vm_pageout.c revision 170816
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 170816 2007-06-16 04:57:06Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/resourcevar.h>
89#include <sys/sched.h>
90#include <sys/signalvar.h>
91#include <sys/vnode.h>
92#include <sys/vmmeter.h>
93#include <sys/sx.h>
94#include <sys/sysctl.h>
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_pageout.h>
102#include <vm/vm_pager.h>
103#include <vm/swap_pager.h>
104#include <vm/vm_extern.h>
105#include <vm/uma.h>
106
107#include <machine/mutex.h>
108
109/*
110 * System initialization
111 */
112
113/* the kernel process "vm_pageout"*/
114static void vm_pageout(void);
115static int vm_pageout_clean(vm_page_t);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179#if defined(NO_SWAPPING)
180SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181	CTLFLAG_RD, &vm_swap_enabled, 0, "");
182SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
184#else
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#endif
190
191SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
192	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
193
194SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
195	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
196
197static int pageout_lock_miss;
198SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
199	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
200
201#define VM_PAGEOUT_PAGE_COUNT 16
202int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
203
204int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
205
206#if !defined(NO_SWAPPING)
207static void vm_pageout_map_deactivate_pages(vm_map_t, long);
208static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
209static void vm_req_vmdaemon(void);
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_fallback_object_lock:
215 *
216 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
217 * known to have failed and page queue must be either PQ_ACTIVE or
218 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
219 * while locking the vm object.  Use marker page to detect page queue
220 * changes and maintain notion of next page on page queue.  Return
221 * TRUE if no changes were detected, FALSE otherwise.  vm object is
222 * locked on return.
223 *
224 * This function depends on both the lock portion of struct vm_object
225 * and normal struct vm_page being type stable.
226 */
227static boolean_t
228vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
229{
230	struct vm_page marker;
231	boolean_t unchanged;
232	u_short queue;
233	vm_object_t object;
234
235	/*
236	 * Initialize our marker
237	 */
238	bzero(&marker, sizeof(marker));
239	marker.flags = PG_FICTITIOUS | PG_MARKER;
240	marker.oflags = VPO_BUSY;
241	marker.queue = m->queue;
242	marker.wire_count = 1;
243
244	queue = m->queue;
245	object = m->object;
246
247	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
248			   m, &marker, pageq);
249	vm_page_unlock_queues();
250	VM_OBJECT_LOCK(object);
251	vm_page_lock_queues();
252
253	/* Page queue might have changed. */
254	*next = TAILQ_NEXT(&marker, pageq);
255	unchanged = (m->queue == queue &&
256		     m->object == object &&
257		     &marker == TAILQ_NEXT(m, pageq));
258	TAILQ_REMOVE(&vm_page_queues[queue].pl,
259		     &marker, pageq);
260	return (unchanged);
261}
262
263/*
264 * vm_pageout_clean:
265 *
266 * Clean the page and remove it from the laundry.
267 *
268 * We set the busy bit to cause potential page faults on this page to
269 * block.  Note the careful timing, however, the busy bit isn't set till
270 * late and we cannot do anything that will mess with the page.
271 */
272static int
273vm_pageout_clean(m)
274	vm_page_t m;
275{
276	vm_object_t object;
277	vm_page_t mc[2*vm_pageout_page_count];
278	int pageout_count;
279	int ib, is, page_base;
280	vm_pindex_t pindex = m->pindex;
281
282	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
283	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
284
285	/*
286	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
287	 * with the new swapper, but we could have serious problems paging
288	 * out other object types if there is insufficient memory.
289	 *
290	 * Unfortunately, checking free memory here is far too late, so the
291	 * check has been moved up a procedural level.
292	 */
293
294	/*
295	 * Don't mess with the page if it's busy, held, or special
296	 */
297	if ((m->hold_count != 0) ||
298	    ((m->busy != 0) || (m->oflags & VPO_BUSY) ||
299	     (m->flags & PG_UNMANAGED))) {
300		return 0;
301	}
302
303	mc[vm_pageout_page_count] = m;
304	pageout_count = 1;
305	page_base = vm_pageout_page_count;
306	ib = 1;
307	is = 1;
308
309	/*
310	 * Scan object for clusterable pages.
311	 *
312	 * We can cluster ONLY if: ->> the page is NOT
313	 * clean, wired, busy, held, or mapped into a
314	 * buffer, and one of the following:
315	 * 1) The page is inactive, or a seldom used
316	 *    active page.
317	 * -or-
318	 * 2) we force the issue.
319	 *
320	 * During heavy mmap/modification loads the pageout
321	 * daemon can really fragment the underlying file
322	 * due to flushing pages out of order and not trying
323	 * align the clusters (which leave sporatic out-of-order
324	 * holes).  To solve this problem we do the reverse scan
325	 * first and attempt to align our cluster, then do a
326	 * forward scan if room remains.
327	 */
328	object = m->object;
329more:
330	while (ib && pageout_count < vm_pageout_page_count) {
331		vm_page_t p;
332
333		if (ib > pindex) {
334			ib = 0;
335			break;
336		}
337
338		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
339			ib = 0;
340			break;
341		}
342		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
343		    (p->oflags & VPO_BUSY) || p->busy ||
344		    (p->flags & PG_UNMANAGED)) {
345			ib = 0;
346			break;
347		}
348		vm_page_test_dirty(p);
349		if ((p->dirty & p->valid) == 0 ||
350		    p->queue != PQ_INACTIVE ||
351		    p->wire_count != 0 ||	/* may be held by buf cache */
352		    p->hold_count != 0) {	/* may be undergoing I/O */
353			ib = 0;
354			break;
355		}
356		mc[--page_base] = p;
357		++pageout_count;
358		++ib;
359		/*
360		 * alignment boundry, stop here and switch directions.  Do
361		 * not clear ib.
