vm_pageout.c revision 137243
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 137243 2004-11-05 06:24:05Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206static void vm_pageout_map_deactivate_pages(vm_map_t, long);
207static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
208static void vm_req_vmdaemon(void);
209#endif
210static void vm_pageout_page_stats(void);
211
212/*
213 * vm_pageout_clean:
214 *
215 * Clean the page and remove it from the laundry.
216 *
217 * We set the busy bit to cause potential page faults on this page to
218 * block.  Note the careful timing, however, the busy bit isn't set till
219 * late and we cannot do anything that will mess with the page.
220 */
221static int
222vm_pageout_clean(m)
223	vm_page_t m;
224{
225	vm_object_t object;
226	vm_page_t mc[2*vm_pageout_page_count];
227	int pageout_count;
228	int ib, is, page_base;
229	vm_pindex_t pindex = m->pindex;
230
231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
232	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
233
234	/*
235	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
236	 * with the new swapper, but we could have serious problems paging
237	 * out other object types if there is insufficient memory.
238	 *
239	 * Unfortunately, checking free memory here is far too late, so the
240	 * check has been moved up a procedural level.
241	 */
242
243	/*
244	 * Don't mess with the page if it's busy, held, or special
245	 */
246	if ((m->hold_count != 0) ||
247	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
248		return 0;
249	}
250
251	mc[vm_pageout_page_count] = m;
252	pageout_count = 1;
253	page_base = vm_pageout_page_count;
254	ib = 1;
255	is = 1;
256
257	/*
258	 * Scan object for clusterable pages.
259	 *
260	 * We can cluster ONLY if: ->> the page is NOT
261	 * clean, wired, busy, held, or mapped into a
262	 * buffer, and one of the following:
263	 * 1) The page is inactive, or a seldom used
264	 *    active page.
265	 * -or-
266	 * 2) we force the issue.
267	 *
268	 * During heavy mmap/modification loads the pageout
269	 * daemon can really fragment the underlying file
270	 * due to flushing pages out of order and not trying
271	 * align the clusters (which leave sporatic out-of-order
272	 * holes).  To solve this problem we do the reverse scan
273	 * first and attempt to align our cluster, then do a
274	 * forward scan if room remains.
275	 */
276	object = m->object;
277more:
278	while (ib && pageout_count < vm_pageout_page_count) {
279		vm_page_t p;
280
281		if (ib > pindex) {
282			ib = 0;
283			break;
284		}
285
286		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
287			ib = 0;
288			break;
289		}
290		if (((p->queue - p->pc) == PQ_CACHE) ||
291		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
292			ib = 0;
293			break;
294		}
295		vm_page_test_dirty(p);
296		if ((p->dirty & p->valid) == 0 ||
297		    p->queue != PQ_INACTIVE ||
298		    p->wire_count != 0 ||	/* may be held by buf cache */
299		    p->hold_count != 0) {	/* may be undergoing I/O */
300			ib = 0;
301			break;
302		}
303		mc[--page_base] = p;
304		++pageout_count;
305		++ib;
306		/*
307		 * alignment boundry, stop here and switch directions.  Do
308		 * not clear ib.
309		 */
310		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
311			break;
312	}
313
314	while (pageout_count < vm_pageout_page_count &&
315	    pindex + is < object->size) {
316		vm_page_t p;
317
318		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
319			break;
320		if (((p->queue - p->pc) == PQ_CACHE) ||
321		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322			break;
323		}
324		vm_page_test_dirty(p);
325		if ((p->dirty & p->valid) == 0 ||
326		    p->queue != PQ_INACTIVE ||
327		    p->wire_count != 0 ||	/* may be held by buf cache */
328		    p->hold_count != 0) {	/* may be undergoing I/O */
329			break;
330		}
331		mc[page_base + pageout_count] = p;
332		++pageout_count;
333		++is;
334	}
335
336	/*
337	 * If we exhausted our forward scan, continue with the reverse scan
338	 * when possible, even past a page boundry.  This catches boundry
339	 * conditions.
340	 */
341	if (ib && pageout_count < vm_pageout_page_count)
342		goto more;
343
344	/*
345	 * we allow reads during pageouts...
346	 */
347	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
348}
349
350/*
351 * vm_pageout_flush() - launder the given pages
352 *
353 *	The given pages are laundered.  Note that we setup for the start of
354 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
355 *	reference count all in here rather then in the parent.  If we want
356 *	the parent to do more sophisticated things we may have to change
357 *	the ordering.
358 */
359int
360vm_pageout_flush(vm_page_t *mc, int count, int flags)
361{
362	vm_object_t object = mc[0]->object;
363	int pageout_status[count];
364	int numpagedout = 0;
365	int i;
366
367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
368	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
369	/*
370	 * Initiate I/O.  Bump the vm_page_t->busy counter and
371	 * mark the pages read-only.
