vm_pageout.c revision 155790
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 155790 2006-02-17 21:02:39Z tegge $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/resourcevar.h>
89#include <sys/sched.h>
90#include <sys/signalvar.h>
91#include <sys/vnode.h>
92#include <sys/vmmeter.h>
93#include <sys/sx.h>
94#include <sys/sysctl.h>
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_pageout.h>
102#include <vm/vm_pager.h>
103#include <vm/swap_pager.h>
104#include <vm/vm_extern.h>
105#include <vm/uma.h>
106
107#include <machine/mutex.h>
108
109/*
110 * System initialization
111 */
112
113/* the kernel process "vm_pageout"*/
114static void vm_pageout(void);
115static int vm_pageout_clean(vm_page_t);
116static void vm_pageout_scan(int pass);
117
118struct proc *pageproc;
119
120static struct kproc_desc page_kp = {
121	"pagedaemon",
122	vm_pageout,
123	&pageproc
124};
125SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127#if !defined(NO_SWAPPING)
128/* the kernel process "vm_daemon"*/
129static void vm_daemon(void);
130static struct	proc *vmproc;
131
132static struct kproc_desc vm_kp = {
133	"vmdaemon",
134	vm_daemon,
135	&vmproc
136};
137SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138#endif
139
140
141int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142int vm_pageout_deficit;		/* Estimated number of pages deficit */
143int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144
145#if !defined(NO_SWAPPING)
146static int vm_pageout_req_swapout;	/* XXX */
147static int vm_daemon_needed;
148#endif
149static int vm_max_launder = 32;
150static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151static int vm_pageout_full_stats_interval = 0;
152static int vm_pageout_algorithm=0;
153static int defer_swap_pageouts=0;
154static int disable_swap_pageouts=0;
155
156#if defined(NO_SWAPPING)
157static int vm_swap_enabled=0;
158static int vm_swap_idle_enabled=0;
159#else
160static int vm_swap_enabled=1;
161static int vm_swap_idle_enabled=0;
162#endif
163
164SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167SYSCTL_INT(_vm, OID_AUTO, max_launder,
168	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179#if defined(NO_SWAPPING)
180SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181	CTLFLAG_RD, &vm_swap_enabled, 0, "");
182SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
184#else
185SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
187SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189#endif
190
191SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
192	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
193
194SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
195	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
196
197static int pageout_lock_miss;
198SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
199	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
200
201#define VM_PAGEOUT_PAGE_COUNT 16
202int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
203
204int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
205
206#if !defined(NO_SWAPPING)
207static void vm_pageout_map_deactivate_pages(vm_map_t, long);
208static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
209static void vm_req_vmdaemon(void);
210#endif
211static void vm_pageout_page_stats(void);
212
213/*
214 * vm_pageout_fallback_object_lock:
215 *
216 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
217 * known to have failed and page queue must be either PQ_ACTIVE or
218 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
219 * while locking the vm object.  Use marker page to detect page queue
220 * changes and maintain notion of next page on page queue.  Return
221 * TRUE if no changes were detected, FALSE otherwise.  vm object is
222 * locked on return.
223 *
224 * This function depends on both the lock portion of struct vm_object
225 * and normal struct vm_page being type stable.
226 */
227static boolean_t
228vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
229{
230	struct vm_page marker;
231	boolean_t unchanged;
232	u_short queue;
233	vm_object_t object;
234
235	/*
236	 * Initialize our marker
237	 */
238	bzero(&marker, sizeof(marker));
239	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
240	marker.queue = m->queue;
241	marker.wire_count = 1;
242
243	queue = m->queue;
244	object = m->object;
245
246	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
247			   m, &marker, pageq);
248	vm_page_unlock_queues();
249	VM_OBJECT_LOCK(object);
250	vm_page_lock_queues();
251
252	/* Page queue might have changed. */
253	*next = TAILQ_NEXT(&marker, pageq);
254	unchanged = (m->queue == queue &&
255		     m->object == object &&
256		     &marker == TAILQ_NEXT(m, pageq));
257	TAILQ_REMOVE(&vm_page_queues[queue].pl,
258		     &marker, pageq);
259	return (unchanged);
260}
261
262/*
263 * vm_pageout_clean:
264 *
265 * Clean the page and remove it from the laundry.
266 *
267 * We set the busy bit to cause potential page faults on this page to
268 * block.  Note the careful timing, however, the busy bit isn't set till
269 * late and we cannot do anything that will mess with the page.
270 */
271static int
272vm_pageout_clean(m)
273	vm_page_t m;
274{
275	vm_object_t object;
276	vm_page_t mc[2*vm_pageout_page_count];
277	int pageout_count;
278	int ib, is, page_base;
279	vm_pindex_t pindex = m->pindex;
280
281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
282	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
283
284	/*
285	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
286	 * with the new swapper, but we could have serious problems paging
287	 * out other object types if there is insufficient memory.
288	 *
289	 * Unfortunately, checking free memory here is far too late, so the
290	 * check has been moved up a procedural level.
291	 */
292
293	/*
294	 * Don't mess with the page if it's busy, held, or special
295	 */
296	if ((m->hold_count != 0) ||
297	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
298		return 0;
299	}
300
301	mc[vm_pageout_page_count] = m;
302	pageout_count = 1;
303	page_base = vm_pageout_page_count;
304	ib = 1;
305	is = 1;
306
307	/*
308	 * Scan object for clusterable pages.
309	 *
310	 * We can cluster ONLY if: ->> the page is NOT
311	 * clean, wired, busy, held, or mapped into a
312	 * buffer, and one of the following:
313	 * 1) The page is inactive, or a seldom used
314	 *    active page.
315	 * -or-
316	 * 2) we force the issue.
317	 *
318	 * During heavy mmap/modification loads the pageout
319	 * daemon can really fragment the underlying file
320	 * due to flushing pages out of order and not trying
321	 * align the clusters (which leave sporatic out-of-order
322	 * holes).  To solve this problem we do the reverse scan
323	 * first and attempt to align our cluster, then do a
324	 * forward scan if room remains.