362		 */
363		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
364			break;
365	}
366
367	while (pageout_count < vm_pageout_page_count &&
368	    pindex + is < object->size) {
369		vm_page_t p;
370
371		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
372			break;
373		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
374		    (p->oflags & VPO_BUSY) || p->busy ||
375		    (p->flags & PG_UNMANAGED)) {
376			break;
377		}
378		vm_page_test_dirty(p);
379		if ((p->dirty & p->valid) == 0 ||
380		    p->queue != PQ_INACTIVE ||
381		    p->wire_count != 0 ||	/* may be held by buf cache */
382		    p->hold_count != 0) {	/* may be undergoing I/O */
383			break;
384		}
385		mc[page_base + pageout_count] = p;
386		++pageout_count;
387		++is;
388	}
389
390	/*
391	 * If we exhausted our forward scan, continue with the reverse scan
392	 * when possible, even past a page boundry.  This catches boundry
393	 * conditions.
394	 */
395	if (ib && pageout_count < vm_pageout_page_count)
396		goto more;
397
398	/*
399	 * we allow reads during pageouts...
400	 */
401	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402}
403
404/*
405 * vm_pageout_flush() - launder the given pages
406 *
407 *	The given pages are laundered.  Note that we setup for the start of
408 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
409 *	reference count all in here rather then in the parent.  If we want
410 *	the parent to do more sophisticated things we may have to change
411 *	the ordering.
412 */
413int
414vm_pageout_flush(vm_page_t *mc, int count, int flags)
415{
416	vm_object_t object = mc[0]->object;
417	int pageout_status[count];
418	int numpagedout = 0;
419	int i;
420
421	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423	/*
424	 * Initiate I/O.  Bump the vm_page_t->busy counter and
425	 * mark the pages read-only.
426	 *
427	 * We do not have to fixup the clean/dirty bits here... we can
428	 * allow the pager to do it after the I/O completes.
429	 *
430	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
431	 * edge case with file fragments.
432	 */
433	for (i = 0; i < count; i++) {
434		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
436			mc[i], i, count));
437		vm_page_io_start(mc[i]);
438		pmap_remove_write(mc[i]);
439	}
440	vm_page_unlock_queues();
441	vm_object_pip_add(object, count);
442
443	vm_pager_put_pages(object, mc, count, flags, pageout_status);
444
445	vm_page_lock_queues();
446	for (i = 0; i < count; i++) {
447		vm_page_t mt = mc[i];
448
449		KASSERT((mt->flags & PG_WRITEABLE) == 0,
450		    ("vm_pageout_flush: page %p is not write protected", mt));
451		switch (pageout_status[i]) {
452		case VM_PAGER_OK:
453		case VM_PAGER_PEND:
454			numpagedout++;
455			break;
456		case VM_PAGER_BAD:
457			/*
458			 * Page outside of range of object. Right now we
459			 * essentially lose the changes by pretending it
460			 * worked.
461			 */
462			pmap_clear_modify(mt);
463			vm_page_undirty(mt);
464			break;
465		case VM_PAGER_ERROR:
466		case VM_PAGER_FAIL:
467			/*
468			 * If page couldn't be paged out, then reactivate the
469			 * page so it doesn't clog the inactive list.  (We
470			 * will try paging out it again later).
471			 */
472			vm_page_activate(mt);
473			break;
474		case VM_PAGER_AGAIN:
475			break;
476		}
477
478		/*
479		 * If the operation is still going, leave the page busy to
480		 * block all other accesses. Also, leave the paging in
481		 * progress indicator set so that we don't attempt an object
482		 * collapse.
483		 */
484		if (pageout_status[i] != VM_PAGER_PEND) {
485			vm_object_pip_wakeup(object);
486			vm_page_io_finish(mt);
487			if (vm_page_count_severe())
488				vm_page_try_to_cache(mt);
489		}
490	}
491	return numpagedout;
492}
493
494#if !defined(NO_SWAPPING)
495/*
496 *	vm_pageout_object_deactivate_pages
497 *
498 *	deactivate enough pages to satisfy the inactive target
499 *	requirements or if vm_page_proc_limit is set, then
500 *	deactivate all of the pages in the object and its
501 *	backing_objects.
502 *
503 *	The object and map must be locked.
504 */
505static void
506vm_pageout_object_deactivate_pages(pmap, first_object, desired)
507	pmap_t pmap;
508	vm_object_t first_object;
509	long desired;
510{
511	vm_object_t backing_object, object;
512	vm_page_t p, next;
513	int actcount, rcount, remove_mode;
514
515	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
516	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
517		return;
518	for (object = first_object;; object = backing_object) {
519		if (pmap_resident_count(pmap) <= desired)
520			goto unlock_return;
521		if (object->paging_in_progress)
522			goto unlock_return;
523
524		remove_mode = 0;
525		if (object->shadow_count > 1)
526			remove_mode = 1;
527		/*
528		 * scan the objects entire memory queue
529		 */
530		rcount = object->resident_page_count;
531		p = TAILQ_FIRST(&object->memq);
532		vm_page_lock_queues();
533		while (p && (rcount-- > 0)) {
534			if (pmap_resident_count(pmap) <= desired) {
535				vm_page_unlock_queues();
536				goto unlock_return;
537			}
538			next = TAILQ_NEXT(p, listq);
539			cnt.v_pdpages++;
540			if (p->wire_count != 0 ||
541			    p->hold_count != 0 ||
542			    p->busy != 0 ||
543			    (p->oflags & VPO_BUSY) ||
544			    (p->flags & PG_UNMANAGED) ||
545			    !pmap_page_exists_quick(pmap, p)) {
546				p = next;
547				continue;
548			}
549			actcount = pmap_ts_referenced(p);
550			if (actcount) {
551				vm_page_flag_set(p, PG_REFERENCED);
552			} else if (p->flags & PG_REFERENCED) {
553				actcount = 1;
554			}
555			if ((p->queue != PQ_ACTIVE) &&
556				(p->flags & PG_REFERENCED)) {
557				vm_page_activate(p);
558				p->act_count += actcount;
559				vm_page_flag_clear(p, PG_REFERENCED);
560			} else if (p->queue == PQ_ACTIVE) {
561				if ((p->flags & PG_REFERENCED) == 0) {
562					p->act_count -= min(p->act_count, ACT_DECLINE);
563					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
564						pmap_remove_all(p);
565						vm_page_deactivate(p);
566					} else {
567						vm_pageq_requeue(p);
568					}
569				} else {
570					vm_page_activate(p);
571					vm_page_flag_clear(p, PG_REFERENCED);
572					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
573						p->act_count += ACT_ADVANCE;
574					vm_pageq_requeue(p);
575				}
576			} else if (p->queue == PQ_INACTIVE) {
577				pmap_remove_all(p);
578			}
579			p = next;
580		}
581		vm_page_unlock_queues();
582		if ((backing_object = object->backing_object) == NULL)
583			goto unlock_return;
584		VM_OBJECT_LOCK(backing_object);
585		if (object != first_object)
586			VM_OBJECT_UNLOCK(object);
587	}
588unlock_return:
589	if (object != first_object)
590		VM_OBJECT_UNLOCK(object);
591}
592
593/*
594 * deactivate some number of pages in a map, try to do it fairly, but
595 * that is really hard to do.