372	 *
373	 * We do not have to fixup the clean/dirty bits here... we can
374	 * allow the pager to do it after the I/O completes.
375	 *
376	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
377	 * edge case with file fragments.
378	 */
379	for (i = 0; i < count; i++) {
380		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
381		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
382			mc[i], i, count));
383		vm_page_io_start(mc[i]);
384		pmap_page_protect(mc[i], VM_PROT_READ);
385	}
386	vm_page_unlock_queues();
387	vm_object_pip_add(object, count);
388
389	vm_pager_put_pages(object, mc, count,
390	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
391	    pageout_status);
392
393	vm_page_lock_queues();
394	for (i = 0; i < count; i++) {
395		vm_page_t mt = mc[i];
396
397		KASSERT((mt->flags & PG_WRITEABLE) == 0,
398		    ("vm_pageout_flush: page %p is not write protected", mt));
399		switch (pageout_status[i]) {
400		case VM_PAGER_OK:
401		case VM_PAGER_PEND:
402			numpagedout++;
403			break;
404		case VM_PAGER_BAD:
405			/*
406			 * Page outside of range of object. Right now we
407			 * essentially lose the changes by pretending it
408			 * worked.
409			 */
410			pmap_clear_modify(mt);
411			vm_page_undirty(mt);
412			break;
413		case VM_PAGER_ERROR:
414		case VM_PAGER_FAIL:
415			/*
416			 * If page couldn't be paged out, then reactivate the
417			 * page so it doesn't clog the inactive list.  (We
418			 * will try paging out it again later).
419			 */
420			vm_page_activate(mt);
421			break;
422		case VM_PAGER_AGAIN:
423			break;
424		}
425
426		/*
427		 * If the operation is still going, leave the page busy to
428		 * block all other accesses. Also, leave the paging in
429		 * progress indicator set so that we don't attempt an object
430		 * collapse.
431		 */
432		if (pageout_status[i] != VM_PAGER_PEND) {
433			vm_object_pip_wakeup(object);
434			vm_page_io_finish(mt);
435			if (vm_page_count_severe())
436				vm_page_try_to_cache(mt);
437		}
438	}
439	return numpagedout;
440}
441
442#if !defined(NO_SWAPPING)
443/*
444 *	vm_pageout_object_deactivate_pages
445 *
446 *	deactivate enough pages to satisfy the inactive target
447 *	requirements or if vm_page_proc_limit is set, then
448 *	deactivate all of the pages in the object and its
449 *	backing_objects.
450 *
451 *	The object and map must be locked.
452 */
453static void
454vm_pageout_object_deactivate_pages(pmap, first_object, desired)
455	pmap_t pmap;
456	vm_object_t first_object;
457	long desired;
458{
459	vm_object_t backing_object, object;
460	vm_page_t p, next;
461	int actcount, rcount, remove_mode;
462
463	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
464	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
465		return;
466	for (object = first_object;; object = backing_object) {
467		if (pmap_resident_count(pmap) <= desired)
468			goto unlock_return;
469		if (object->paging_in_progress)
470			goto unlock_return;
471
472		remove_mode = 0;
473		if (object->shadow_count > 1)
474			remove_mode = 1;
475		/*
476		 * scan the objects entire memory queue
477		 */
478		rcount = object->resident_page_count;
479		p = TAILQ_FIRST(&object->memq);
480		vm_page_lock_queues();
481		while (p && (rcount-- > 0)) {
482			if (pmap_resident_count(pmap) <= desired) {
483				vm_page_unlock_queues();
484				goto unlock_return;
485			}
486			next = TAILQ_NEXT(p, listq);
487			cnt.v_pdpages++;
488			if (p->wire_count != 0 ||
489			    p->hold_count != 0 ||
490			    p->busy != 0 ||
491			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
492			    !pmap_page_exists_quick(pmap, p)) {
493				p = next;
494				continue;
495			}
496			actcount = pmap_ts_referenced(p);
497			if (actcount) {
498				vm_page_flag_set(p, PG_REFERENCED);
499			} else if (p->flags & PG_REFERENCED) {
500				actcount = 1;
501			}
502			if ((p->queue != PQ_ACTIVE) &&
503				(p->flags & PG_REFERENCED)) {
504				vm_page_activate(p);
505				p->act_count += actcount;
506				vm_page_flag_clear(p, PG_REFERENCED);
507			} else if (p->queue == PQ_ACTIVE) {
508				if ((p->flags & PG_REFERENCED) == 0) {
509					p->act_count -= min(p->act_count, ACT_DECLINE);
510					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
511						pmap_remove_all(p);
512						vm_page_deactivate(p);
513					} else {
514						vm_pageq_requeue(p);
515					}
516				} else {
517					vm_page_activate(p);
518					vm_page_flag_clear(p, PG_REFERENCED);
519					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520						p->act_count += ACT_ADVANCE;
521					vm_pageq_requeue(p);
522				}
523			} else if (p->queue == PQ_INACTIVE) {
524				pmap_remove_all(p);
525			}
526			p = next;
527		}
528		vm_page_unlock_queues();
529		if ((backing_object = object->backing_object) == NULL)
530			goto unlock_return;
531		VM_OBJECT_LOCK(backing_object);
532		if (object != first_object)
533			VM_OBJECT_UNLOCK(object);
534	}
535unlock_return:
536	if (object != first_object)
537		VM_OBJECT_UNLOCK(object);
538}
539
540/*
541 * deactivate some number of pages in a map, try to do it fairly, but
542 * that is really hard to do.