325	 */
326	object = m->object;
327more:
328	while (ib && pageout_count < vm_pageout_page_count) {
329		vm_page_t p;
330
331		if (ib > pindex) {
332			ib = 0;
333			break;
334		}
335
336		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
337			ib = 0;
338			break;
339		}
340		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
341		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
342			ib = 0;
343			break;
344		}
345		vm_page_test_dirty(p);
346		if ((p->dirty & p->valid) == 0 ||
347		    p->queue != PQ_INACTIVE ||
348		    p->wire_count != 0 ||	/* may be held by buf cache */
349		    p->hold_count != 0) {	/* may be undergoing I/O */
350			ib = 0;
351			break;
352		}
353		mc[--page_base] = p;
354		++pageout_count;
355		++ib;
356		/*
357		 * alignment boundry, stop here and switch directions.  Do
358		 * not clear ib.
359		 */
360		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
361			break;
362	}
363
364	while (pageout_count < vm_pageout_page_count &&
365	    pindex + is < object->size) {
366		vm_page_t p;
367
368		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
369			break;
370		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
371		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
372			break;
373		}
374		vm_page_test_dirty(p);
375		if ((p->dirty & p->valid) == 0 ||
376		    p->queue != PQ_INACTIVE ||
377		    p->wire_count != 0 ||	/* may be held by buf cache */
378		    p->hold_count != 0) {	/* may be undergoing I/O */
379			break;
380		}
381		mc[page_base + pageout_count] = p;
382		++pageout_count;
383		++is;
384	}
385
386	/*
387	 * If we exhausted our forward scan, continue with the reverse scan
388	 * when possible, even past a page boundry.  This catches boundry
389	 * conditions.
390	 */
391	if (ib && pageout_count < vm_pageout_page_count)
392		goto more;
393
394	/*
395	 * we allow reads during pageouts...
396	 */
397	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
398}
399
400/*
401 * vm_pageout_flush() - launder the given pages
402 *
403 *	The given pages are laundered.  Note that we setup for the start of
404 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
405 *	reference count all in here rather then in the parent.  If we want
406 *	the parent to do more sophisticated things we may have to change
407 *	the ordering.
408 */
409int
410vm_pageout_flush(vm_page_t *mc, int count, int flags)
411{
412	vm_object_t object = mc[0]->object;
413	int pageout_status[count];
414	int numpagedout = 0;
415	int i;
416
417	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
418	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
419	/*
420	 * Initiate I/O.  Bump the vm_page_t->busy counter and
421	 * mark the pages read-only.
422	 *
423	 * We do not have to fixup the clean/dirty bits here... we can
424	 * allow the pager to do it after the I/O completes.
425	 *
426	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
427	 * edge case with file fragments.
428	 */
429	for (i = 0; i < count; i++) {
430		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
431		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
432			mc[i], i, count));
433		vm_page_io_start(mc[i]);
434		pmap_page_protect(mc[i], VM_PROT_READ);
435	}
436	vm_page_unlock_queues();
437	vm_object_pip_add(object, count);
438
439	vm_pager_put_pages(object, mc, count,
440	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
441	    pageout_status);
442
443	vm_page_lock_queues();
444	for (i = 0; i < count; i++) {
445		vm_page_t mt = mc[i];
446
447		KASSERT((mt->flags & PG_WRITEABLE) == 0,
448		    ("vm_pageout_flush: page %p is not write protected", mt));
449		switch (pageout_status[i]) {
450		case VM_PAGER_OK:
451		case VM_PAGER_PEND:
452			numpagedout++;
453			break;
454		case VM_PAGER_BAD:
455			/*
456			 * Page outside of range of object. Right now we
457			 * essentially lose the changes by pretending it
458			 * worked.
459			 */
460			pmap_clear_modify(mt);
461			vm_page_undirty(mt);
462			break;
463		case VM_PAGER_ERROR:
464		case VM_PAGER_FAIL:
465			/*
466			 * If page couldn't be paged out, then reactivate the
467			 * page so it doesn't clog the inactive list.  (We
468			 * will try paging out it again later).
469			 */
470			vm_page_activate(mt);
471			break;
472		case VM_PAGER_AGAIN:
473			break;
474		}
475
476		/*
477		 * If the operation is still going, leave the page busy to
478		 * block all other accesses. Also, leave the paging in
479		 * progress indicator set so that we don't attempt an object
480		 * collapse.
481		 */
482		if (pageout_status[i] != VM_PAGER_PEND) {
483			vm_object_pip_wakeup(object);
484			vm_page_io_finish(mt);
485			if (vm_page_count_severe())
486				vm_page_try_to_cache(mt);
487		}
488	}
489	return numpagedout;
490}
491
492#if !defined(NO_SWAPPING)
493/*
494 *	vm_pageout_object_deactivate_pages
495 *
496 *	deactivate enough pages to satisfy the inactive target
497 *	requirements or if vm_page_proc_limit is set, then
498 *	deactivate all of the pages in the object and its
499 *	backing_objects.
500 *
501 *	The object and map must be locked.