596 */
597static void
598vm_pageout_map_deactivate_pages(map, desired)
599	vm_map_t map;
600	long desired;
601{
602	vm_map_entry_t tmpe;
603	vm_object_t obj, bigobj;
604	int nothingwired;
605
606	if (!vm_map_trylock(map))
607		return;
608
609	bigobj = NULL;
610	nothingwired = TRUE;
611
612	/*
613	 * first, search out the biggest object, and try to free pages from
614	 * that.
615	 */
616	tmpe = map->header.next;
617	while (tmpe != &map->header) {
618		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
619			obj = tmpe->object.vm_object;
620			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
621				if (obj->shadow_count <= 1 &&
622				    (bigobj == NULL ||
623				     bigobj->resident_page_count < obj->resident_page_count)) {
624					if (bigobj != NULL)
625						VM_OBJECT_UNLOCK(bigobj);
626					bigobj = obj;
627				} else
628					VM_OBJECT_UNLOCK(obj);
629			}
630		}
631		if (tmpe->wired_count > 0)
632			nothingwired = FALSE;
633		tmpe = tmpe->next;
634	}
635
636	if (bigobj != NULL) {
637		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
638		VM_OBJECT_UNLOCK(bigobj);
639	}
640	/*
641	 * Next, hunt around for other pages to deactivate.  We actually
642	 * do this search sort of wrong -- .text first is not the best idea.
643	 */
644	tmpe = map->header.next;
645	while (tmpe != &map->header) {
646		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
647			break;
648		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
649			obj = tmpe->object.vm_object;
650			if (obj != NULL) {
651				VM_OBJECT_LOCK(obj);
652				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
653				VM_OBJECT_UNLOCK(obj);
654			}
655		}
656		tmpe = tmpe->next;
657	}
658
659	/*
660	 * Remove all mappings if a process is swapped out, this will free page
661	 * table pages.
662	 */
663	if (desired == 0 && nothingwired) {
664		pmap_remove(vm_map_pmap(map), vm_map_min(map),
665		    vm_map_max(map));
666	}
667	vm_map_unlock(map);
668}
669#endif		/* !defined(NO_SWAPPING) */
670
671/*
672 *	vm_pageout_scan does the dirty work for the pageout daemon.
673 */
674static void
675vm_pageout_scan(int pass)
676{
677	vm_page_t m, next;
678	struct vm_page marker;
679	int page_shortage, maxscan, pcount;
680	int addl_page_shortage, addl_page_shortage_init;
681	struct proc *p, *bigproc;
682	struct thread *td;
683	vm_offset_t size, bigsize;
684	vm_object_t object;
685	int actcount;
686	int vnodes_skipped = 0;
687	int maxlaunder;
688
689	mtx_lock(&Giant);
690	/*
691	 * Decrease registered cache sizes.
692	 */
693	EVENTHANDLER_INVOKE(vm_lowmem, 0);
694	/*
695	 * We do this explicitly after the caches have been drained above.
696	 */
697	uma_reclaim();
698
699	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
700
701	/*
702	 * Calculate the number of pages we want to either free or move
703	 * to the cache.
704	 */
705	page_shortage = vm_paging_target() + addl_page_shortage_init;
706
707	/*
708	 * Initialize our marker
709	 */
710	bzero(&marker, sizeof(marker));
711	marker.flags = PG_FICTITIOUS | PG_MARKER;
712	marker.oflags = VPO_BUSY;
713	marker.queue = PQ_INACTIVE;
714	marker.wire_count = 1;
715
716	/*
717	 * Start scanning the inactive queue for pages we can move to the
718	 * cache or free.  The scan will stop when the target is reached or
719	 * we have scanned the entire inactive queue.  Note that m->act_count
720	 * is not used to form decisions for the inactive queue, only for the
721	 * active queue.
722	 *
723	 * maxlaunder limits the number of dirty pages we flush per scan.
724	 * For most systems a smaller value (16 or 32) is more robust under
725	 * extreme memory and disk pressure because any unnecessary writes
726	 * to disk can result in extreme performance degredation.  However,
727	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
728	 * used) will die horribly with limited laundering.  If the pageout
729	 * daemon cannot clean enough pages in the first pass, we let it go
730	 * all out in succeeding passes.
731	 */
732	if ((maxlaunder = vm_max_launder) <= 1)
733		maxlaunder = 1;
734	if (pass)
735		maxlaunder = 10000;
736	vm_page_lock_queues();
737rescan0:
738	addl_page_shortage = addl_page_shortage_init;
739	maxscan = cnt.v_inactive_count;
740
741	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
742	     m != NULL && maxscan-- > 0 && page_shortage > 0;
743	     m = next) {
744
745		cnt.v_pdpages++;
746
747		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
748			goto rescan0;
749		}
750
751		next = TAILQ_NEXT(m, pageq);
752		object = m->object;
753
754		/*
755		 * skip marker pages
756		 */
757		if (m->flags & PG_MARKER)
758			continue;
759
760		/*
761		 * A held page may be undergoing I/O, so skip it.
