
151MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152#endif
153static int vm_max_launder = 32;
154static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155static int vm_pageout_full_stats_interval = 0;
156static int vm_pageout_algorithm=0;
157static int defer_swap_pageouts=0;
158static int disable_swap_pageouts=0;
159
160#if defined(NO_SWAPPING)
161static int vm_swap_enabled=0;
162static int vm_swap_idle_enabled=0;
163#else
164static int vm_swap_enabled=1;
165static int vm_swap_idle_enabled=0;
166#endif
167
168SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171SYSCTL_INT(_vm, OID_AUTO, max_launder,
172	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183#if defined(NO_SWAPPING)
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RD, &vm_swap_enabled, 0, "");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
188#else
189SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193#endif
194
195SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201static int pageout_lock_miss;
202SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205#define VM_PAGEOUT_PAGE_COUNT 16
206int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
209
210#if !defined(NO_SWAPPING)
211static void vm_pageout_map_deactivate_pages(vm_map_t, long);
212static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
213static void vm_req_vmdaemon(int req);
214#endif
215static void vm_pageout_page_stats(void);
216
217/*
218 * vm_pageout_fallback_object_lock:
219 *
220 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
221 * known to have failed and page queue must be either PQ_ACTIVE or
222 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
223 * while locking the vm object.  Use marker page to detect page queue
224 * changes and maintain notion of next page on page queue.  Return
225 * TRUE if no changes were detected, FALSE otherwise.  vm object is
226 * locked on return.
227 *
228 * This function depends on both the lock portion of struct vm_object
229 * and normal struct vm_page being type stable.
230 */
231static boolean_t
232vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
233{
234	struct vm_page marker;
235	boolean_t unchanged;
236	u_short queue;
237	vm_object_t object;
238
239	/*
240	 * Initialize our marker
241	 */
242	bzero(&marker, sizeof(marker));
243	marker.flags = PG_FICTITIOUS | PG_MARKER;
244	marker.oflags = VPO_BUSY;
245	marker.queue = m->queue;
246	marker.wire_count = 1;
247
248	queue = m->queue;
249	object = m->object;
250
251	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
252			   m, &marker, pageq);
253	vm_page_unlock_queues();
254	VM_OBJECT_LOCK(object);
255	vm_page_lock_queues();
256
257	/* Page queue might have changed. */
258	*next = TAILQ_NEXT(&marker, pageq);
259	unchanged = (m->queue == queue &&
260		     m->object == object &&
261		     &marker == TAILQ_NEXT(m, pageq));
262	TAILQ_REMOVE(&vm_page_queues[queue].pl,
263		     &marker, pageq);
264	return (unchanged);
265}
266
267/*
268 * vm_pageout_clean:
269 *
270 * Clean the page and remove it from the laundry.
271 *
272 * We set the busy bit to cause potential page faults on this page to
273 * block.  Note the careful timing, however, the busy bit isn't set till
274 * late and we cannot do anything that will mess with the page.
275 */
276static int
277vm_pageout_clean(m)
278	vm_page_t m;
279{
280	vm_object_t object;
281	vm_page_t mc[2*vm_pageout_page_count];
282	int pageout_count;
283	int ib, is, page_base;
284	vm_pindex_t pindex = m->pindex;
285
286	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
287	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
288
289	/*
290	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
291	 * with the new swapper, but we could have serious problems paging
292	 * out other object types if there is insufficient memory.
293	 *
294	 * Unfortunately, checking free memory here is far too late, so the
295	 * check has been moved up a procedural level.
296	 */
297
298	/*
299	 * Can't clean the page if it's busy or held.
300	 */
301	if ((m->hold_count != 0) ||
302	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
303		return 0;
304	}
305
306	mc[vm_pageout_page_count] = m;
307	pageout_count = 1;
308	page_base = vm_pageout_page_count;
309	ib = 1;
310	is = 1;
311
312	/*
313	 * Scan object for clusterable pages.
314	 *
315	 * We can cluster ONLY if: ->> the page is NOT
316	 * clean, wired, busy, held, or mapped into a
317	 * buffer, and one of the following:
318	 * 1) The page is inactive, or a seldom used
319	 *    active page.
320	 * -or-
321	 * 2) we force the issue.
322	 *
323	 * During heavy mmap/modification loads the pageout
324	 * daemon can really fragment the underlying file
325	 * due to flushing pages out of order and not trying
326	 * align the clusters (which leave sporatic out-of-order
327	 * holes).  To solve this problem we do the reverse scan
328	 * first and attempt to align our cluster, then do a
329	 * forward scan if room remains.
330	 */
331	object = m->object;
332more:
333	while (ib && pageout_count < vm_pageout_page_count) {
334		vm_page_t p;
335
336		if (ib > pindex) {
337			ib = 0;
338			break;
339		}
340
341		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
342			ib = 0;
343			break;
344		}
345		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
346		    (p->oflags & VPO_BUSY) || p->busy) {
347			ib = 0;
348			break;
349		}
350		vm_page_test_dirty(p);
351		if ((p->dirty & p->valid) == 0 ||
352		    p->queue != PQ_INACTIVE ||
353		    p->wire_count != 0 ||	/* may be held by buf cache */
354		    p->hold_count != 0) {	/* may be undergoing I/O */
355			ib = 0;
356			break;
357		}
358		mc[--page_base] = p;
359		++pageout_count;
360		++ib;
361		/*
362		 * alignment boundry, stop here and switch directions.  Do
363		 * not clear ib.
364		 */
365		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
366			break;
367	}
368
369	while (pageout_count < vm_pageout_page_count &&
370	    pindex + is < object->size) {
371		vm_page_t p;
372
373		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
374			break;
375		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
376		    (p->oflags & VPO_BUSY) || p->busy) {
377			break;
378		}
379		vm_page_test_dirty(p);
380		if ((p->dirty & p->valid) == 0 ||
381		    p->queue != PQ_INACTIVE ||
382		    p->wire_count != 0 ||	/* may be held by buf cache */
383		    p->hold_count != 0) {	/* may be undergoing I/O */
384			break;
385		}
386		mc[page_base + pageout_count] = p;
387		++pageout_count;
388		++is;
389	}
390
391	/*
392	 * If we exhausted our forward scan, continue with the reverse scan
393	 * when possible, even past a page boundry.  This catches boundry
394	 * conditions.