543 */
544static void
545vm_pageout_map_deactivate_pages(map, desired)
546	vm_map_t map;
547	long desired;
548{
549	vm_map_entry_t tmpe;
550	vm_object_t obj, bigobj;
551	int nothingwired;
552
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
568				if (obj->shadow_count <= 1 &&
569				    (bigobj == NULL ||
570				     bigobj->resident_page_count < obj->resident_page_count)) {
571					if (bigobj != NULL)
572						VM_OBJECT_UNLOCK(bigobj);
573					bigobj = obj;
574				} else
575					VM_OBJECT_UNLOCK(obj);
576			}
577		}
578		if (tmpe->wired_count > 0)
579			nothingwired = FALSE;
580		tmpe = tmpe->next;
581	}
582
583	if (bigobj != NULL) {
584		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
585		VM_OBJECT_UNLOCK(bigobj);
586	}
587	/*
588	 * Next, hunt around for other pages to deactivate.  We actually
589	 * do this search sort of wrong -- .text first is not the best idea.
590	 */
591	tmpe = map->header.next;
592	while (tmpe != &map->header) {
593		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
594			break;
595		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
596			obj = tmpe->object.vm_object;
597			if (obj != NULL) {
598				VM_OBJECT_LOCK(obj);
599				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
600				VM_OBJECT_UNLOCK(obj);
601			}
602		}
603		tmpe = tmpe->next;
604	}
605
606	/*
607	 * Remove all mappings if a process is swapped out, this will free page
608	 * table pages.
609	 */
610	if (desired == 0 && nothingwired) {
611		pmap_remove(vm_map_pmap(map), vm_map_min(map),
612		    vm_map_max(map));
613	}
614	vm_map_unlock(map);
615}
616#endif		/* !defined(NO_SWAPPING) */
617
618/*
619 * This routine is very drastic, but can save the system
620 * in a pinch.
621 */
622static void
623vm_pageout_pmap_collect(void)
624{
625	int i;
626	vm_page_t m;
627	static int warningdone;
628
629	if (pmap_pagedaemon_waken == 0)
630		return;
631	if (warningdone < 5) {
632		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
633		warningdone++;
634	}
635	vm_page_lock_queues();
636	for (i = 0; i < vm_page_array_size; i++) {
637		m = &vm_page_array[i];
638		if (m->wire_count || m->hold_count || m->busy ||
639		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
640			continue;
641		pmap_remove_all(m);
642	}
643	vm_page_unlock_queues();
644	pmap_pagedaemon_waken = 0;
645}
646
647/*
648 *	vm_pageout_scan does the dirty work for the pageout daemon.
649 */
650static void
651vm_pageout_scan(int pass)
652{
653	vm_page_t m, next;
654	struct vm_page marker;
655	int page_shortage, maxscan, pcount;
656	int addl_page_shortage, addl_page_shortage_init;
657	struct proc *p, *bigproc;
658	struct thread *td;
659	vm_offset_t size, bigsize;
660	vm_object_t object;
661	int actcount;
662	int vnodes_skipped = 0;
663	int maxlaunder;
664
665	mtx_lock(&Giant);
666	/*
667	 * Decrease registered cache sizes.
668	 */
669	EVENTHANDLER_INVOKE(vm_lowmem, 0);
670	/*
671	 * We do this explicitly after the caches have been drained above.
672	 */
673	uma_reclaim();
674	/*
675	 * Do whatever cleanup that the pmap code can.
676	 */
677	vm_pageout_pmap_collect();
678
679	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
680
681	/*
682	 * Calculate the number of pages we want to either free or move
683	 * to the cache.
684	 */
685	page_shortage = vm_paging_target() + addl_page_shortage_init;
686
687	/*
688	 * Initialize our marker
689	 */
690	bzero(&marker, sizeof(marker));
691	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
692	marker.queue = PQ_INACTIVE;
693	marker.wire_count = 1;
694
695	/*
696	 * Start scanning the inactive queue for pages we can move to the
697	 * cache or free.  The scan will stop when the target is reached or
698	 * we have scanned the entire inactive queue.  Note that m->act_count
699	 * is not used to form decisions for the inactive queue, only for the
700	 * active queue.
701	 *
702	 * maxlaunder limits the number of dirty pages we flush per scan.