762		 */
763		if (m->hold_count) {
764			vm_pageq_requeue(m);
765			addl_page_shortage++;
766			continue;
767		}
768		/*
769		 * Don't mess with busy pages, keep in the front of the
770		 * queue, most likely are being paged out.
771		 */
772		if (!VM_OBJECT_TRYLOCK(object) &&
773		    (!vm_pageout_fallback_object_lock(m, &next) ||
774		     m->hold_count != 0)) {
775			VM_OBJECT_UNLOCK(object);
776			addl_page_shortage++;
777			continue;
778		}
779		if (m->busy || (m->oflags & VPO_BUSY)) {
780			VM_OBJECT_UNLOCK(object);
781			addl_page_shortage++;
782			continue;
783		}
784
785		/*
786		 * If the object is not being used, we ignore previous
787		 * references.
788		 */
789		if (object->ref_count == 0) {
790			vm_page_flag_clear(m, PG_REFERENCED);
791			pmap_clear_reference(m);
792
793		/*
794		 * Otherwise, if the page has been referenced while in the
795		 * inactive queue, we bump the "activation count" upwards,
796		 * making it less likely that the page will be added back to
797		 * the inactive queue prematurely again.  Here we check the
798		 * page tables (or emulated bits, if any), given the upper
799		 * level VM system not knowing anything about existing
800		 * references.
801		 */
802		} else if (((m->flags & PG_REFERENCED) == 0) &&
803			(actcount = pmap_ts_referenced(m))) {
804			vm_page_activate(m);
805			VM_OBJECT_UNLOCK(object);
806			m->act_count += (actcount + ACT_ADVANCE);
807			continue;
808		}
809
810		/*
811		 * If the upper level VM system knows about any page
812		 * references, we activate the page.  We also set the
813		 * "activation count" higher than normal so that we will less
814		 * likely place pages back onto the inactive queue again.
815		 */
816		if ((m->flags & PG_REFERENCED) != 0) {
817			vm_page_flag_clear(m, PG_REFERENCED);
818			actcount = pmap_ts_referenced(m);
819			vm_page_activate(m);
820			VM_OBJECT_UNLOCK(object);
821			m->act_count += (actcount + ACT_ADVANCE + 1);
822			continue;
823		}
824
825		/*
826		 * If the upper level VM system doesn't know anything about
827		 * the page being dirty, we have to check for it again.  As
828		 * far as the VM code knows, any partially dirty pages are
829		 * fully dirty.
830		 */
831		if (m->dirty == 0 && !pmap_is_modified(m)) {
832			/*
833			 * Avoid a race condition: Unless write access is
834			 * removed from the page, another processor could
835			 * modify it before all access is removed by the call
836			 * to vm_page_cache() below.  If vm_page_cache() finds
837			 * that the page has been modified when it removes all
838			 * access, it panics because it cannot cache dirty
839			 * pages.  In principle, we could eliminate just write
840			 * access here rather than all access.  In the expected
841			 * case, when there are no last instant modifications
842			 * to the page, removing all access will be cheaper
843			 * overall.
844			 */
845			if ((m->flags & PG_WRITEABLE) != 0)
846				pmap_remove_all(m);
847		} else {
848			vm_page_dirty(m);
849		}
850
851		if (m->valid == 0) {
852			/*
853			 * Invalid pages can be easily freed
854			 */
855			vm_page_free(m);
856			cnt.v_dfree++;
857			--page_shortage;
858		} else if (m->dirty == 0) {
859			/*
860			 * Clean pages can be placed onto the cache queue.
861			 * This effectively frees them.
862			 */
863			vm_page_cache(m);
864			--page_shortage;
865		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
866			/*
867			 * Dirty pages need to be paged out, but flushing
868			 * a page is extremely expensive verses freeing
869			 * a clean page.  Rather then artificially limiting
870			 * the number of pages we can flush, we instead give
871			 * dirty pages extra priority on the inactive queue
872			 * by forcing them to be cycled through the queue
873			 * twice before being flushed, after which the
874			 * (now clean) page will cycle through once more
875			 * before being freed.  This significantly extends
876			 * the thrash point for a heavily loaded machine.
877			 */
878			vm_page_flag_set(m, PG_WINATCFLS);
879			vm_pageq_requeue(m);
880		} else if (maxlaunder > 0) {
881			/*
882			 * We always want to try to flush some dirty pages if
883			 * we encounter them, to keep the system stable.
884			 * Normally this number is small, but under extreme
885			 * pressure where there are insufficient clean pages
886			 * on the inactive queue, we may have to go all out.
887			 */
888			int swap_pageouts_ok;
889			struct vnode *vp = NULL;
890			struct mount *mp;
891
892			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
893				swap_pageouts_ok = 1;
894			} else {
895				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
896				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
897				vm_page_count_min());
898
899			}
900
901			/*
902			 * We don't bother paging objects that are "dead".
903			 * Those objects are in a "rundown" state.
904			 */
905			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
906				VM_OBJECT_UNLOCK(object);
907				vm_pageq_requeue(m);
908				continue;
909			}
910
911			/*
912			 * Following operations may unlock
913			 * vm_page_queue_mtx, invalidating the 'next'
914			 * pointer.  To prevent an inordinate number
915			 * of restarts we use our marker to remember
916			 * our place.
917			 *
918			 */
919			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
920					   m, &marker, pageq);
921			/*
922			 * The object is already known NOT to be dead.   It
923			 * is possible for the vget() to block the whole
924			 * pageout daemon, but the new low-memory handling
925			 * code should prevent it.