502 */
503static void
504vm_pageout_object_deactivate_pages(pmap, first_object, desired)
505	pmap_t pmap;
506	vm_object_t first_object;
507	long desired;
508{
509	vm_object_t backing_object, object;
510	vm_page_t p, next;
511	int actcount, rcount, remove_mode;
512
513	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
514	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
515		return;
516	for (object = first_object;; object = backing_object) {
517		if (pmap_resident_count(pmap) <= desired)
518			goto unlock_return;
519		if (object->paging_in_progress)
520			goto unlock_return;
521
522		remove_mode = 0;
523		if (object->shadow_count > 1)
524			remove_mode = 1;
525		/*
526		 * scan the objects entire memory queue
527		 */
528		rcount = object->resident_page_count;
529		p = TAILQ_FIRST(&object->memq);
530		vm_page_lock_queues();
531		while (p && (rcount-- > 0)) {
532			if (pmap_resident_count(pmap) <= desired) {
533				vm_page_unlock_queues();
534				goto unlock_return;
535			}
536			next = TAILQ_NEXT(p, listq);
537			cnt.v_pdpages++;
538			if (p->wire_count != 0 ||
539			    p->hold_count != 0 ||
540			    p->busy != 0 ||
541			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
542			    !pmap_page_exists_quick(pmap, p)) {
543				p = next;
544				continue;
545			}
546			actcount = pmap_ts_referenced(p);
547			if (actcount) {
548				vm_page_flag_set(p, PG_REFERENCED);
549			} else if (p->flags & PG_REFERENCED) {
550				actcount = 1;
551			}
552			if ((p->queue != PQ_ACTIVE) &&
553				(p->flags & PG_REFERENCED)) {
554				vm_page_activate(p);
555				p->act_count += actcount;
556				vm_page_flag_clear(p, PG_REFERENCED);
557			} else if (p->queue == PQ_ACTIVE) {
558				if ((p->flags & PG_REFERENCED) == 0) {
559					p->act_count -= min(p->act_count, ACT_DECLINE);
560					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
561						pmap_remove_all(p);
562						vm_page_deactivate(p);
563					} else {
564						vm_pageq_requeue(p);
565					}
566				} else {
567					vm_page_activate(p);
568					vm_page_flag_clear(p, PG_REFERENCED);
569					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
570						p->act_count += ACT_ADVANCE;
571					vm_pageq_requeue(p);
572				}
573			} else if (p->queue == PQ_INACTIVE) {
574				pmap_remove_all(p);
575			}
576			p = next;
577		}
578		vm_page_unlock_queues();
579		if ((backing_object = object->backing_object) == NULL)
580			goto unlock_return;
581		VM_OBJECT_LOCK(backing_object);
582		if (object != first_object)
583			VM_OBJECT_UNLOCK(object);
584	}
585unlock_return:
586	if (object != first_object)
587		VM_OBJECT_UNLOCK(object);
588}
589
590/*
591 * deactivate some number of pages in a map, try to do it fairly, but
592 * that is really hard to do.
593 */
594static void
595vm_pageout_map_deactivate_pages(map, desired)
596	vm_map_t map;
597	long desired;
598{
599	vm_map_entry_t tmpe;
600	vm_object_t obj, bigobj;
601	int nothingwired;
602
603	if (!vm_map_trylock(map))
604		return;
605
606	bigobj = NULL;
607	nothingwired = TRUE;
608
609	/*
610	 * first, search out the biggest object, and try to free pages from
611	 * that.
612	 */
613	tmpe = map->header.next;
614	while (tmpe != &map->header) {
615		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
616			obj = tmpe->object.vm_object;
617			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
618				if (obj->shadow_count <= 1 &&
619				    (bigobj == NULL ||
620				     bigobj->resident_page_count < obj->resident_page_count)) {
621					if (bigobj != NULL)
622						VM_OBJECT_UNLOCK(bigobj);
623					bigobj = obj;
624				} else
625					VM_OBJECT_UNLOCK(obj);
626			}
627		}
628		if (tmpe->wired_count > 0)
629			nothingwired = FALSE;
630		tmpe = tmpe->next;
631	}
632
633	if (bigobj != NULL) {
634		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
635		VM_OBJECT_UNLOCK(bigobj);
636	}
637	/*
638	 * Next, hunt around for other pages to deactivate.  We actually
639	 * do this search sort of wrong -- .text first is not the best idea.
640	 */
641	tmpe = map->header.next;
642	while (tmpe != &map->header) {
643		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
644			break;
645		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
646			obj = tmpe->object.vm_object;
647			if (obj != NULL) {
648				VM_OBJECT_LOCK(obj);
649				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
650				VM_OBJECT_UNLOCK(obj);
651			}
652		}
653		tmpe = tmpe->next;
654	}
655
656	/*
657	 * Remove all mappings if a process is swapped out, this will free page
658	 * table pages.
659	 */
660	if (desired == 0 && nothingwired) {
661		pmap_remove(vm_map_pmap(map), vm_map_min(map),
662		    vm_map_max(map));
663	}
664	vm_map_unlock(map);
665}
666#endif		/* !defined(NO_SWAPPING) */
667
668/*
669 *	vm_pageout_scan does the dirty work for the pageout daemon.
670 */
671static void
672vm_pageout_scan(int pass)
673{
674	vm_page_t m, next;
675	struct vm_page marker;
676	int page_shortage, maxscan, pcount;
677	int addl_page_shortage, addl_page_shortage_init;
678	struct proc *p, *bigproc;
679	struct thread *td;
680	vm_offset_t size, bigsize;
681	vm_object_t object;
682	int actcount, cache_cur, cache_first_failure;
683	static int cache_last_free;
684	int vnodes_skipped = 0;
685	int maxlaunder;
686
687	mtx_lock(&Giant);
688	/*
689	 * Decrease registered cache sizes.
690	 */
691	EVENTHANDLER_INVOKE(vm_lowmem, 0);
692	/*
693	 * We do this explicitly after the caches have been drained above.
694	 */
695	uma_reclaim();
696
697	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699	/*
700	 * Calculate the number of pages we want to either free or move
701	 * to the cache.
702	 */
703	page_shortage = vm_paging_target() + addl_page_shortage_init;
704
705	/*
706	 * Initialize our marker
707	 */
708	bzero(&marker, sizeof(marker));
709	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
710	marker.queue = PQ_INACTIVE;
711	marker.wire_count = 1;
712
713	/*
714	 * Start scanning the inactive queue for pages we can move to the
715	 * cache or free.  The scan will stop when the target is reached or
716	 * we have scanned the entire inactive queue.  Note that m->act_count
717	 * is not used to form decisions for the inactive queue, only for the
718	 * active queue.
719	 *
720	 * maxlaunder limits the number of dirty pages we flush per scan.