703	 * For most systems a smaller value (16 or 32) is more robust under
704	 * extreme memory and disk pressure because any unnecessary writes
705	 * to disk can result in extreme performance degredation.  However,
706	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
707	 * used) will die horribly with limited laundering.  If the pageout
708	 * daemon cannot clean enough pages in the first pass, we let it go
709	 * all out in succeeding passes.
710	 */
711	if ((maxlaunder = vm_max_launder) <= 1)
712		maxlaunder = 1;
713	if (pass)
714		maxlaunder = 10000;
715	vm_page_lock_queues();
716rescan0:
717	addl_page_shortage = addl_page_shortage_init;
718	maxscan = cnt.v_inactive_count;
719
720	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
721	     m != NULL && maxscan-- > 0 && page_shortage > 0;
722	     m = next) {
723
724		cnt.v_pdpages++;
725
726		if (m->queue != PQ_INACTIVE) {
727			goto rescan0;
728		}
729
730		next = TAILQ_NEXT(m, pageq);
731		object = m->object;
732
733		/*
734		 * skip marker pages
735		 */
736		if (m->flags & PG_MARKER)
737			continue;
738
739		/*
740		 * A held page may be undergoing I/O, so skip it.
741		 */
742		if (m->hold_count) {
743			vm_pageq_requeue(m);
744			addl_page_shortage++;
745			continue;
746		}
747		/*
748		 * Don't mess with busy pages, keep in the front of the
749		 * queue, most likely are being paged out.
750		 */
751		if (!VM_OBJECT_TRYLOCK(object)) {
752			addl_page_shortage++;
753			continue;
754		}
755		if (m->busy || (m->flags & PG_BUSY)) {
756			VM_OBJECT_UNLOCK(object);
757			addl_page_shortage++;
758			continue;
759		}
760
761		/*
762		 * If the object is not being used, we ignore previous
763		 * references.
764		 */
765		if (object->ref_count == 0) {
766			vm_page_flag_clear(m, PG_REFERENCED);
767			pmap_clear_reference(m);
768
769		/*
770		 * Otherwise, if the page has been referenced while in the
771		 * inactive queue, we bump the "activation count" upwards,
772		 * making it less likely that the page will be added back to
773		 * the inactive queue prematurely again.  Here we check the
774		 * page tables (or emulated bits, if any), given the upper
775		 * level VM system not knowing anything about existing
776		 * references.
777		 */
778		} else if (((m->flags & PG_REFERENCED) == 0) &&
779			(actcount = pmap_ts_referenced(m))) {
780			vm_page_activate(m);
781			VM_OBJECT_UNLOCK(object);
782			m->act_count += (actcount + ACT_ADVANCE);
783			continue;
784		}
785
786		/*
787		 * If the upper level VM system knows about any page
788		 * references, we activate the page.  We also set the
789		 * "activation count" higher than normal so that we will less
790		 * likely place pages back onto the inactive queue again.
791		 */
792		if ((m->flags & PG_REFERENCED) != 0) {
793			vm_page_flag_clear(m, PG_REFERENCED);
794			actcount = pmap_ts_referenced(m);
795			vm_page_activate(m);
796			VM_OBJECT_UNLOCK(object);
797			m->act_count += (actcount + ACT_ADVANCE + 1);
798			continue;
799		}
800
801		/*
802		 * If the upper level VM system doesn't know anything about
803		 * the page being dirty, we have to check for it again.  As
804		 * far as the VM code knows, any partially dirty pages are
805		 * fully dirty.
806		 */
807		if (m->dirty == 0 && !pmap_is_modified(m)) {
808			/*
809			 * Avoid a race condition: Unless write access is
810			 * removed from the page, another processor could
811			 * modify it before all access is removed by the call
812			 * to vm_page_cache() below.  If vm_page_cache() finds
813			 * that the page has been modified when it removes all
814			 * access, it panics because it cannot cache dirty
815			 * pages.  In principle, we could eliminate just write
816			 * access here rather than all access.  In the expected
817			 * case, when there are no last instant modifications
818			 * to the page, removing all access will be cheaper
819			 * overall.
820			 */
821			if ((m->flags & PG_WRITEABLE) != 0)
822				pmap_remove_all(m);
823		} else {
824			vm_page_dirty(m);
825		}
826
827		if (m->valid == 0) {
828			/*
829			 * Invalid pages can be easily freed
830			 */
831			pmap_remove_all(m);
832			vm_page_free(m);
833			cnt.v_dfree++;
834			--page_shortage;
835		} else if (m->dirty == 0) {
836			/*
837			 * Clean pages can be placed onto the cache queue.
838			 * This effectively frees them.
839			 */
840			vm_page_cache(m);
841			--page_shortage;
842		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
843			/*
844			 * Dirty pages need to be paged out, but flushing
845			 * a page is extremely expensive verses freeing
846			 * a clean page.  Rather then artificially limiting
847			 * the number of pages we can flush, we instead give
848			 * dirty pages extra priority on the inactive queue
849			 * by forcing them to be cycled through the queue
850			 * twice before being flushed, after which the
851			 * (now clean) page will cycle through once more
852			 * before being freed.  This significantly extends
853			 * the thrash point for a heavily loaded machine.