395	 */
396	if (ib && pageout_count < vm_pageout_page_count)
397		goto more;
398
399	/*
400	 * we allow reads during pageouts...
401	 */
402	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
403}
404
405/*
406 * vm_pageout_flush() - launder the given pages
407 *
408 *	The given pages are laundered.  Note that we setup for the start of
409 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
410 *	reference count all in here rather then in the parent.  If we want
411 *	the parent to do more sophisticated things we may have to change
412 *	the ordering.
413 */
414int
415vm_pageout_flush(vm_page_t *mc, int count, int flags)
416{
417	vm_object_t object = mc[0]->object;
418	int pageout_status[count];
419	int numpagedout = 0;
420	int i;
421
422	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
423	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
424	/*
425	 * Initiate I/O.  Bump the vm_page_t->busy counter and
426	 * mark the pages read-only.
427	 *
428	 * We do not have to fixup the clean/dirty bits here... we can
429	 * allow the pager to do it after the I/O completes.
430	 *
431	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
432	 * edge case with file fragments.
433	 */
434	for (i = 0; i < count; i++) {
435		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
436		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
437			mc[i], i, count));
438		vm_page_io_start(mc[i]);
439		pmap_remove_write(mc[i]);
440	}
441	vm_page_unlock_queues();
442	vm_object_pip_add(object, count);
443
444	vm_pager_put_pages(object, mc, count, flags, pageout_status);
445
446	vm_page_lock_queues();
447	for (i = 0; i < count; i++) {
448		vm_page_t mt = mc[i];
449
450		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
451		    (mt->flags & PG_WRITEABLE) == 0,
452		    ("vm_pageout_flush: page %p is not write protected", mt));
453		switch (pageout_status[i]) {
454		case VM_PAGER_OK:
455		case VM_PAGER_PEND:
456			numpagedout++;
457			break;
458		case VM_PAGER_BAD:
459			/*
460			 * Page outside of range of object. Right now we
461			 * essentially lose the changes by pretending it
462			 * worked.
463			 */
464			pmap_clear_modify(mt);
465			vm_page_undirty(mt);
466			break;
467		case VM_PAGER_ERROR:
468		case VM_PAGER_FAIL:
469			/*
470			 * If page couldn't be paged out, then reactivate the
471			 * page so it doesn't clog the inactive list.  (We
472			 * will try paging out it again later).
473			 */
474			vm_page_activate(mt);
475			break;
476		case VM_PAGER_AGAIN:
477			break;
478		}
479
480		/*
481		 * If the operation is still going, leave the page busy to
482		 * block all other accesses. Also, leave the paging in
483		 * progress indicator set so that we don't attempt an object
484		 * collapse.
485		 */
486		if (pageout_status[i] != VM_PAGER_PEND) {
487			vm_object_pip_wakeup(object);
488			vm_page_io_finish(mt);
489			if (vm_page_count_severe())
490				vm_page_try_to_cache(mt);
491		}
492	}
493	return numpagedout;
494}
495
496#if !defined(NO_SWAPPING)
497/*
498 *	vm_pageout_object_deactivate_pages
499 *
500 *	deactivate enough pages to satisfy the inactive target
501 *	requirements or if vm_page_proc_limit is set, then
502 *	deactivate all of the pages in the object and its
503 *	backing_objects.
504 *
505 *	The object and map must be locked.
506 */
507static void
508vm_pageout_object_deactivate_pages(pmap, first_object, desired)
509	pmap_t pmap;
510	vm_object_t first_object;
511	long desired;
512{
513	vm_object_t backing_object, object;
514	vm_page_t p, next;
515	int actcount, rcount, remove_mode;
516
517	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
518	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
519		return;
520	for (object = first_object;; object = backing_object) {
521		if (pmap_resident_count(pmap) <= desired)
522			goto unlock_return;
523		if (object->paging_in_progress)
524			goto unlock_return;
525
526		remove_mode = 0;
527		if (object->shadow_count > 1)
528			remove_mode = 1;
529		/*
530		 * scan the objects entire memory queue
531		 */
532		rcount = object->resident_page_count;
533		p = TAILQ_FIRST(&object->memq);
534		vm_page_lock_queues();
535		while (p && (rcount-- > 0)) {
536			if (pmap_resident_count(pmap) <= desired) {
537				vm_page_unlock_queues();
538				goto unlock_return;
539			}
540			next = TAILQ_NEXT(p, listq);
541			cnt.v_pdpages++;
542			if (p->wire_count != 0 ||
543			    p->hold_count != 0 ||
544			    p->busy != 0 ||
545			    (p->oflags & VPO_BUSY) ||
546			    (p->flags & PG_UNMANAGED) ||
547			    !pmap_page_exists_quick(pmap, p)) {
548				p = next;
549				continue;
550			}
551			actcount = pmap_ts_referenced(p);
552			if (actcount) {
553				vm_page_flag_set(p, PG_REFERENCED);
554			} else if (p->flags & PG_REFERENCED) {
555				actcount = 1;
556			}
557			if ((p->queue != PQ_ACTIVE) &&
558				(p->flags & PG_REFERENCED)) {
559				vm_page_activate(p);
560				p->act_count += actcount;
561				vm_page_flag_clear(p, PG_REFERENCED);
562			} else if (p->queue == PQ_ACTIVE) {
563				if ((p->flags & PG_REFERENCED) == 0) {
564					p->act_count -= min(p->act_count, ACT_DECLINE);
565					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566						pmap_remove_all(p);
567						vm_page_deactivate(p);
568					} else {
569						vm_pageq_requeue(p);
570					}
571				} else {
572					vm_page_activate(p);
573					vm_page_flag_clear(p, PG_REFERENCED);
574					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575						p->act_count += ACT_ADVANCE;
576					vm_pageq_requeue(p);
577				}
578			} else if (p->queue == PQ_INACTIVE) {
579				pmap_remove_all(p);
580			}
581			p = next;
582		}
583		vm_page_unlock_queues();
584		if ((backing_object = object->backing_object) == NULL)
585			goto unlock_return;
586		VM_OBJECT_LOCK(backing_object);
587		if (object != first_object)
588			VM_OBJECT_UNLOCK(object);
589	}
590unlock_return:
591	if (object != first_object)
592		VM_OBJECT_UNLOCK(object);
593}
594
595/*
596 * deactivate some number of pages in a map, try to do it fairly, but
597 * that is really hard to do.