721	 * For most systems a smaller value (16 or 32) is more robust under
722	 * extreme memory and disk pressure because any unnecessary writes
723	 * to disk can result in extreme performance degredation.  However,
724	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
725	 * used) will die horribly with limited laundering.  If the pageout
726	 * daemon cannot clean enough pages in the first pass, we let it go
727	 * all out in succeeding passes.
728	 */
729	if ((maxlaunder = vm_max_launder) <= 1)
730		maxlaunder = 1;
731	if (pass)
732		maxlaunder = 10000;
733	vm_page_lock_queues();
734rescan0:
735	addl_page_shortage = addl_page_shortage_init;
736	maxscan = cnt.v_inactive_count;
737
738	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
739	     m != NULL && maxscan-- > 0 && page_shortage > 0;
740	     m = next) {
741
742		cnt.v_pdpages++;
743
744		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
745			goto rescan0;
746		}
747
748		next = TAILQ_NEXT(m, pageq);
749		object = m->object;
750
751		/*
752		 * skip marker pages
753		 */
754		if (m->flags & PG_MARKER)
755			continue;
756
757		/*
758		 * A held page may be undergoing I/O, so skip it.
759		 */
760		if (m->hold_count) {
761			vm_pageq_requeue(m);
762			addl_page_shortage++;
763			continue;
764		}
765		/*
766		 * Don't mess with busy pages, keep in the front of the
767		 * queue, most likely are being paged out.
768		 */
769		if (!VM_OBJECT_TRYLOCK(object) &&
770		    (!vm_pageout_fallback_object_lock(m, &next) ||
771		     m->hold_count != 0)) {
772			VM_OBJECT_UNLOCK(object);
773			addl_page_shortage++;
774			continue;
775		}
776		if (m->busy || (m->flags & PG_BUSY)) {
777			VM_OBJECT_UNLOCK(object);
778			addl_page_shortage++;
779			continue;
780		}
781
782		/*
783		 * If the object is not being used, we ignore previous
784		 * references.
785		 */
786		if (object->ref_count == 0) {
787			vm_page_flag_clear(m, PG_REFERENCED);
788			pmap_clear_reference(m);
789
790		/*
791		 * Otherwise, if the page has been referenced while in the
792		 * inactive queue, we bump the "activation count" upwards,
793		 * making it less likely that the page will be added back to
794		 * the inactive queue prematurely again.  Here we check the
795		 * page tables (or emulated bits, if any), given the upper
796		 * level VM system not knowing anything about existing
797		 * references.
798		 */
799		} else if (((m->flags & PG_REFERENCED) == 0) &&
800			(actcount = pmap_ts_referenced(m))) {
801			vm_page_activate(m);
802			VM_OBJECT_UNLOCK(object);
803			m->act_count += (actcount + ACT_ADVANCE);
804			continue;
805		}
806
807		/*
808		 * If the upper level VM system knows about any page
809		 * references, we activate the page.  We also set the
810		 * "activation count" higher than normal so that we will less
811		 * likely place pages back onto the inactive queue again.
812		 */
813		if ((m->flags & PG_REFERENCED) != 0) {
814			vm_page_flag_clear(m, PG_REFERENCED);
815			actcount = pmap_ts_referenced(m);
816			vm_page_activate(m);
817			VM_OBJECT_UNLOCK(object);
818			m->act_count += (actcount + ACT_ADVANCE + 1);
819			continue;
820		}
821
822		/*
823		 * If the upper level VM system doesn't know anything about
824		 * the page being dirty, we have to check for it again.  As
825		 * far as the VM code knows, any partially dirty pages are
826		 * fully dirty.
827		 */
828		if (m->dirty == 0 && !pmap_is_modified(m)) {
829			/*
830			 * Avoid a race condition: Unless write access is
831			 * removed from the page, another processor could
832			 * modify it before all access is removed by the call
833			 * to vm_page_cache() below.  If vm_page_cache() finds
834			 * that the page has been modified when it removes all
835			 * access, it panics because it cannot cache dirty
836			 * pages.  In principle, we could eliminate just write
837			 * access here rather than all access.  In the expected
838			 * case, when there are no last instant modifications
839			 * to the page, removing all access will be cheaper
840			 * overall.
841			 */
842			if ((m->flags & PG_WRITEABLE) != 0)
843				pmap_remove_all(m);
844		} else {
845			vm_page_dirty(m);
846		}
847
848		if (m->valid == 0) {
849			/*
850			 * Invalid pages can be easily freed
851			 */
852			vm_page_free(m);
853			cnt.v_dfree++;
854			--page_shortage;
855		} else if (m->dirty == 0) {
856			/*
857			 * Clean pages can be placed onto the cache queue.
858			 * This effectively frees them.
859			 */
860			vm_page_cache(m);
861			--page_shortage;
862		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
863			/*
864			 * Dirty pages need to be paged out, but flushing
865			 * a page is extremely expensive verses freeing
866			 * a clean page.  Rather then artificially limiting
867			 * the number of pages we can flush, we instead give
868			 * dirty pages extra priority on the inactive queue
869			 * by forcing them to be cycled through the queue
870			 * twice before being flushed, after which the
871			 * (now clean) page will cycle through once more
872			 * before being freed.  This significantly extends
873			 * the thrash point for a heavily loaded machine.
874			 */
875			vm_page_flag_set(m, PG_WINATCFLS);
876			vm_pageq_requeue(m);
877		} else if (maxlaunder > 0) {
878			/*
879			 * We always want to try to flush some dirty pages if
880			 * we encounter them, to keep the system stable.
881			 * Normally this number is small, but under extreme
882			 * pressure where there are insufficient clean pages
883			 * on the inactive queue, we may have to go all out.
884			 */
885			int swap_pageouts_ok;
886			struct vnode *vp = NULL;
887			struct mount *mp;
888
889			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
890				swap_pageouts_ok = 1;
891			} else {
892				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
893				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
894				vm_page_count_min());
895
896			}
897
898			/*
899			 * We don't bother paging objects that are "dead".
900			 * Those objects are in a "rundown" state.