854			 */
855			vm_page_flag_set(m, PG_WINATCFLS);
856			vm_pageq_requeue(m);
857		} else if (maxlaunder > 0) {
858			/*
859			 * We always want to try to flush some dirty pages if
860			 * we encounter them, to keep the system stable.
861			 * Normally this number is small, but under extreme
862			 * pressure where there are insufficient clean pages
863			 * on the inactive queue, we may have to go all out.
864			 */
865			int swap_pageouts_ok;
866			struct vnode *vp = NULL;
867			struct mount *mp;
868
869			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
870				swap_pageouts_ok = 1;
871			} else {
872				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
873				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
874				vm_page_count_min());
875
876			}
877
878			/*
879			 * We don't bother paging objects that are "dead".
880			 * Those objects are in a "rundown" state.
881			 */
882			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
883				VM_OBJECT_UNLOCK(object);
884				vm_pageq_requeue(m);
885				continue;
886			}
887
888			/*
889			 * The object is already known NOT to be dead.   It
890			 * is possible for the vget() to block the whole
891			 * pageout daemon, but the new low-memory handling
892			 * code should prevent it.
893			 *
894			 * The previous code skipped locked vnodes and, worse,
895			 * reordered pages in the queue.  This results in
896			 * completely non-deterministic operation and, on a
897			 * busy system, can lead to extremely non-optimal
898			 * pageouts.  For example, it can cause clean pages
899			 * to be freed and dirty pages to be moved to the end
900			 * of the queue.  Since dirty pages are also moved to
901			 * the end of the queue once-cleaned, this gives
902			 * way too large a weighting to defering the freeing
903			 * of dirty pages.
904			 *
905			 * We can't wait forever for the vnode lock, we might
906			 * deadlock due to a vn_read() getting stuck in
907			 * vm_wait while holding this vnode.  We skip the
908			 * vnode if we can't get it in a reasonable amount
909			 * of time.
910			 */
911			if (object->type == OBJT_VNODE) {
912				vp = object->handle;
913				mp = NULL;
914				if (vp->v_type == VREG)
915					vn_start_write(vp, &mp, V_NOWAIT);
916				vm_page_unlock_queues();
917				VI_LOCK(vp);
918				VM_OBJECT_UNLOCK(object);
919				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
920				    LK_TIMELOCK, curthread)) {
921					VM_OBJECT_LOCK(object);
922					vm_page_lock_queues();
923					++pageout_lock_miss;
924					vn_finished_write(mp);
925					if (object->flags & OBJ_MIGHTBEDIRTY)
926						vnodes_skipped++;
927					VM_OBJECT_UNLOCK(object);
928					continue;
929				}
930				VM_OBJECT_LOCK(object);
931				vm_page_lock_queues();
932				/*
933				 * The page might have been moved to another
934				 * queue during potential blocking in vget()
935				 * above.  The page might have been freed and
936				 * reused for another vnode.  The object might
937				 * have been reused for another vnode.
938				 */
939				if (m->queue != PQ_INACTIVE ||
940				    m->object != object ||
941				    object->handle != vp) {
942					if (object->flags & OBJ_MIGHTBEDIRTY)
943						vnodes_skipped++;
944					goto unlock_and_continue;
945				}
946
947				/*
948				 * The page may have been busied during the
949				 * blocking in vput();  We don't move the
950				 * page back onto the end of the queue so that
951				 * statistics are more correct if we don't.
952				 */
953				if (m->busy || (m->flags & PG_BUSY)) {
954					goto unlock_and_continue;
955				}
956
957				/*
958				 * If the page has become held it might
959				 * be undergoing I/O, so skip it
960				 */
961				if (m->hold_count) {
962					vm_pageq_requeue(m);
963					if (object->flags & OBJ_MIGHTBEDIRTY)
964						vnodes_skipped++;
965					goto unlock_and_continue;
966				}
967			}
968
969			/*
970			 * If a page is dirty, then it is either being washed
971			 * (but not yet cleaned) or it is still in the
972			 * laundry.  If it is still in the laundry, then we
973			 * start the cleaning operation.
974			 *
975			 * This operation may cluster, invalidating the 'next'
976			 * pointer.  To prevent an inordinate number of
977			 * restarts we use our marker to remember our place.
978			 *
979			 * decrement page_shortage on success to account for
980			 * the (future) cleaned page.  Otherwise we could wind
981			 * up laundering or cleaning too many pages.