926			 *
927			 * The previous code skipped locked vnodes and, worse,
928			 * reordered pages in the queue.  This results in
929			 * completely non-deterministic operation and, on a
930			 * busy system, can lead to extremely non-optimal
931			 * pageouts.  For example, it can cause clean pages
932			 * to be freed and dirty pages to be moved to the end
933			 * of the queue.  Since dirty pages are also moved to
934			 * the end of the queue once-cleaned, this gives
935			 * way too large a weighting to defering the freeing
936			 * of dirty pages.
937			 *
938			 * We can't wait forever for the vnode lock, we might
939			 * deadlock due to a vn_read() getting stuck in
940			 * vm_wait while holding this vnode.  We skip the
941			 * vnode if we can't get it in a reasonable amount
942			 * of time.
943			 */
944			if (object->type == OBJT_VNODE) {
945				vp = object->handle;
946				mp = NULL;
947				if (vp->v_type == VREG &&
948				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
949					++pageout_lock_miss;
950					if (object->flags & OBJ_MIGHTBEDIRTY)
951						vnodes_skipped++;
952					vp = NULL;
953					goto unlock_and_continue;
954				}
955				vm_page_unlock_queues();
956				VI_LOCK(vp);
957				VM_OBJECT_UNLOCK(object);
958				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
959				    LK_TIMELOCK, curthread)) {
960					VM_OBJECT_LOCK(object);
961					vm_page_lock_queues();
962					++pageout_lock_miss;
963					vn_finished_write(mp);
964					if (object->flags & OBJ_MIGHTBEDIRTY)
965						vnodes_skipped++;
966					vp = NULL;
967					goto unlock_and_continue;
968				}
969				VM_OBJECT_LOCK(object);
970				vm_page_lock_queues();
971				/*
972				 * The page might have been moved to another
973				 * queue during potential blocking in vget()
974				 * above.  The page might have been freed and
975				 * reused for another vnode.  The object might
976				 * have been reused for another vnode.
977				 */
978				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
979				    m->object != object ||
980				    object->handle != vp ||
981				    TAILQ_NEXT(m, pageq) != &marker) {
982					if (object->flags & OBJ_MIGHTBEDIRTY)
983						vnodes_skipped++;
984					goto unlock_and_continue;
985				}
986
987				/*
988				 * The page may have been busied during the
989				 * blocking in vput();  We don't move the
990				 * page back onto the end of the queue so that
991				 * statistics are more correct if we don't.
992				 */
993				if (m->busy || (m->oflags & VPO_BUSY)) {
994					goto unlock_and_continue;
995				}
996
997				/*
998				 * If the page has become held it might
999				 * be undergoing I/O, so skip it
1000				 */
1001				if (m->hold_count) {
1002					vm_pageq_requeue(m);
1003					if (object->flags & OBJ_MIGHTBEDIRTY)
1004						vnodes_skipped++;
1005					goto unlock_and_continue;
1006				}
1007			}
1008
1009			/*
1010			 * If a page is dirty, then it is either being washed
1011			 * (but not yet cleaned) or it is still in the
1012			 * laundry.  If it is still in the laundry, then we
1013			 * start the cleaning operation.
1014			 *
1015			 * decrement page_shortage on success to account for
1016			 * the (future) cleaned page.  Otherwise we could wind
1017			 * up laundering or cleaning too many pages.
1018			 */
1019			if (vm_pageout_clean(m) != 0) {
1020				--page_shortage;
1021				--maxlaunder;
1022			}
1023unlock_and_continue:
1024			VM_OBJECT_UNLOCK(object);
1025			if (vp) {
1026				vm_page_unlock_queues();
1027				vput(vp);
1028				vn_finished_write(mp);
1029				vm_page_lock_queues();
1030			}
1031			next = TAILQ_NEXT(&marker, pageq);
1032			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1033				     &marker, pageq);
1034			continue;
1035		}
1036		VM_OBJECT_UNLOCK(object);
1037	}
1038
1039	/*
1040	 * Compute the number of pages we want to try to move from the
1041	 * active queue to the inactive queue.
1042	 */
1043	page_shortage = vm_paging_target() +
1044		cnt.v_inactive_target - cnt.v_inactive_count;
1045	page_shortage += addl_page_shortage;
1046
1047	/*
1048	 * Scan the active queue for things we can deactivate. We nominally
1049	 * track the per-page activity counter and use it to locate
1050	 * deactivation candidates.
1051	 */
1052	pcount = cnt.v_active_count;
1053	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1054
1055	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1056
1057		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1058		    ("vm_pageout_scan: page %p isn't active", m));
1059
1060		next = TAILQ_NEXT(m, pageq);
1061		object = m->object;
1062		if ((m->flags & PG_MARKER) != 0) {
1063			m = next;
1064			continue;
1065		}
1066		if (!VM_OBJECT_TRYLOCK(object) &&
1067		    !vm_pageout_fallback_object_lock(m, &next)) {
1068			VM_OBJECT_UNLOCK(object);
1069			m = next;
1070			continue;
1071		}
1072
1073		/*
1074		 * Don't deactivate pages that are busy.
1075		 */
1076		if ((m->busy != 0) ||
1077		    (m->oflags & VPO_BUSY) ||
1078		    (m->hold_count != 0)) {
1079			VM_OBJECT_UNLOCK(object);
1080			vm_pageq_requeue(m);
1081			m = next;
1082			continue;
1083		}
1084
1085		/*
1086		 * The count for pagedaemon pages is done after checking the
1087		 * page for eligibility...
1088		 */
1089		cnt.v_pdpages++;
1090
1091		/*
1092		 * Check to see "how much" the page has been used.
1093		 */
1094		actcount = 0;
1095		if (object->ref_count != 0) {
1096			if (m->flags & PG_REFERENCED) {
1097				actcount += 1;
1098			}
1099			actcount += pmap_ts_referenced(m);
1100			if (actcount) {
1101				m->act_count += ACT_ADVANCE + actcount;
1102				if (m->act_count > ACT_MAX)
1103					m->act_count = ACT_MAX;
1104			}
1105		}
1106
1107		/*
1108		 * Since we have "tested" this bit, we need to clear it now.