901			 */
902			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
903				VM_OBJECT_UNLOCK(object);
904				vm_pageq_requeue(m);
905				continue;
906			}
907
908			/*
909			 * Following operations may unlock
910			 * vm_page_queue_mtx, invalidating the 'next'
911			 * pointer.  To prevent an inordinate number
912			 * of restarts we use our marker to remember
913			 * our place.
914			 *
915			 */
916			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
917					   m, &marker, pageq);
918			/*
919			 * The object is already known NOT to be dead.   It
920			 * is possible for the vget() to block the whole
921			 * pageout daemon, but the new low-memory handling
922			 * code should prevent it.
923			 *
924			 * The previous code skipped locked vnodes and, worse,
925			 * reordered pages in the queue.  This results in
926			 * completely non-deterministic operation and, on a
927			 * busy system, can lead to extremely non-optimal
928			 * pageouts.  For example, it can cause clean pages
929			 * to be freed and dirty pages to be moved to the end
930			 * of the queue.  Since dirty pages are also moved to
931			 * the end of the queue once-cleaned, this gives
932			 * way too large a weighting to defering the freeing
933			 * of dirty pages.
934			 *
935			 * We can't wait forever for the vnode lock, we might
936			 * deadlock due to a vn_read() getting stuck in
937			 * vm_wait while holding this vnode.  We skip the
938			 * vnode if we can't get it in a reasonable amount
939			 * of time.
940			 */
941			if (object->type == OBJT_VNODE) {
942				vp = object->handle;
943				mp = NULL;
944				if (vp->v_type == VREG &&
945				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
946					++pageout_lock_miss;
947					if (object->flags & OBJ_MIGHTBEDIRTY)
948						vnodes_skipped++;
949					vp = NULL;
950					goto unlock_and_continue;
951				}
952				vm_page_unlock_queues();
953				VI_LOCK(vp);
954				VM_OBJECT_UNLOCK(object);
955				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
956				    LK_TIMELOCK, curthread)) {
957					VM_OBJECT_LOCK(object);
958					vm_page_lock_queues();
959					++pageout_lock_miss;
960					vn_finished_write(mp);
961					if (object->flags & OBJ_MIGHTBEDIRTY)
962						vnodes_skipped++;
963					vp = NULL;
964					goto unlock_and_continue;
965				}
966				VM_OBJECT_LOCK(object);
967				vm_page_lock_queues();
968				/*
969				 * The page might have been moved to another
970				 * queue during potential blocking in vget()
971				 * above.  The page might have been freed and
972				 * reused for another vnode.  The object might
973				 * have been reused for another vnode.
974				 */
975				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
976				    m->object != object ||
977				    object->handle != vp ||
978				    TAILQ_NEXT(m, pageq) != &marker) {
979					if (object->flags & OBJ_MIGHTBEDIRTY)
980						vnodes_skipped++;
981					goto unlock_and_continue;
982				}
983
984				/*
985				 * The page may have been busied during the
986				 * blocking in vput();  We don't move the
987				 * page back onto the end of the queue so that
988				 * statistics are more correct if we don't.
989				 */
990				if (m->busy || (m->flags & PG_BUSY)) {
991					goto unlock_and_continue;
992				}
993
994				/*
995				 * If the page has become held it might
996				 * be undergoing I/O, so skip it
997				 */
998				if (m->hold_count) {
999					vm_pageq_requeue(m);
1000					if (object->flags & OBJ_MIGHTBEDIRTY)
1001						vnodes_skipped++;
1002					goto unlock_and_continue;
1003				}
1004			}
1005
1006			/*
1007			 * If a page is dirty, then it is either being washed
1008			 * (but not yet cleaned) or it is still in the
1009			 * laundry.  If it is still in the laundry, then we
1010			 * start the cleaning operation.
1011			 *
1012			 * decrement page_shortage on success to account for
1013			 * the (future) cleaned page.  Otherwise we could wind
1014			 * up laundering or cleaning too many pages.
1015			 */
1016			if (vm_pageout_clean(m) != 0) {
1017				--page_shortage;
1018				--maxlaunder;
1019			}
1020unlock_and_continue:
1021			VM_OBJECT_UNLOCK(object);
1022			if (vp) {
1023				vm_page_unlock_queues();
1024				vput(vp);
1025				vn_finished_write(mp);
1026				vm_page_lock_queues();
1027			}
1028			next = TAILQ_NEXT(&marker, pageq);
1029			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1030				     &marker, pageq);
1031			continue;
1032		}
1033		VM_OBJECT_UNLOCK(object);
1034	}
1035
1036	/*
1037	 * Compute the number of pages we want to try to move from the
1038	 * active queue to the inactive queue.
1039	 */
1040	page_shortage = vm_paging_target() +
1041		cnt.v_inactive_target - cnt.v_inactive_count;
1042	page_shortage += addl_page_shortage;
1043
1044	/*
1045	 * Scan the active queue for things we can deactivate. We nominally
1046	 * track the per-page activity counter and use it to locate
1047	 * deactivation candidates.
1048	 */
1049	pcount = cnt.v_active_count;
1050	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1051
1052	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1053
1054		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1055		    ("vm_pageout_scan: page %p isn't active", m));
1056
1057		next = TAILQ_NEXT(m, pageq);
1058		object = m->object;
1059		if ((m->flags & PG_MARKER) != 0) {
1060			m = next;
1061			continue;
1062		}
1063		if (!VM_OBJECT_TRYLOCK(object) &&
1064		    !vm_pageout_fallback_object_lock(m, &next)) {
1065			VM_OBJECT_UNLOCK(object);
1066			m = next;
1067			continue;
1068		}
1069
1070		/*
1071		 * Don't deactivate pages that are busy.
1072		 */
1073		if ((m->busy != 0) ||
1074		    (m->flags & PG_BUSY) ||
1075		    (m->hold_count != 0)) {
1076			VM_OBJECT_UNLOCK(object);
1077			vm_pageq_requeue(m);
1078			m = next;
1079			continue;
1080		}
1081
1082		/*
1083		 * The count for pagedaemon pages is done after checking the
1084		 * page for eligibility...