598 */
599static void
600vm_pageout_map_deactivate_pages(map, desired)
601	vm_map_t map;
602	long desired;
603{
604	vm_map_entry_t tmpe;
605	vm_object_t obj, bigobj;
606	int nothingwired;
607
608	if (!vm_map_trylock(map))
609		return;
610
611	bigobj = NULL;
612	nothingwired = TRUE;
613
614	/*
615	 * first, search out the biggest object, and try to free pages from
616	 * that.
617	 */
618	tmpe = map->header.next;
619	while (tmpe != &map->header) {
620		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621			obj = tmpe->object.vm_object;
622			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623				if (obj->shadow_count <= 1 &&
624				    (bigobj == NULL ||
625				     bigobj->resident_page_count < obj->resident_page_count)) {
626					if (bigobj != NULL)
627						VM_OBJECT_UNLOCK(bigobj);
628					bigobj = obj;
629				} else
630					VM_OBJECT_UNLOCK(obj);
631			}
632		}
633		if (tmpe->wired_count > 0)
634			nothingwired = FALSE;
635		tmpe = tmpe->next;
636	}
637
638	if (bigobj != NULL) {
639		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640		VM_OBJECT_UNLOCK(bigobj);
641	}
642	/*
643	 * Next, hunt around for other pages to deactivate.  We actually
644	 * do this search sort of wrong -- .text first is not the best idea.
645	 */
646	tmpe = map->header.next;
647	while (tmpe != &map->header) {
648		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649			break;
650		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651			obj = tmpe->object.vm_object;
652			if (obj != NULL) {
653				VM_OBJECT_LOCK(obj);
654				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655				VM_OBJECT_UNLOCK(obj);
656			}
657		}
658		tmpe = tmpe->next;
659	}
660
661	/*
662	 * Remove all mappings if a process is swapped out, this will free page
663	 * table pages.
664	 */
665	if (desired == 0 && nothingwired) {
666		pmap_remove(vm_map_pmap(map), vm_map_min(map),
667		    vm_map_max(map));
668	}
669	vm_map_unlock(map);
670}
671#endif		/* !defined(NO_SWAPPING) */
672
673/*
674 *	vm_pageout_scan does the dirty work for the pageout daemon.
675 */
676static void
677vm_pageout_scan(int pass)
678{
679	vm_page_t m, next;
680	struct vm_page marker;
681	int page_shortage, maxscan, pcount;
682	int addl_page_shortage, addl_page_shortage_init;
683	struct proc *p, *bigproc;
684	struct thread *td;
685	vm_offset_t size, bigsize;
686	vm_object_t object;
687	int actcount;
688	int vnodes_skipped = 0;
689	int maxlaunder;
690
691	/*
692	 * Decrease registered cache sizes.
693	 */
694	EVENTHANDLER_INVOKE(vm_lowmem, 0);
695	/*
696	 * We do this explicitly after the caches have been drained above.
697	 */
698	uma_reclaim();
699
700	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
701
702	/*
703	 * Calculate the number of pages we want to either free or move
704	 * to the cache.
705	 */
706	page_shortage = vm_paging_target() + addl_page_shortage_init;
707
708	/*
709	 * Initialize our marker
710	 */
711	bzero(&marker, sizeof(marker));
712	marker.flags = PG_FICTITIOUS | PG_MARKER;
713	marker.oflags = VPO_BUSY;
714	marker.queue = PQ_INACTIVE;
715	marker.wire_count = 1;
716
717	/*
718	 * Start scanning the inactive queue for pages we can move to the
719	 * cache or free.  The scan will stop when the target is reached or
720	 * we have scanned the entire inactive queue.  Note that m->act_count
721	 * is not used to form decisions for the inactive queue, only for the
722	 * active queue.
723	 *
724	 * maxlaunder limits the number of dirty pages we flush per scan.
725	 * For most systems a smaller value (16 or 32) is more robust under
726	 * extreme memory and disk pressure because any unnecessary writes
727	 * to disk can result in extreme performance degredation.  However,
728	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
729	 * used) will die horribly with limited laundering.  If the pageout
730	 * daemon cannot clean enough pages in the first pass, we let it go
731	 * all out in succeeding passes.
732	 */
733	if ((maxlaunder = vm_max_launder) <= 1)
734		maxlaunder = 1;
735	if (pass)
736		maxlaunder = 10000;
737	vm_page_lock_queues();
738rescan0:
739	addl_page_shortage = addl_page_shortage_init;
740	maxscan = cnt.v_inactive_count;
741
742	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
743	     m != NULL && maxscan-- > 0 && page_shortage > 0;
744	     m = next) {
745
746		cnt.v_pdpages++;
747
748		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
749			goto rescan0;
750		}
751
752		next = TAILQ_NEXT(m, pageq);
753		object = m->object;
754
755		/*
756		 * skip marker pages
757		 */
758		if (m->flags & PG_MARKER)
759			continue;
760
761		/*
762		 * A held page may be undergoing I/O, so skip it.