1109		 */
1110		vm_page_flag_clear(m, PG_REFERENCED);
1111
1112		/*
1113		 * Only if an object is currently being used, do we use the
1114		 * page activation count stats.
1115		 */
1116		if (actcount && (object->ref_count != 0)) {
1117			vm_pageq_requeue(m);
1118		} else {
1119			m->act_count -= min(m->act_count, ACT_DECLINE);
1120			if (vm_pageout_algorithm ||
1121			    object->ref_count == 0 ||
1122			    m->act_count == 0) {
1123				page_shortage--;
1124				if (object->ref_count == 0) {
1125					pmap_remove_all(m);
1126					if (m->dirty == 0)
1127						vm_page_cache(m);
1128					else
1129						vm_page_deactivate(m);
1130				} else {
1131					vm_page_deactivate(m);
1132				}
1133			} else {
1134				vm_pageq_requeue(m);
1135			}
1136		}
1137		VM_OBJECT_UNLOCK(object);
1138		m = next;
1139	}
1140
1141	/*
1142	 * We try to maintain some *really* free pages, this allows interrupt
1143	 * code to be guaranteed space.  Since both cache and free queues
1144	 * are considered basically 'free', moving pages from cache to free
1145	 * does not effect other calculations.
1146	 */
1147	while (cnt.v_free_count < cnt.v_free_reserved) {
1148		TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE].pl, pageq) {
1149			KASSERT(m->dirty == 0,
1150			    ("Found dirty cache page %p", m));
1151			KASSERT(!pmap_page_is_mapped(m),
1152			    ("Found mapped cache page %p", m));
1153			KASSERT((m->flags & PG_UNMANAGED) == 0,
1154			    ("Found unmanaged cache page %p", m));
1155			KASSERT(m->wire_count == 0,
1156			    ("Found wired cache page %p", m));
1157			if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1158			    m->object)) {
1159				KASSERT((m->oflags & VPO_BUSY) == 0 &&
1160				    m->busy == 0, ("Found busy cache page %p",
1161				    m));
1162				vm_page_free(m);
1163				VM_OBJECT_UNLOCK(object);
1164				cnt.v_dfree++;
1165				break;
1166			}
1167		}
1168		if (m == NULL)
1169			break;
1170	}
1171	vm_page_unlock_queues();
1172#if !defined(NO_SWAPPING)
1173	/*
1174	 * Idle process swapout -- run once per second.
1175	 */
1176	if (vm_swap_idle_enabled) {
1177		static long lsec;
1178		if (time_second != lsec) {
1179			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1180			vm_req_vmdaemon();
1181			lsec = time_second;
1182		}
1183	}
1184#endif
1185
1186	/*
1187	 * If we didn't get enough free pages, and we have skipped a vnode
1188	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1189	 * if we did not get enough free pages.
1190	 */
1191	if (vm_paging_target() > 0) {
1192		if (vnodes_skipped && vm_page_count_min())
1193			(void) speedup_syncer();
1194#if !defined(NO_SWAPPING)
1195		if (vm_swap_enabled && vm_page_count_target()) {
1196			vm_req_vmdaemon();
1197			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1198		}
1199#endif
1200	}
1201
1202	/*
1203	 * If we are critically low on one of RAM or swap and low on
1204	 * the other, kill the largest process.  However, we avoid
1205	 * doing this on the first pass in order to give ourselves a
1206	 * chance to flush out dirty vnode-backed pages and to allow
1207	 * active pages to be moved to the inactive queue and reclaimed.
1208	 *
1209	 * We keep the process bigproc locked once we find it to keep anyone
1210	 * from messing with it; however, there is a possibility of
1211	 * deadlock if process B is bigproc and one of it's child processes
1212	 * attempts to propagate a signal to B while we are waiting for A's
1213	 * lock while walking this list.  To avoid this, we don't block on
1214	 * the process lock but just skip a process if it is already locked.
1215	 */
1216	if (pass != 0 &&
1217	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1218	     (swap_pager_full && vm_paging_target() > 0))) {
1219		bigproc = NULL;
1220		bigsize = 0;
1221		sx_slock(&allproc_lock);
1222		FOREACH_PROC_IN_SYSTEM(p) {
1223			int breakout;
1224
1225			if (PROC_TRYLOCK(p) == 0)
1226				continue;
1227			/*
1228			 * If this is a system or protected process, skip it.
1229			 */
1230			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1231			    (p->p_flag & P_PROTECTED) ||
1232			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1233				PROC_UNLOCK(p);
1234				continue;
1235			}
1236			/*
1237			 * If the process is in a non-running type state,
1238			 * don't touch it.  Check all the threads individually.
1239			 */
1240			PROC_SLOCK(p);
1241			breakout = 0;
1242			FOREACH_THREAD_IN_PROC(p, td) {
1243				thread_lock(td);
1244				if (!TD_ON_RUNQ(td) &&
1245				    !TD_IS_RUNNING(td) &&
1246				    !TD_IS_SLEEPING(td)) {
1247					thread_unlock(td);
1248					breakout = 1;
1249					break;
1250				}
1251				thread_unlock(td);
1252			}
1253			PROC_SUNLOCK(p);
1254			if (breakout) {
1255				PROC_UNLOCK(p);
1256				continue;
1257			}
1258			/*
1259			 * get the process size
1260			 */
1261			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1262				PROC_UNLOCK(p);
1263				continue;
1264			}
1265			size = vmspace_swap_count(p->p_vmspace);
1266			vm_map_unlock_read(&p->p_vmspace->vm_map);
1267			size += vmspace_resident_count(p->p_vmspace);
1268			/*
1269			 * if the this process is bigger than the biggest one
1270			 * remember it.