982			 */
983			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
984			if (vm_pageout_clean(m) != 0) {
985				--page_shortage;
986				--maxlaunder;
987			}
988			next = TAILQ_NEXT(&marker, pageq);
989			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
990unlock_and_continue:
991			VM_OBJECT_UNLOCK(object);
992			if (vp) {
993				vm_page_unlock_queues();
994				vput(vp);
995				vn_finished_write(mp);
996				vm_page_lock_queues();
997			}
998			continue;
999		}
1000		VM_OBJECT_UNLOCK(object);
1001	}
1002
1003	/*
1004	 * Compute the number of pages we want to try to move from the
1005	 * active queue to the inactive queue.
1006	 */
1007	page_shortage = vm_paging_target() +
1008		cnt.v_inactive_target - cnt.v_inactive_count;
1009	page_shortage += addl_page_shortage;
1010
1011	/*
1012	 * Scan the active queue for things we can deactivate. We nominally
1013	 * track the per-page activity counter and use it to locate
1014	 * deactivation candidates.
1015	 */
1016	pcount = cnt.v_active_count;
1017	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1018
1019	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1020
1021		KASSERT(m->queue == PQ_ACTIVE,
1022		    ("vm_pageout_scan: page %p isn't active", m));
1023
1024		next = TAILQ_NEXT(m, pageq);
1025		object = m->object;
1026		if (!VM_OBJECT_TRYLOCK(object)) {
1027			vm_pageq_requeue(m);
1028			m = next;
1029			continue;
1030		}
1031
1032		/*
1033		 * Don't deactivate pages that are busy.
1034		 */
1035		if ((m->busy != 0) ||
1036		    (m->flags & PG_BUSY) ||
1037		    (m->hold_count != 0)) {
1038			VM_OBJECT_UNLOCK(object);
1039			vm_pageq_requeue(m);
1040			m = next;
1041			continue;
1042		}
1043
1044		/*
1045		 * The count for pagedaemon pages is done after checking the
1046		 * page for eligibility...
1047		 */
1048		cnt.v_pdpages++;
1049
1050		/*
1051		 * Check to see "how much" the page has been used.
1052		 */
1053		actcount = 0;
1054		if (object->ref_count != 0) {
1055			if (m->flags & PG_REFERENCED) {
1056				actcount += 1;
1057			}
1058			actcount += pmap_ts_referenced(m);
1059			if (actcount) {
1060				m->act_count += ACT_ADVANCE + actcount;
1061				if (m->act_count > ACT_MAX)
1062					m->act_count = ACT_MAX;
1063			}
1064		}
1065
1066		/*
1067		 * Since we have "tested" this bit, we need to clear it now.
1068		 */
1069		vm_page_flag_clear(m, PG_REFERENCED);
1070
1071		/*
1072		 * Only if an object is currently being used, do we use the
1073		 * page activation count stats.
1074		 */
1075		if (actcount && (object->ref_count != 0)) {
1076			vm_pageq_requeue(m);
1077		} else {
1078			m->act_count -= min(m->act_count, ACT_DECLINE);
1079			if (vm_pageout_algorithm ||
1080			    object->ref_count == 0 ||
1081			    m->act_count == 0) {
1082				page_shortage--;
1083				if (object->ref_count == 0) {
1084					pmap_remove_all(m);
1085					if (m->dirty == 0)
1086						vm_page_cache(m);
1087					else
1088						vm_page_deactivate(m);
1089				} else {
1090					vm_page_deactivate(m);
1091				}
1092			} else {
1093				vm_pageq_requeue(m);
1094			}
1095		}
1096		VM_OBJECT_UNLOCK(object);
1097		m = next;
1098	}
1099
1100	/*
1101	 * We try to maintain some *really* free pages, this allows interrupt
1102	 * code to be guaranteed space.  Since both cache and free queues
1103	 * are considered basically 'free', moving pages from cache to free
1104	 * does not effect other calculations.
1105	 */
1106	while (cnt.v_free_count < cnt.v_free_reserved) {
1107		static int cache_rover = 0;
1108
1109		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1110			break;
1111		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1112		object = m->object;
1113		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1114		vm_page_free(m);
1115		VM_OBJECT_UNLOCK(object);
1116		cnt.v_dfree++;
1117	}
1118	vm_page_unlock_queues();
1119#if !defined(NO_SWAPPING)
1120	/*
1121	 * Idle process swapout -- run once per second.
1122	 */
1123	if (vm_swap_idle_enabled) {
1124		static long lsec;
1125		if (time_second != lsec) {
1126			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1127			vm_req_vmdaemon();
1128			lsec = time_second;
1129		}
1130	}
1131#endif
1132
1133	/*
1134	 * If we didn't get enough free pages, and we have skipped a vnode
1135	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1136	 * if we did not get enough free pages.
1137	 */
1138	if (vm_paging_target() > 0) {
1139		if (vnodes_skipped && vm_page_count_min())
1140			(void) speedup_syncer();
1141#if !defined(NO_SWAPPING)
1142		if (vm_swap_enabled && vm_page_count_target()) {
1143			vm_req_vmdaemon();
1144			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1145		}
1146#endif
1147	}
1148
1149	/*
1150	 * If we are critically low on one of RAM or swap and low on
1151	 * the other, kill the largest process.  However, we avoid
1152	 * doing this on the first pass in order to give ourselves a
1153	 * chance to flush out dirty vnode-backed pages and to allow
1154	 * active pages to be moved to the inactive queue and reclaimed.