763		 */
764		if (m->hold_count) {
765			vm_pageq_requeue(m);
766			addl_page_shortage++;
767			continue;
768		}
769		/*
770		 * Don't mess with busy pages, keep in the front of the
771		 * queue, most likely are being paged out.
772		 */
773		if (!VM_OBJECT_TRYLOCK(object) &&
774		    (!vm_pageout_fallback_object_lock(m, &next) ||
775		     m->hold_count != 0)) {
776			VM_OBJECT_UNLOCK(object);
777			addl_page_shortage++;
778			continue;
779		}
780		if (m->busy || (m->oflags & VPO_BUSY)) {
781			VM_OBJECT_UNLOCK(object);
782			addl_page_shortage++;
783			continue;
784		}
785
786		/*
787		 * If the object is not being used, we ignore previous
788		 * references.
789		 */
790		if (object->ref_count == 0) {
791			vm_page_flag_clear(m, PG_REFERENCED);
792			pmap_clear_reference(m);
793
794		/*
795		 * Otherwise, if the page has been referenced while in the
796		 * inactive queue, we bump the "activation count" upwards,
797		 * making it less likely that the page will be added back to
798		 * the inactive queue prematurely again.  Here we check the
799		 * page tables (or emulated bits, if any), given the upper
800		 * level VM system not knowing anything about existing
801		 * references.
802		 */
803		} else if (((m->flags & PG_REFERENCED) == 0) &&
804			(actcount = pmap_ts_referenced(m))) {
805			vm_page_activate(m);
806			VM_OBJECT_UNLOCK(object);
807			m->act_count += (actcount + ACT_ADVANCE);
808			continue;
809		}
810
811		/*
812		 * If the upper level VM system knows about any page
813		 * references, we activate the page.  We also set the
814		 * "activation count" higher than normal so that we will less
815		 * likely place pages back onto the inactive queue again.
816		 */
817		if ((m->flags & PG_REFERENCED) != 0) {
818			vm_page_flag_clear(m, PG_REFERENCED);
819			actcount = pmap_ts_referenced(m);
820			vm_page_activate(m);
821			VM_OBJECT_UNLOCK(object);
822			m->act_count += (actcount + ACT_ADVANCE + 1);
823			continue;
824		}
825
826		/*
827		 * If the upper level VM system doesn't know anything about
828		 * the page being dirty, we have to check for it again.  As
829		 * far as the VM code knows, any partially dirty pages are
830		 * fully dirty.
831		 */
832		if (m->dirty == 0 && !pmap_is_modified(m)) {
833			/*
834			 * Avoid a race condition: Unless write access is
835			 * removed from the page, another processor could
836			 * modify it before all access is removed by the call
837			 * to vm_page_cache() below.  If vm_page_cache() finds
838			 * that the page has been modified when it removes all
839			 * access, it panics because it cannot cache dirty
840			 * pages.  In principle, we could eliminate just write
841			 * access here rather than all access.  In the expected
842			 * case, when there are no last instant modifications
843			 * to the page, removing all access will be cheaper
844			 * overall.
845			 */
846			if ((m->flags & PG_WRITEABLE) != 0)
847				pmap_remove_all(m);
848		} else {
849			vm_page_dirty(m);
850		}
851
852		if (m->valid == 0) {
853			/*
854			 * Invalid pages can be easily freed
855			 */
856			vm_page_free(m);
857			cnt.v_dfree++;
858			--page_shortage;
859		} else if (m->dirty == 0) {
860			/*
861			 * Clean pages can be placed onto the cache queue.
862			 * This effectively frees them.
863			 */
864			vm_page_cache(m);
865			--page_shortage;
866		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
867			/*
868			 * Dirty pages need to be paged out, but flushing
869			 * a page is extremely expensive verses freeing
870			 * a clean page.  Rather then artificially limiting
871			 * the number of pages we can flush, we instead give
872			 * dirty pages extra priority on the inactive queue
873			 * by forcing them to be cycled through the queue
874			 * twice before being flushed, after which the
875			 * (now clean) page will cycle through once more
876			 * before being freed.  This significantly extends
877			 * the thrash point for a heavily loaded machine.
878			 */
879			vm_page_flag_set(m, PG_WINATCFLS);
880			vm_pageq_requeue(m);
881		} else if (maxlaunder > 0) {
882			/*
883			 * We always want to try to flush some dirty pages if
884			 * we encounter them, to keep the system stable.
885			 * Normally this number is small, but under extreme
886			 * pressure where there are insufficient clean pages
887			 * on the inactive queue, we may have to go all out.
888			 */
889			int swap_pageouts_ok, vfslocked = 0;
890			struct vnode *vp = NULL;
891			struct mount *mp = NULL;
892
893			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
894				swap_pageouts_ok = 1;
895			} else {
896				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
897				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
898				vm_page_count_min());
899
900			}
901
902			/*
903			 * We don't bother paging objects that are "dead".
904			 * Those objects are in a "rundown" state.
905			 */
906			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
907				VM_OBJECT_UNLOCK(object);
908				vm_pageq_requeue(m);
909				continue;
910			}
911
912			/*
913			 * Following operations may unlock
914			 * vm_page_queue_mtx, invalidating the 'next'
915			 * pointer.  To prevent an inordinate number
916			 * of restarts we use our marker to remember
917			 * our place.
918			 *
919			 */
920			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
921					   m, &marker, pageq);
922			/*
923			 * The object is already known NOT to be dead.   It
924			 * is possible for the vget() to block the whole
925			 * pageout daemon, but the new low-memory handling
926			 * code should prevent it.
927			 *
928			 * The previous code skipped locked vnodes and, worse,
929			 * reordered pages in the queue.  This results in
930			 * completely non-deterministic operation and, on a
931			 * busy system, can lead to extremely non-optimal
932			 * pageouts.  For example, it can cause clean pages
933			 * to be freed and dirty pages to be moved to the end
934			 * of the queue.  Since dirty pages are also moved to
935			 * the end of the queue once-cleaned, this gives
936			 * way too large a weighting to defering the freeing
937			 * of dirty pages.