1271			 */
1272			if (size > bigsize) {
1273				if (bigproc != NULL)
1274					PROC_UNLOCK(bigproc);
1275				bigproc = p;
1276				bigsize = size;
1277			} else
1278				PROC_UNLOCK(p);
1279		}
1280		sx_sunlock(&allproc_lock);
1281		if (bigproc != NULL) {
1282			killproc(bigproc, "out of swap space");
1283			PROC_SLOCK(bigproc);
1284			sched_nice(bigproc, PRIO_MIN);
1285			PROC_SUNLOCK(bigproc);
1286			PROC_UNLOCK(bigproc);
1287			wakeup(&cnt.v_free_count);
1288		}
1289	}
1290	mtx_unlock(&Giant);
1291}
1292
1293/*
1294 * This routine tries to maintain the pseudo LRU active queue,
1295 * so that during long periods of time where there is no paging,
1296 * that some statistic accumulation still occurs.  This code
1297 * helps the situation where paging just starts to occur.
1298 */
1299static void
1300vm_pageout_page_stats()
1301{
1302	vm_object_t object;
1303	vm_page_t m,next;
1304	int pcount,tpcount;		/* Number of pages to check */
1305	static int fullintervalcount = 0;
1306	int page_shortage;
1307
1308	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1309	page_shortage =
1310	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1311	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1312
1313	if (page_shortage <= 0)
1314		return;
1315
1316	pcount = cnt.v_active_count;
1317	fullintervalcount += vm_pageout_stats_interval;
1318	if (fullintervalcount < vm_pageout_full_stats_interval) {
1319		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1320		if (pcount > tpcount)
1321			pcount = tpcount;
1322	} else {
1323		fullintervalcount = 0;
1324	}
1325
1326	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1327	while ((m != NULL) && (pcount-- > 0)) {
1328		int actcount;
1329
1330		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1331		    ("vm_pageout_page_stats: page %p isn't active", m));
1332
1333		next = TAILQ_NEXT(m, pageq);
1334		object = m->object;
1335
1336		if ((m->flags & PG_MARKER) != 0) {
1337			m = next;
1338			continue;
1339		}
1340		if (!VM_OBJECT_TRYLOCK(object) &&
1341		    !vm_pageout_fallback_object_lock(m, &next)) {
1342			VM_OBJECT_UNLOCK(object);
1343			m = next;
1344			continue;
1345		}
1346
1347		/*
1348		 * Don't deactivate pages that are busy.
1349		 */
1350		if ((m->busy != 0) ||
1351		    (m->oflags & VPO_BUSY) ||
1352		    (m->hold_count != 0)) {
1353			VM_OBJECT_UNLOCK(object);
1354			vm_pageq_requeue(m);
1355			m = next;
1356			continue;
1357		}
1358
1359		actcount = 0;
1360		if (m->flags & PG_REFERENCED) {
1361			vm_page_flag_clear(m, PG_REFERENCED);
1362			actcount += 1;
1363		}
1364
1365		actcount += pmap_ts_referenced(m);
1366		if (actcount) {
1367			m->act_count += ACT_ADVANCE + actcount;
1368			if (m->act_count > ACT_MAX)
1369				m->act_count = ACT_MAX;
1370			vm_pageq_requeue(m);
1371		} else {
1372			if (m->act_count == 0) {
1373				/*
1374				 * We turn off page access, so that we have
1375				 * more accurate RSS stats.  We don't do this
1376				 * in the normal page deactivation when the
1377				 * system is loaded VM wise, because the
1378				 * cost of the large number of page protect
1379				 * operations would be higher than the value
1380				 * of doing the operation.
1381				 */
1382				pmap_remove_all(m);
1383				vm_page_deactivate(m);
1384			} else {
1385				m->act_count -= min(m->act_count, ACT_DECLINE);
1386				vm_pageq_requeue(m);
1387			}
1388		}
1389		VM_OBJECT_UNLOCK(object);
1390		m = next;
1391	}
1392}
1393
1394/*
1395 *	vm_pageout is the high level pageout daemon.
1396 */
1397static void
1398vm_pageout()
1399{
1400	int error, pass;
1401
1402	/*
1403	 * Initialize some paging parameters.
1404	 */
1405	cnt.v_interrupt_free_min = 2;
1406	if (cnt.v_page_count < 2000)
1407		vm_pageout_page_count = 8;
1408
1409	/*
1410	 * v_free_reserved needs to include enough for the largest
1411	 * swap pager structures plus enough for any pv_entry structs
1412	 * when paging.
1413	 */
1414	if (cnt.v_page_count > 1024)
1415		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1416	else
1417		cnt.v_free_min = 4;
1418	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1419	    cnt.v_interrupt_free_min;
1420	cnt.v_free_reserved = vm_pageout_page_count +
1421	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1422	cnt.v_free_severe = cnt.v_free_min / 2;
1423	cnt.v_free_min += cnt.v_free_reserved;
1424	cnt.v_free_severe += cnt.v_free_reserved;
1425
1426	/*
1427	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1428	 * that these are more a measure of the VM cache queue hysteresis
1429	 * then the VM free queue.  Specifically, v_free_target is the
1430	 * high water mark (free+cache pages).
1431	 *
1432	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1433	 * low water mark, while v_free_min is the stop.  v_cache_min must
1434	 * be big enough to handle memory needs while the pageout daemon
1435	 * is signalled and run to free more pages.
1436	 */
1437	if (cnt.v_free_count > 6144)
1438		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1439	else
1440		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1441
1442	if (cnt.v_free_count > 2048) {
1443		cnt.v_cache_min = cnt.v_free_target;
1444		cnt.v_cache_max = 2 * cnt.v_cache_min;
1445		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1446	} else {
1447		cnt.v_cache_min = 0;
1448		cnt.v_cache_max = 0;
1449		cnt.v_inactive_target = cnt.v_free_count / 4;
1450	}
1451	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1452		cnt.v_inactive_target = cnt.v_free_count / 3;
1453
1454	/* XXX does not really belong here */
1455	if (vm_page_max_wired == 0)
1456		vm_page_max_wired = cnt.v_free_count / 3;
1457
1458	if (vm_pageout_stats_max == 0)
1459		vm_pageout_stats_max = cnt.v_free_target;
1460
1461	/*
1462	 * Set interval in seconds for stats scan.