1155	 *
1156	 * We keep the process bigproc locked once we find it to keep anyone
1157	 * from messing with it; however, there is a possibility of
1158	 * deadlock if process B is bigproc and one of it's child processes
1159	 * attempts to propagate a signal to B while we are waiting for A's
1160	 * lock while walking this list.  To avoid this, we don't block on
1161	 * the process lock but just skip a process if it is already locked.
1162	 */
1163	if (pass != 0 &&
1164	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1165	     (swap_pager_full && vm_paging_target() > 0))) {
1166		bigproc = NULL;
1167		bigsize = 0;
1168		sx_slock(&allproc_lock);
1169		FOREACH_PROC_IN_SYSTEM(p) {
1170			int breakout;
1171
1172			if (PROC_TRYLOCK(p) == 0)
1173				continue;
1174			/*
1175			 * If this is a system or protected process, skip it.
1176			 */
1177			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1178			    (p->p_flag & P_PROTECTED) ||
1179			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1180				PROC_UNLOCK(p);
1181				continue;
1182			}
1183			/*
1184			 * If the process is in a non-running type state,
1185			 * don't touch it.  Check all the threads individually.
1186			 */
1187			mtx_lock_spin(&sched_lock);
1188			breakout = 0;
1189			FOREACH_THREAD_IN_PROC(p, td) {
1190				if (!TD_ON_RUNQ(td) &&
1191				    !TD_IS_RUNNING(td) &&
1192				    !TD_IS_SLEEPING(td)) {
1193					breakout = 1;
1194					break;
1195				}
1196			}
1197			if (breakout) {
1198				mtx_unlock_spin(&sched_lock);
1199				PROC_UNLOCK(p);
1200				continue;
1201			}
1202			mtx_unlock_spin(&sched_lock);
1203			/*
1204			 * get the process size
1205			 */
1206			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1207				PROC_UNLOCK(p);
1208				continue;
1209			}
1210			size = vmspace_swap_count(p->p_vmspace);
1211			vm_map_unlock_read(&p->p_vmspace->vm_map);
1212			size += vmspace_resident_count(p->p_vmspace);
1213			/*
1214			 * if the this process is bigger than the biggest one
1215			 * remember it.
1216			 */
1217			if (size > bigsize) {
1218				if (bigproc != NULL)
1219					PROC_UNLOCK(bigproc);
1220				bigproc = p;
1221				bigsize = size;
1222			} else
1223				PROC_UNLOCK(p);
1224		}
1225		sx_sunlock(&allproc_lock);
1226		if (bigproc != NULL) {
1227			killproc(bigproc, "out of swap space");
1228			mtx_lock_spin(&sched_lock);
1229			sched_nice(bigproc, PRIO_MIN);
1230			mtx_unlock_spin(&sched_lock);
1231			PROC_UNLOCK(bigproc);
1232			wakeup(&cnt.v_free_count);
1233		}
1234	}
1235	mtx_unlock(&Giant);
1236}
1237
1238/*
1239 * This routine tries to maintain the pseudo LRU active queue,
1240 * so that during long periods of time where there is no paging,
1241 * that some statistic accumulation still occurs.  This code
1242 * helps the situation where paging just starts to occur.
1243 */
1244static void
1245vm_pageout_page_stats()
1246{
1247	vm_object_t object;
1248	vm_page_t m,next;
1249	int pcount,tpcount;		/* Number of pages to check */
1250	static int fullintervalcount = 0;
1251	int page_shortage;
1252
1253	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1254	page_shortage =
1255	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1256	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1257
1258	if (page_shortage <= 0)
1259		return;
1260
1261	pcount = cnt.v_active_count;
1262	fullintervalcount += vm_pageout_stats_interval;
1263	if (fullintervalcount < vm_pageout_full_stats_interval) {
1264		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1265		if (pcount > tpcount)
1266			pcount = tpcount;
1267	} else {
1268		fullintervalcount = 0;
1269	}
1270
1271	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1272	while ((m != NULL) && (pcount-- > 0)) {
1273		int actcount;
1274
1275		KASSERT(m->queue == PQ_ACTIVE,
1276		    ("vm_pageout_page_stats: page %p isn't active", m));
1277
1278		next = TAILQ_NEXT(m, pageq);
1279		object = m->object;
1280		if (!VM_OBJECT_TRYLOCK(object)) {
1281			vm_pageq_requeue(m);
1282			m = next;
1283			continue;
1284		}
1285
1286		/*
1287		 * Don't deactivate pages that are busy.