938			 *
939			 * We can't wait forever for the vnode lock, we might
940			 * deadlock due to a vn_read() getting stuck in
941			 * vm_wait while holding this vnode.  We skip the
942			 * vnode if we can't get it in a reasonable amount
943			 * of time.
944			 */
945			if (object->type == OBJT_VNODE) {
946				vp = object->handle;
947				if (vp->v_type == VREG &&
948				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
949					KASSERT(mp == NULL,
950					    ("vm_pageout_scan: mp != NULL"));
951					++pageout_lock_miss;
952					if (object->flags & OBJ_MIGHTBEDIRTY)
953						vnodes_skipped++;
954					goto unlock_and_continue;
955				}
956				vm_page_unlock_queues();
957				vm_object_reference_locked(object);
958				VM_OBJECT_UNLOCK(object);
959				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
960				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
961				    curthread)) {
962					VM_OBJECT_LOCK(object);
963					vm_page_lock_queues();
964					++pageout_lock_miss;
965					if (object->flags & OBJ_MIGHTBEDIRTY)
966						vnodes_skipped++;
967					vp = NULL;
968					goto unlock_and_continue;
969				}
970				VM_OBJECT_LOCK(object);
971				vm_page_lock_queues();
972				/*
973				 * The page might have been moved to another
974				 * queue during potential blocking in vget()
975				 * above.  The page might have been freed and
976				 * reused for another vnode.
977				 */
978				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
979				    m->object != object ||
980				    TAILQ_NEXT(m, pageq) != &marker) {
981					if (object->flags & OBJ_MIGHTBEDIRTY)
982						vnodes_skipped++;
983					goto unlock_and_continue;
984				}
985
986				/*
987				 * The page may have been busied during the
988				 * blocking in vget().  We don't move the
989				 * page back onto the end of the queue so that
990				 * statistics are more correct if we don't.
991				 */
992				if (m->busy || (m->oflags & VPO_BUSY)) {
993					goto unlock_and_continue;
994				}
995
996				/*
997				 * If the page has become held it might
998				 * be undergoing I/O, so skip it
999				 */
1000				if (m->hold_count) {
1001					vm_pageq_requeue(m);
1002					if (object->flags & OBJ_MIGHTBEDIRTY)
1003						vnodes_skipped++;
1004					goto unlock_and_continue;
1005				}
1006			}
1007
1008			/*
1009			 * If a page is dirty, then it is either being washed
1010			 * (but not yet cleaned) or it is still in the
1011			 * laundry.  If it is still in the laundry, then we
1012			 * start the cleaning operation.
1013			 *
1014			 * decrement page_shortage on success to account for
1015			 * the (future) cleaned page.  Otherwise we could wind
1016			 * up laundering or cleaning too many pages.
1017			 */
1018			if (vm_pageout_clean(m) != 0) {
1019				--page_shortage;
1020				--maxlaunder;
1021			}
1022unlock_and_continue:
1023			VM_OBJECT_UNLOCK(object);
1024			if (mp != NULL) {
1025				vm_page_unlock_queues();
1026				if (vp != NULL)
1027					vput(vp);
1028				VFS_UNLOCK_GIANT(vfslocked);
1029				vm_object_deallocate(object);
1030				vn_finished_write(mp);
1031				vm_page_lock_queues();
1032			}
1033			next = TAILQ_NEXT(&marker, pageq);
1034			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1035				     &marker, pageq);
1036			continue;
1037		}
1038		VM_OBJECT_UNLOCK(object);
1039	}
1040
1041	/*
1042	 * Compute the number of pages we want to try to move from the
1043	 * active queue to the inactive queue.
1044	 */
1045	page_shortage = vm_paging_target() +
1046		cnt.v_inactive_target - cnt.v_inactive_count;
1047	page_shortage += addl_page_shortage;
1048
1049	/*
1050	 * Scan the active queue for things we can deactivate. We nominally
1051	 * track the per-page activity counter and use it to locate
1052	 * deactivation candidates.
1053	 */
1054	pcount = cnt.v_active_count;
1055	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1056
1057	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1058
1059		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1060		    ("vm_pageout_scan: page %p isn't active", m));
1061
1062		next = TAILQ_NEXT(m, pageq);
1063		object = m->object;
1064		if ((m->flags & PG_MARKER) != 0) {
1065			m = next;
1066			continue;
1067		}
1068		if (!VM_OBJECT_TRYLOCK(object) &&
1069		    !vm_pageout_fallback_object_lock(m, &next)) {
1070			VM_OBJECT_UNLOCK(object);
1071			m = next;
1072			continue;
1073		}
1074
1075		/*
1076		 * Don't deactivate pages that are busy.
1077		 */
1078		if ((m->busy != 0) ||
1079		    (m->oflags & VPO_BUSY) ||
1080		    (m->hold_count != 0)) {
1081			VM_OBJECT_UNLOCK(object);
1082			vm_pageq_requeue(m);
1083			m = next;
1084			continue;
1085		}
1086
1087		/*
1088		 * The count for pagedaemon pages is done after checking the
1089		 * page for eligibility...
1090		 */
1091		cnt.v_pdpages++;
1092
1093		/*
1094		 * Check to see "how much" the page has been used.
1095		 */
1096		actcount = 0;
1097		if (object->ref_count != 0) {
1098			if (m->flags & PG_REFERENCED) {
1099				actcount += 1;
1100			}
1101			actcount += pmap_ts_referenced(m);
1102			if (actcount) {
1103				m->act_count += ACT_ADVANCE + actcount;
1104				if (m->act_count > ACT_MAX)
1105					m->act_count = ACT_MAX;
1106			}
1107		}
1108
1109		/*
1110		 * Since we have "tested" this bit, we need to clear it now.