1085		 */
1086		cnt.v_pdpages++;
1087
1088		/*
1089		 * Check to see "how much" the page has been used.
1090		 */
1091		actcount = 0;
1092		if (object->ref_count != 0) {
1093			if (m->flags & PG_REFERENCED) {
1094				actcount += 1;
1095			}
1096			actcount += pmap_ts_referenced(m);
1097			if (actcount) {
1098				m->act_count += ACT_ADVANCE + actcount;
1099				if (m->act_count > ACT_MAX)
1100					m->act_count = ACT_MAX;
1101			}
1102		}
1103
1104		/*
1105		 * Since we have "tested" this bit, we need to clear it now.
1106		 */
1107		vm_page_flag_clear(m, PG_REFERENCED);
1108
1109		/*
1110		 * Only if an object is currently being used, do we use the
1111		 * page activation count stats.
1112		 */
1113		if (actcount && (object->ref_count != 0)) {
1114			vm_pageq_requeue(m);
1115		} else {
1116			m->act_count -= min(m->act_count, ACT_DECLINE);
1117			if (vm_pageout_algorithm ||
1118			    object->ref_count == 0 ||
1119			    m->act_count == 0) {
1120				page_shortage--;
1121				if (object->ref_count == 0) {
1122					pmap_remove_all(m);
1123					if (m->dirty == 0)
1124						vm_page_cache(m);
1125					else
1126						vm_page_deactivate(m);
1127				} else {
1128					vm_page_deactivate(m);
1129				}
1130			} else {
1131				vm_pageq_requeue(m);
1132			}
1133		}
1134		VM_OBJECT_UNLOCK(object);
1135		m = next;
1136	}
1137
1138	/*
1139	 * We try to maintain some *really* free pages, this allows interrupt
1140	 * code to be guaranteed space.  Since both cache and free queues
1141	 * are considered basically 'free', moving pages from cache to free
1142	 * does not effect other calculations.
1143	 */
1144	cache_cur = cache_last_free;
1145	cache_first_failure = -1;
1146	while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1147	    (cache_cur + PQ_PRIME2) & PQ_COLORMASK) != cache_first_failure) {
1148		TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1149		    pageq) {
1150			KASSERT(m->dirty == 0,
1151			    ("Found dirty cache page %p", m));
1152			KASSERT(!pmap_page_is_mapped(m),
1153			    ("Found mapped cache page %p", m));
1154			KASSERT((m->flags & PG_UNMANAGED) == 0,
1155			    ("Found unmanaged cache page %p", m));
1156			KASSERT(m->wire_count == 0,
1157			    ("Found wired cache page %p", m));
1158			if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1159			    m->object)) {
1160				KASSERT((m->flags & PG_BUSY) == 0 &&
1161				    m->busy == 0, ("Found busy cache page %p",
1162				    m));
1163				vm_page_free(m);
1164				VM_OBJECT_UNLOCK(object);
1165				cnt.v_dfree++;
1166				cache_last_free = cache_cur;
1167				cache_first_failure = -1;
1168				break;
1169			}
1170		}
1171		if (m == NULL && cache_first_failure == -1)
1172			cache_first_failure = cache_cur;
1173	}
1174	vm_page_unlock_queues();
1175#if !defined(NO_SWAPPING)
1176	/*
1177	 * Idle process swapout -- run once per second.
1178	 */
1179	if (vm_swap_idle_enabled) {
1180		static long lsec;
1181		if (time_second != lsec) {
1182			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1183			vm_req_vmdaemon();
1184			lsec = time_second;
1185		}
1186	}
1187#endif
1188
1189	/*
1190	 * If we didn't get enough free pages, and we have skipped a vnode
1191	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1192	 * if we did not get enough free pages.
1193	 */
1194	if (vm_paging_target() > 0) {
1195		if (vnodes_skipped && vm_page_count_min())
1196			(void) speedup_syncer();
1197#if !defined(NO_SWAPPING)
1198		if (vm_swap_enabled && vm_page_count_target()) {
1199			vm_req_vmdaemon();
1200			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1201		}
1202#endif
1203	}
1204
1205	/*
1206	 * If we are critically low on one of RAM or swap and low on
1207	 * the other, kill the largest process.  However, we avoid
1208	 * doing this on the first pass in order to give ourselves a
1209	 * chance to flush out dirty vnode-backed pages and to allow
1210	 * active pages to be moved to the inactive queue and reclaimed.
1211	 *
1212	 * We keep the process bigproc locked once we find it to keep anyone
1213	 * from messing with it; however, there is a possibility of
1214	 * deadlock if process B is bigproc and one of it's child processes
1215	 * attempts to propagate a signal to B while we are waiting for A's
1216	 * lock while walking this list.  To avoid this, we don't block on
1217	 * the process lock but just skip a process if it is already locked.
1218	 */
1219	if (pass != 0 &&
1220	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1221	     (swap_pager_full && vm_paging_target() > 0))) {
1222		bigproc = NULL;
1223		bigsize = 0;
1224		sx_slock(&allproc_lock);
1225		FOREACH_PROC_IN_SYSTEM(p) {
1226			int breakout;
1227
1228			if (PROC_TRYLOCK(p) == 0)
1229				continue;
1230			/*
1231			 * If this is a system or protected process, skip it.
1232			 */
1233			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1234			    (p->p_flag & P_PROTECTED) ||
1235			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1236				PROC_UNLOCK(p);
1237				continue;
1238			}
1239			/*
1240			 * If the process is in a non-running type state,
1241			 * don't touch it.  Check all the threads individually.