1463	 */
1464	if (vm_pageout_stats_interval == 0)
1465		vm_pageout_stats_interval = 5;
1466	if (vm_pageout_full_stats_interval == 0)
1467		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1468
1469	swap_pager_swap_init();
1470	pass = 0;
1471	/*
1472	 * The pageout daemon is never done, so loop forever.
1473	 */
1474	while (TRUE) {
1475		/*
1476		 * If we have enough free memory, wakeup waiters.  Do
1477		 * not clear vm_pages_needed until we reach our target,
1478		 * otherwise we may be woken up over and over again and
1479		 * waste a lot of cpu.
1480		 */
1481		mtx_lock(&vm_page_queue_free_mtx);
1482		if (vm_pages_needed && !vm_page_count_min()) {
1483			if (!vm_paging_needed())
1484				vm_pages_needed = 0;
1485			wakeup(&cnt.v_free_count);
1486		}
1487		if (vm_pages_needed) {
1488			/*
1489			 * Still not done, take a second pass without waiting
1490			 * (unlimited dirty cleaning), otherwise sleep a bit
1491			 * and try again.
1492			 */
1493			++pass;
1494			if (pass > 1)
1495				msleep(&vm_pages_needed,
1496				    &vm_page_queue_free_mtx, PVM, "psleep",
1497				    hz / 2);
1498		} else {
1499			/*
1500			 * Good enough, sleep & handle stats.  Prime the pass
1501			 * for the next run.
1502			 */
1503			if (pass > 1)
1504				pass = 1;
1505			else
1506				pass = 0;
1507			error = msleep(&vm_pages_needed,
1508			    &vm_page_queue_free_mtx, PVM, "psleep",
1509			    vm_pageout_stats_interval * hz);
1510			if (error && !vm_pages_needed) {
1511				mtx_unlock(&vm_page_queue_free_mtx);
1512				pass = 0;
1513				vm_page_lock_queues();
1514				vm_pageout_page_stats();
1515				vm_page_unlock_queues();
1516				continue;
1517			}
1518		}
1519		if (vm_pages_needed)
1520			cnt.v_pdwakeups++;
1521		mtx_unlock(&vm_page_queue_free_mtx);
1522		vm_pageout_scan(pass);
1523	}
1524}
1525
1526/*
1527 * Unless the free page queue lock is held by the caller, this function
1528 * should be regarded as advisory.  Specifically, the caller should
1529 * not msleep() on &cnt.v_free_count following this function unless
1530 * the free page queue lock is held until the msleep() is performed.
1531 */
1532void
1533pagedaemon_wakeup()
1534{
1535
1536	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1537		vm_pages_needed = 1;
1538		wakeup(&vm_pages_needed);
1539	}
1540}
1541
1542#if !defined(NO_SWAPPING)
1543static void
1544vm_req_vmdaemon()
1545{
1546	static int lastrun = 0;
1547
1548	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1549		wakeup(&vm_daemon_needed);
1550		lastrun = ticks;
1551	}
1552}
1553
1554static void
1555vm_daemon()
1556{
1557	struct rlimit rsslim;
1558	struct proc *p;
1559	struct thread *td;
1560	int breakout;
1561
1562	mtx_lock(&Giant);
1563	while (TRUE) {
1564		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1565		if (vm_pageout_req_swapout) {
1566			swapout_procs(vm_pageout_req_swapout);
1567			vm_pageout_req_swapout = 0;
1568		}
1569		/*
1570		 * scan the processes for exceeding their rlimits or if
1571		 * process is swapped out -- deactivate pages
1572		 */
1573		sx_slock(&allproc_lock);
1574		FOREACH_PROC_IN_SYSTEM(p) {
1575			vm_pindex_t limit, size;
1576
1577			/*
1578			 * if this is a system process or if we have already
1579			 * looked at this process, skip it.
1580			 */
1581			PROC_LOCK(p);
1582			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1583				PROC_UNLOCK(p);
1584				continue;
1585			}
1586			/*
1587			 * if the process is in a non-running type state,
1588			 * don't touch it.
1589			 */
1590			PROC_SLOCK(p);
1591			breakout = 0;
1592			FOREACH_THREAD_IN_PROC(p, td) {
1593				thread_lock(td);
1594				if (!TD_ON_RUNQ(td) &&
1595				    !TD_IS_RUNNING(td) &&
1596				    !TD_IS_SLEEPING(td)) {
1597					thread_unlock(td);
1598					breakout = 1;
1599					break;
1600				}
1601				thread_unlock(td);
1602			}
1603			PROC_SUNLOCK(p);
1604			if (breakout) {
1605				PROC_UNLOCK(p);
1606				continue;
1607			}
1608			/*
1609			 * get a limit
1610			 */
1611			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1612			limit = OFF_TO_IDX(
1613			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1614
1615			/*
1616			 * let processes that are swapped out really be
1617			 * swapped out set the limit to nothing (will force a
1618			 * swap-out.)
1619			 */
1620			if ((p->p_sflag & PS_INMEM) == 0)
1621				limit = 0;	/* XXX */
1622			PROC_UNLOCK(p);
1623
1624			size = vmspace_resident_count(p->p_vmspace);
1625			if (limit >= 0 && size >= limit) {
1626				vm_pageout_map_deactivate_pages(
1627				    &p->p_vmspace->vm_map, limit);
1628			}
1629		}
1630		sx_sunlock(&allproc_lock);
1631	}
1632}
1633#endif			/* !defined(NO_SWAPPING) */
1634