1111		 */
1112		vm_page_flag_clear(m, PG_REFERENCED);
1113
1114		/*
1115		 * Only if an object is currently being used, do we use the
1116		 * page activation count stats.
1117		 */
1118		if (actcount && (object->ref_count != 0)) {
1119			vm_pageq_requeue(m);
1120		} else {
1121			m->act_count -= min(m->act_count, ACT_DECLINE);
1122			if (vm_pageout_algorithm ||
1123			    object->ref_count == 0 ||
1124			    m->act_count == 0) {
1125				page_shortage--;
1126				if (object->ref_count == 0) {
1127					pmap_remove_all(m);
1128					if (m->dirty == 0)
1129						vm_page_cache(m);
1130					else
1131						vm_page_deactivate(m);
1132				} else {
1133					vm_page_deactivate(m);
1134				}
1135			} else {
1136				vm_pageq_requeue(m);
1137			}
1138		}
1139		VM_OBJECT_UNLOCK(object);
1140		m = next;
1141	}
1142
1143	/*
1144	 * We try to maintain some *really* free pages, this allows interrupt
1145	 * code to be guaranteed space.  Since both cache and free queues
1146	 * are considered basically 'free', moving pages from cache to free
1147	 * does not effect other calculations.
1148	 */
1149	while (cnt.v_free_count < cnt.v_free_reserved) {
1150		TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE].pl, pageq) {
1151			KASSERT(m->dirty == 0,
1152			    ("Found dirty cache page %p", m));
1153			KASSERT(!pmap_page_is_mapped(m),
1154			    ("Found mapped cache page %p", m));
1155			KASSERT((m->flags & PG_UNMANAGED) == 0,
1156			    ("Found unmanaged cache page %p", m));
1157			KASSERT(m->wire_count == 0,
1158			    ("Found wired cache page %p", m));
1159			if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1160			    m->object)) {
1161				KASSERT((m->oflags & VPO_BUSY) == 0 &&
1162				    m->busy == 0, ("Found busy cache page %p",
1163				    m));
1164				vm_page_free(m);
1165				VM_OBJECT_UNLOCK(object);
1166				cnt.v_dfree++;
1167				break;
1168			}
1169		}
1170		if (m == NULL)
1171			break;
1172	}
1173	vm_page_unlock_queues();
1174#if !defined(NO_SWAPPING)
1175	/*
1176	 * Idle process swapout -- run once per second.
1177	 */
1178	if (vm_swap_idle_enabled) {
1179		static long lsec;
1180		if (time_second != lsec) {
1181			vm_req_vmdaemon(VM_SWAP_IDLE);
1182			lsec = time_second;
1183		}
1184	}
1185#endif
1186
1187	/*
1188	 * If we didn't get enough free pages, and we have skipped a vnode
1189	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1190	 * if we did not get enough free pages.
1191	 */
1192	if (vm_paging_target() > 0) {
1193		if (vnodes_skipped && vm_page_count_min())
1194			(void) speedup_syncer();
1195#if !defined(NO_SWAPPING)
1196		if (vm_swap_enabled && vm_page_count_target())
1197			vm_req_vmdaemon(VM_SWAP_NORMAL);
1198#endif
1199	}
1200
1201	/*
1202	 * If we are critically low on one of RAM or swap and low on
1203	 * the other, kill the largest process.  However, we avoid
1204	 * doing this on the first pass in order to give ourselves a
1205	 * chance to flush out dirty vnode-backed pages and to allow
1206	 * active pages to be moved to the inactive queue and reclaimed.
1207	 *
1208	 * We keep the process bigproc locked once we find it to keep anyone
1209	 * from messing with it; however, there is a possibility of
1210	 * deadlock if process B is bigproc and one of it's child processes
1211	 * attempts to propagate a signal to B while we are waiting for A's
1212	 * lock while walking this list.  To avoid this, we don't block on
1213	 * the process lock but just skip a process if it is already locked.
1214	 */
1215	if (pass != 0 &&
1216	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1217	     (swap_pager_full && vm_paging_target() > 0))) {
1218		bigproc = NULL;
1219		bigsize = 0;
1220		sx_slock(&allproc_lock);
1221		FOREACH_PROC_IN_SYSTEM(p) {
1222			int breakout;
1223
1224			if (PROC_TRYLOCK(p) == 0)
1225				continue;
1226			/*
1227			 * If this is a system or protected process, skip it.
1228			 */
1229			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1230			    (p->p_flag & P_PROTECTED) ||
1231			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1232				PROC_UNLOCK(p);
1233				continue;
1234			}
1235			/*
1236			 * If the process is in a non-running type state,
1237			 * don't touch it.  Check all the threads individually.
1238			 */
1239			PROC_SLOCK(p);
1240			breakout = 0;
1241			FOREACH_THREAD_IN_PROC(p, td) {
1242				thread_lock(td);
1243				if (!TD_ON_RUNQ(td) &&
1244				    !TD_IS_RUNNING(td) &&
1245				    !TD_IS_SLEEPING(td)) {
1246					thread_unlock(td);
1247					breakout = 1;
1248					break;
1249				}
1250				thread_unlock(td);
1251			}
1252			PROC_SUNLOCK(p);
1253			if (breakout) {
1254				PROC_UNLOCK(p);
1255				continue;
1256			}
1257			/*
1258			 * get the process size
1259			 */
1260			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1261				PROC_UNLOCK(p);
1262				continue;
1263			}
1264			size = vmspace_swap_count(p->p_vmspace);
1265			vm_map_unlock_read(&p->p_vmspace->vm_map);
1266			size += vmspace_resident_count(p->p_vmspace);
1267			/*
1268			 * if the this process is bigger than the biggest one
1269			 * remember it.