1242			 */
1243			mtx_lock_spin(&sched_lock);
1244			breakout = 0;
1245			FOREACH_THREAD_IN_PROC(p, td) {
1246				if (!TD_ON_RUNQ(td) &&
1247				    !TD_IS_RUNNING(td) &&
1248				    !TD_IS_SLEEPING(td)) {
1249					breakout = 1;
1250					break;
1251				}
1252			}
1253			if (breakout) {
1254				mtx_unlock_spin(&sched_lock);
1255				PROC_UNLOCK(p);
1256				continue;
1257			}
1258			mtx_unlock_spin(&sched_lock);
1259			/*
1260			 * get the process size
1261			 */
1262			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1263				PROC_UNLOCK(p);
1264				continue;
1265			}
1266			size = vmspace_swap_count(p->p_vmspace);
1267			vm_map_unlock_read(&p->p_vmspace->vm_map);
1268			size += vmspace_resident_count(p->p_vmspace);
1269			/*
1270			 * if the this process is bigger than the biggest one
1271			 * remember it.
1272			 */
1273			if (size > bigsize) {
1274				if (bigproc != NULL)
1275					PROC_UNLOCK(bigproc);
1276				bigproc = p;
1277				bigsize = size;
1278			} else
1279				PROC_UNLOCK(p);
1280		}
1281		sx_sunlock(&allproc_lock);
1282		if (bigproc != NULL) {
1283			killproc(bigproc, "out of swap space");
1284			mtx_lock_spin(&sched_lock);
1285			sched_nice(bigproc, PRIO_MIN);
1286			mtx_unlock_spin(&sched_lock);
1287			PROC_UNLOCK(bigproc);
1288			wakeup(&cnt.v_free_count);
1289		}
1290	}
1291	mtx_unlock(&Giant);
1292}
1293
1294/*
1295 * This routine tries to maintain the pseudo LRU active queue,
1296 * so that during long periods of time where there is no paging,
1297 * that some statistic accumulation still occurs.  This code
1298 * helps the situation where paging just starts to occur.
1299 */
1300static void
1301vm_pageout_page_stats()
1302{
1303	vm_object_t object;
1304	vm_page_t m,next;
1305	int pcount,tpcount;		/* Number of pages to check */
1306	static int fullintervalcount = 0;
1307	int page_shortage;
1308
1309	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1310	page_shortage =
1311	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1312	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1313
1314	if (page_shortage <= 0)
1315		return;
1316
1317	pcount = cnt.v_active_count;
1318	fullintervalcount += vm_pageout_stats_interval;
1319	if (fullintervalcount < vm_pageout_full_stats_interval) {
1320		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1321		if (pcount > tpcount)
1322			pcount = tpcount;
1323	} else {
1324		fullintervalcount = 0;
1325	}
1326
1327	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1328	while ((m != NULL) && (pcount-- > 0)) {
1329		int actcount;
1330
1331		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1332		    ("vm_pageout_page_stats: page %p isn't active", m));
1333
1334		next = TAILQ_NEXT(m, pageq);
1335		object = m->object;
1336
1337		if ((m->flags & PG_MARKER) != 0) {
1338			m = next;
1339			continue;
1340		}
1341		if (!VM_OBJECT_TRYLOCK(object) &&
1342		    !vm_pageout_fallback_object_lock(m, &next)) {
1343			VM_OBJECT_UNLOCK(object);
1344			m = next;
1345			continue;
1346		}
1347
1348		/*
1349		 * Don't deactivate pages that are busy.
1350		 */
1351		if ((m->busy != 0) ||
1352		    (m->flags & PG_BUSY) ||
1353		    (m->hold_count != 0)) {
1354			VM_OBJECT_UNLOCK(object);
1355			vm_pageq_requeue(m);
1356			m = next;
1357			continue;
1358		}
1359
1360		actcount = 0;
1361		if (m->flags & PG_REFERENCED) {
1362			vm_page_flag_clear(m, PG_REFERENCED);
1363			actcount += 1;
1364		}
1365
1366		actcount += pmap_ts_referenced(m);
1367		if (actcount) {
1368			m->act_count += ACT_ADVANCE + actcount;
1369			if (m->act_count > ACT_MAX)
1370				m->act_count = ACT_MAX;
1371			vm_pageq_requeue(m);
1372		} else {
1373			if (m->act_count == 0) {
1374				/*
1375				 * We turn off page access, so that we have
1376				 * more accurate RSS stats.  We don't do this
1377				 * in the normal page deactivation when the
1378				 * system is loaded VM wise, because the
1379				 * cost of the large number of page protect
1380				 * operations would be higher than the value
1381				 * of doing the operation.
1382				 */
1383				pmap_remove_all(m);
1384				vm_page_deactivate(m);
1385			} else {
1386				m->act_count -= min(m->act_count, ACT_DECLINE);
1387				vm_pageq_requeue(m);
1388			}
1389		}
1390		VM_OBJECT_UNLOCK(object);
1391		m = next;
1392	}
1393}
1394
1395/*
1396 *	vm_pageout is the high level pageout daemon.
1397 */
1398static void
1399vm_pageout()
1400{
1401	int error, pass;
1402
1403	/*
1404	 * Initialize some paging parameters.
1405	 */
1406	cnt.v_interrupt_free_min = 2;
1407	if (cnt.v_page_count < 2000)
1408		vm_pageout_page_count = 8;
1409
1410	/*
1411	 * v_free_reserved needs to include enough for the largest
1412	 * swap pager structures plus enough for any pv_entry structs
1413	 * when paging.
1414	 */
1415	if (cnt.v_page_count > 1024)
1416		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1417	else
1418		cnt.v_free_min = 4;
1419	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1420	    cnt.v_interrupt_free_min;
1421	cnt.v_free_reserved = vm_pageout_page_count +
1422	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_NUMCOLORS;
1423	cnt.v_free_severe = cnt.v_free_min / 2;
1424	cnt.v_free_min += cnt.v_free_reserved;
1425	cnt.v_free_severe += cnt.v_free_reserved;
1426
1427	/*
1428	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1429	 * that these are more a measure of the VM cache queue hysteresis
1430	 * then the VM free queue.  Specifically, v_free_target is the
1431	 * high water mark (free+cache pages).
1432	 *
1433	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1434	 * low water mark, while v_free_min is the stop.  v_cache_min must
1435	 * be big enough to handle memory needs while the pageout daemon
1436	 * is signalled and run to free more pages.