1270			 */
1271			if (size > bigsize) {
1272				if (bigproc != NULL)
1273					PROC_UNLOCK(bigproc);
1274				bigproc = p;
1275				bigsize = size;
1276			} else
1277				PROC_UNLOCK(p);
1278		}
1279		sx_sunlock(&allproc_lock);
1280		if (bigproc != NULL) {
1281			killproc(bigproc, "out of swap space");
1282			PROC_SLOCK(bigproc);
1283			sched_nice(bigproc, PRIO_MIN);
1284			PROC_SUNLOCK(bigproc);
1285			PROC_UNLOCK(bigproc);
1286			wakeup(&cnt.v_free_count);
1287		}
1288	}
1289}
1290
1291/*
1292 * This routine tries to maintain the pseudo LRU active queue,
1293 * so that during long periods of time where there is no paging,
1294 * that some statistic accumulation still occurs.  This code
1295 * helps the situation where paging just starts to occur.
1296 */
1297static void
1298vm_pageout_page_stats()
1299{
1300	vm_object_t object;
1301	vm_page_t m,next;
1302	int pcount,tpcount;		/* Number of pages to check */
1303	static int fullintervalcount = 0;
1304	int page_shortage;
1305
1306	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1307	page_shortage =
1308	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1309	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1310
1311	if (page_shortage <= 0)
1312		return;
1313
1314	pcount = cnt.v_active_count;
1315	fullintervalcount += vm_pageout_stats_interval;
1316	if (fullintervalcount < vm_pageout_full_stats_interval) {
1317		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1318		if (pcount > tpcount)
1319			pcount = tpcount;
1320	} else {
1321		fullintervalcount = 0;
1322	}
1323
1324	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1325	while ((m != NULL) && (pcount-- > 0)) {
1326		int actcount;
1327
1328		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1329		    ("vm_pageout_page_stats: page %p isn't active", m));
1330
1331		next = TAILQ_NEXT(m, pageq);
1332		object = m->object;
1333
1334		if ((m->flags & PG_MARKER) != 0) {
1335			m = next;
1336			continue;
1337		}
1338		if (!VM_OBJECT_TRYLOCK(object) &&
1339		    !vm_pageout_fallback_object_lock(m, &next)) {
1340			VM_OBJECT_UNLOCK(object);
1341			m = next;
1342			continue;
1343		}
1344
1345		/*
1346		 * Don't deactivate pages that are busy.
1347		 */
1348		if ((m->busy != 0) ||
1349		    (m->oflags & VPO_BUSY) ||
1350		    (m->hold_count != 0)) {
1351			VM_OBJECT_UNLOCK(object);
1352			vm_pageq_requeue(m);
1353			m = next;
1354			continue;
1355		}
1356
1357		actcount = 0;
1358		if (m->flags & PG_REFERENCED) {
1359			vm_page_flag_clear(m, PG_REFERENCED);
1360			actcount += 1;
1361		}
1362
1363		actcount += pmap_ts_referenced(m);
1364		if (actcount) {
1365			m->act_count += ACT_ADVANCE + actcount;
1366			if (m->act_count > ACT_MAX)
1367				m->act_count = ACT_MAX;
1368			vm_pageq_requeue(m);
1369		} else {
1370			if (m->act_count == 0) {
1371				/*
1372				 * We turn off page access, so that we have
1373				 * more accurate RSS stats.  We don't do this
1374				 * in the normal page deactivation when the
1375				 * system is loaded VM wise, because the
1376				 * cost of the large number of page protect
1377				 * operations would be higher than the value
1378				 * of doing the operation.
1379				 */
1380				pmap_remove_all(m);
1381				vm_page_deactivate(m);
1382			} else {
1383				m->act_count -= min(m->act_count, ACT_DECLINE);
1384				vm_pageq_requeue(m);
1385			}
1386		}
1387		VM_OBJECT_UNLOCK(object);
1388		m = next;
1389	}
1390}
1391
1392/*
1393 *	vm_pageout is the high level pageout daemon.
1394 */
1395static void
1396vm_pageout()
1397{
1398	int error, pass;
1399
1400	/*
1401	 * Initialize some paging parameters.
1402	 */
1403	cnt.v_interrupt_free_min = 2;
1404	if (cnt.v_page_count < 2000)
1405		vm_pageout_page_count = 8;
1406
1407	/*
1408	 * v_free_reserved needs to include enough for the largest
1409	 * swap pager structures plus enough for any pv_entry structs
1410	 * when paging.
1411	 */
1412	if (cnt.v_page_count > 1024)
1413		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1414	else
1415		cnt.v_free_min = 4;
1416	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1417	    cnt.v_interrupt_free_min;
1418	cnt.v_free_reserved = vm_pageout_page_count +
1419	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1420	cnt.v_free_severe = cnt.v_free_min / 2;
1421	cnt.v_free_min += cnt.v_free_reserved;
1422	cnt.v_free_severe += cnt.v_free_reserved;
1423
1424	/*
1425	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1426	 * that these are more a measure of the VM cache queue hysteresis
1427	 * then the VM free queue.  Specifically, v_free_target is the
1428	 * high water mark (free+cache pages).
1429	 *
1430	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1431	 * low water mark, while v_free_min is the stop.  v_cache_min must
1432	 * be big enough to handle memory needs while the pageout daemon
1433	 * is signalled and run to free more pages.
1434	 */
1435	if (cnt.v_free_count > 6144)
1436		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1437	else
1438		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1439
1440	if (cnt.v_free_count > 2048) {
1441		cnt.v_cache_min = cnt.v_free_target;
1442		cnt.v_cache_max = 2 * cnt.v_cache_min;
1443		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1444	} else {
1445		cnt.v_cache_min = 0;
1446		cnt.v_cache_max = 0;
1447		cnt.v_inactive_target = cnt.v_free_count / 4;
1448	}
1449	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1450		cnt.v_inactive_target = cnt.v_free_count / 3;
1451
1452	/* XXX does not really belong here */
1453	if (vm_page_max_wired == 0)
1454		vm_page_max_wired = cnt.v_free_count / 3;
1455
1456	if (vm_pageout_stats_max == 0)
1457		vm_pageout_stats_max = cnt.v_free_target;
1458
1459	/*
1460	 * Set interval in seconds for stats scan.
1461	 */
1462	if (vm_pageout_stats_interval == 0)
1463		vm_pageout_stats_interval = 5;
1464	if (vm_pageout_full_stats_interval == 0)
1465		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1466
1467	swap_pager_swap_init();
1468	pass = 0;
1469	/*
1470	 * The pageout daemon is never done, so loop forever.
1471	 */
1472	while (TRUE) {
1473		/*
1474		 * If we have enough free memory, wakeup waiters.  Do
1475		 * not clear vm_pages_needed until we reach our target,
1476		 * otherwise we may be woken up over and over again and
1477		 * waste a lot of cpu.
1478		 */
1479		mtx_lock(&vm_page_queue_free_mtx);
1480		if (vm_pages_needed && !vm_page_count_min()) {
1481			if (!vm_paging_needed())
1482				vm_pages_needed = 0;
1483			wakeup(&cnt.v_free_count);
1484		}
1485		if (vm_pages_needed) {
1486			/*
1487			 * Still not done, take a second pass without waiting
1488			 * (unlimited dirty cleaning), otherwise sleep a bit
1489			 * and try again.
1490			 */
1491			++pass;
1492			if (pass > 1)
1493				msleep(&vm_pages_needed,
1494				    &vm_page_queue_free_mtx, PVM, "psleep",
1495				    hz / 2);
1496		} else {
1497			/*
1498			 * Good enough, sleep & handle stats.  Prime the pass
1499			 * for the next run.
1500			 */
1501			if (pass > 1)
1502				pass = 1;
1503			else
1504				pass = 0;
1505			error = msleep(&vm_pages_needed,
1506			    &vm_page_queue_free_mtx, PVM, "psleep",
1507			    vm_pageout_stats_interval * hz);
1508			if (error && !vm_pages_needed) {
1509				mtx_unlock(&vm_page_queue_free_mtx);
1510				pass = 0;
1511				vm_page_lock_queues();
1512				vm_pageout_page_stats();
1513				vm_page_unlock_queues();
1514				continue;
1515			}
1516		}
1517		if (vm_pages_needed)
1518			cnt.v_pdwakeups++;
1519		mtx_unlock(&vm_page_queue_free_mtx);
1520		vm_pageout_scan(pass);
1521	}
1522}
1523
1524/*
1525 * Unless the free page queue lock is held by the caller, this function
1526 * should be regarded as advisory.  Specifically, the caller should
1527 * not msleep() on &cnt.v_free_count following this function unless
1528 * the free page queue lock is held until the msleep() is performed.
1529 */
1530void
1531pagedaemon_wakeup()
1532{
1533
1534	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1535		vm_pages_needed = 1;
1536		wakeup(&vm_pages_needed);
1537	}
1538}
1539
1540#if !defined(NO_SWAPPING)
1541static void
1542vm_req_vmdaemon(int req)
1543{
1544	static int lastrun = 0;
1545
1546	mtx_lock(&vm_daemon_mtx);
1547	vm_pageout_req_swapout |= req;
1548	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1549		wakeup(&vm_daemon_needed);
1550		lastrun = ticks;
1551	}
1552	mtx_unlock(&vm_daemon_mtx);
1553}
1554
1555static void
1556vm_daemon()
1557{
1558	struct rlimit rsslim;
1559	struct proc *p;
1560	struct thread *td;
1561	int breakout, swapout_flags;
1562
1563	while (TRUE) {
1564		mtx_lock(&vm_daemon_mtx);
1565		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1566		swapout_flags = vm_pageout_req_swapout;
1567		vm_pageout_req_swapout = 0;
1568		mtx_unlock(&vm_daemon_mtx);
1569		if (swapout_flags)
1570			swapout_procs(swapout_flags);
1571
1572		/*
1573		 * scan the processes for exceeding their rlimits or if
1574		 * process is swapped out -- deactivate pages
1575		 */
1576		sx_slock(&allproc_lock);
1577		FOREACH_PROC_IN_SYSTEM(p) {
1578			vm_pindex_t limit, size;
1579
1580			/*
1581			 * if this is a system process or if we have already
1582			 * looked at this process, skip it.
1583			 */
1584			PROC_LOCK(p);
1585			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1586				PROC_UNLOCK(p);
1587				continue;
1588			}
1589			/*
1590			 * if the process is in a non-running type state,
1591			 * don't touch it.
1592			 */
1593			PROC_SLOCK(p);
1594			breakout = 0;
1595			FOREACH_THREAD_IN_PROC(p, td) {
1596				thread_lock(td);
1597				if (!TD_ON_RUNQ(td) &&
1598				    !TD_IS_RUNNING(td) &&
1599				    !TD_IS_SLEEPING(td)) {
1600					thread_unlock(td);
1601					breakout = 1;
1602					break;
1603				}
1604				thread_unlock(td);
1605			}
1606			PROC_SUNLOCK(p);
1607			if (breakout) {
1608				PROC_UNLOCK(p);
1609				continue;
1610			}
1611			/*
1612			 * get a limit
1613			 */
1614			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1615			limit = OFF_TO_IDX(
1616			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1617
1618			/*
1619			 * let processes that are swapped out really be
1620			 * swapped out set the limit to nothing (will force a
1621			 * swap-out.)
1622			 */
1623			if ((p->p_flag & P_INMEM) == 0)
1624				limit = 0;	/* XXX */
1625			PROC_UNLOCK(p);
1626
1627			size = vmspace_resident_count(p->p_vmspace);
1628			if (limit >= 0 && size >= limit) {
1629				vm_pageout_map_deactivate_pages(
1630				    &p->p_vmspace->vm_map, limit);
1631			}
1632		}
1633		sx_sunlock(&allproc_lock);
1634	}
1635}
1636#endif			/* !defined(NO_SWAPPING) */
1637