1437	 */
1438	if (cnt.v_free_count > 6144)
1439		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1440	else
1441		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1442
1443	if (cnt.v_free_count > 2048) {
1444		cnt.v_cache_min = cnt.v_free_target;
1445		cnt.v_cache_max = 2 * cnt.v_cache_min;
1446		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1447	} else {
1448		cnt.v_cache_min = 0;
1449		cnt.v_cache_max = 0;
1450		cnt.v_inactive_target = cnt.v_free_count / 4;
1451	}
1452	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1453		cnt.v_inactive_target = cnt.v_free_count / 3;
1454
1455	/* XXX does not really belong here */
1456	if (vm_page_max_wired == 0)
1457		vm_page_max_wired = cnt.v_free_count / 3;
1458
1459	if (vm_pageout_stats_max == 0)
1460		vm_pageout_stats_max = cnt.v_free_target;
1461
1462	/*
1463	 * Set interval in seconds for stats scan.
1464	 */
1465	if (vm_pageout_stats_interval == 0)
1466		vm_pageout_stats_interval = 5;
1467	if (vm_pageout_full_stats_interval == 0)
1468		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1469
1470	swap_pager_swap_init();
1471	pass = 0;
1472	/*
1473	 * The pageout daemon is never done, so loop forever.
1474	 */
1475	while (TRUE) {
1476		vm_page_lock_queues();
1477		/*
1478		 * If we have enough free memory, wakeup waiters.  Do
1479		 * not clear vm_pages_needed until we reach our target,
1480		 * otherwise we may be woken up over and over again and
1481		 * waste a lot of cpu.
1482		 */
1483		if (vm_pages_needed && !vm_page_count_min()) {
1484			if (!vm_paging_needed())
1485				vm_pages_needed = 0;
1486			wakeup(&cnt.v_free_count);
1487		}
1488		if (vm_pages_needed) {
1489			/*
1490			 * Still not done, take a second pass without waiting
1491			 * (unlimited dirty cleaning), otherwise sleep a bit
1492			 * and try again.
1493			 */
1494			++pass;
1495			if (pass > 1)
1496				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1497				       "psleep", hz/2);
1498		} else {
1499			/*
1500			 * Good enough, sleep & handle stats.  Prime the pass
1501			 * for the next run.
1502			 */
1503			if (pass > 1)
1504				pass = 1;
1505			else
1506				pass = 0;
1507			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1508				    "psleep", vm_pageout_stats_interval * hz);
1509			if (error && !vm_pages_needed) {
1510				pass = 0;
1511				vm_pageout_page_stats();
1512				vm_page_unlock_queues();
1513				continue;
1514			}
1515		}
1516		if (vm_pages_needed)
1517			cnt.v_pdwakeups++;
1518		vm_page_unlock_queues();
1519		vm_pageout_scan(pass);
1520	}
1521}
1522
1523/*
1524 * Unless the page queue lock is held by the caller, this function
1525 * should be regarded as advisory.  Specifically, the caller should
1526 * not msleep() on &cnt.v_free_count following this function unless
1527 * the page queue lock is held until the msleep() is performed.
1528 */
1529void
1530pagedaemon_wakeup()
1531{
1532
1533	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1534		vm_pages_needed = 1;
1535		wakeup(&vm_pages_needed);
1536	}
1537}
1538
1539#if !defined(NO_SWAPPING)
1540static void
1541vm_req_vmdaemon()
1542{
1543	static int lastrun = 0;
1544
1545	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1546		wakeup(&vm_daemon_needed);
1547		lastrun = ticks;
1548	}
1549}
1550
1551static void
1552vm_daemon()
1553{
1554	struct rlimit rsslim;
1555	struct proc *p;
1556	struct thread *td;
1557	int breakout;
1558
1559	mtx_lock(&Giant);
1560	while (TRUE) {
1561		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1562		if (vm_pageout_req_swapout) {
1563			swapout_procs(vm_pageout_req_swapout);
1564			vm_pageout_req_swapout = 0;
1565		}
1566		/*
1567		 * scan the processes for exceeding their rlimits or if
1568		 * process is swapped out -- deactivate pages
1569		 */
1570		sx_slock(&allproc_lock);
1571		LIST_FOREACH(p, &allproc, p_list) {
1572			vm_pindex_t limit, size;
1573
1574			/*
1575			 * if this is a system process or if we have already
1576			 * looked at this process, skip it.
1577			 */
1578			PROC_LOCK(p);
1579			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1580				PROC_UNLOCK(p);
1581				continue;
1582			}
1583			/*
1584			 * if the process is in a non-running type state,
1585			 * don't touch it.
1586			 */
1587			mtx_lock_spin(&sched_lock);
1588			breakout = 0;
1589			FOREACH_THREAD_IN_PROC(p, td) {
1590				if (!TD_ON_RUNQ(td) &&
1591				    !TD_IS_RUNNING(td) &&
1592				    !TD_IS_SLEEPING(td)) {
1593					breakout = 1;
1594					break;
1595				}
1596			}
1597			mtx_unlock_spin(&sched_lock);
1598			if (breakout) {
1599				PROC_UNLOCK(p);
1600				continue;
1601			}
1602			/*
1603			 * get a limit
1604			 */
1605			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1606			limit = OFF_TO_IDX(
1607			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1608
1609			/*
1610			 * let processes that are swapped out really be
1611			 * swapped out set the limit to nothing (will force a
1612			 * swap-out.)
1613			 */
1614			if ((p->p_sflag & PS_INMEM) == 0)
1615				limit = 0;	/* XXX */
1616			PROC_UNLOCK(p);
1617
1618			size = vmspace_resident_count(p->p_vmspace);
1619			if (limit >= 0 && size >= limit) {
1620				vm_pageout_map_deactivate_pages(
1621				    &p->p_vmspace->vm_map, limit);
1622			}
1623		}
1624		sx_sunlock(&allproc_lock);
1625	}
1626}
1627#endif			/* !defined(NO_SWAPPING) */
1628