1288		 */
1289		if ((m->busy != 0) ||
1290		    (m->flags & PG_BUSY) ||
1291		    (m->hold_count != 0)) {
1292			VM_OBJECT_UNLOCK(object);
1293			vm_pageq_requeue(m);
1294			m = next;
1295			continue;
1296		}
1297
1298		actcount = 0;
1299		if (m->flags & PG_REFERENCED) {
1300			vm_page_flag_clear(m, PG_REFERENCED);
1301			actcount += 1;
1302		}
1303
1304		actcount += pmap_ts_referenced(m);
1305		if (actcount) {
1306			m->act_count += ACT_ADVANCE + actcount;
1307			if (m->act_count > ACT_MAX)
1308				m->act_count = ACT_MAX;
1309			vm_pageq_requeue(m);
1310		} else {
1311			if (m->act_count == 0) {
1312				/*
1313				 * We turn off page access, so that we have
1314				 * more accurate RSS stats.  We don't do this
1315				 * in the normal page deactivation when the
1316				 * system is loaded VM wise, because the
1317				 * cost of the large number of page protect
1318				 * operations would be higher than the value
1319				 * of doing the operation.
1320				 */
1321				pmap_remove_all(m);
1322				vm_page_deactivate(m);
1323			} else {
1324				m->act_count -= min(m->act_count, ACT_DECLINE);
1325				vm_pageq_requeue(m);
1326			}
1327		}
1328		VM_OBJECT_UNLOCK(object);
1329		m = next;
1330	}
1331}
1332
1333/*
1334 *	vm_pageout is the high level pageout daemon.
1335 */
1336static void
1337vm_pageout()
1338{
1339	int error, pass;
1340
1341	/*
1342	 * Initialize some paging parameters.
1343	 */
1344	cnt.v_interrupt_free_min = 2;
1345	if (cnt.v_page_count < 2000)
1346		vm_pageout_page_count = 8;
1347
1348	/*
1349	 * v_free_reserved needs to include enough for the largest
1350	 * swap pager structures plus enough for any pv_entry structs
1351	 * when paging.
1352	 */
1353	if (cnt.v_page_count > 1024)
1354		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1355	else
1356		cnt.v_free_min = 4;
1357	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1358	    cnt.v_interrupt_free_min;
1359	cnt.v_free_reserved = vm_pageout_page_count +
1360	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1361	cnt.v_free_severe = cnt.v_free_min / 2;
1362	cnt.v_free_min += cnt.v_free_reserved;
1363	cnt.v_free_severe += cnt.v_free_reserved;
1364
1365	/*
1366	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1367	 * that these are more a measure of the VM cache queue hysteresis
1368	 * then the VM free queue.  Specifically, v_free_target is the
1369	 * high water mark (free+cache pages).
1370	 *
1371	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1372	 * low water mark, while v_free_min is the stop.  v_cache_min must
1373	 * be big enough to handle memory needs while the pageout daemon
1374	 * is signalled and run to free more pages.
1375	 */
1376	if (cnt.v_free_count > 6144)
1377		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1378	else
1379		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1380
1381	if (cnt.v_free_count > 2048) {
1382		cnt.v_cache_min = cnt.v_free_target;
1383		cnt.v_cache_max = 2 * cnt.v_cache_min;
1384		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1385	} else {
1386		cnt.v_cache_min = 0;
1387		cnt.v_cache_max = 0;
1388		cnt.v_inactive_target = cnt.v_free_count / 4;
1389	}
1390	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1391		cnt.v_inactive_target = cnt.v_free_count / 3;
1392
1393	/* XXX does not really belong here */
1394	if (vm_page_max_wired == 0)
1395		vm_page_max_wired = cnt.v_free_count / 3;
1396
1397	if (vm_pageout_stats_max == 0)
1398		vm_pageout_stats_max = cnt.v_free_target;
1399
1400	/*
1401	 * Set interval in seconds for stats scan.
1402	 */
1403	if (vm_pageout_stats_interval == 0)
1404		vm_pageout_stats_interval = 5;
1405	if (vm_pageout_full_stats_interval == 0)
1406		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1407
1408	swap_pager_swap_init();
1409	pass = 0;
1410	/*
1411	 * The pageout daemon is never done, so loop forever.
1412	 */
1413	while (TRUE) {
1414		vm_page_lock_queues();
1415		/*
1416		 * If we have enough free memory, wakeup waiters.  Do
1417		 * not clear vm_pages_needed until we reach our target,
1418		 * otherwise we may be woken up over and over again and
1419		 * waste a lot of cpu.
1420		 */
1421		if (vm_pages_needed && !vm_page_count_min()) {
1422			if (!vm_paging_needed())
1423				vm_pages_needed = 0;
1424			wakeup(&cnt.v_free_count);
1425		}
1426		if (vm_pages_needed) {
1427			/*
1428			 * Still not done, take a second pass without waiting
1429			 * (unlimited dirty cleaning), otherwise sleep a bit
1430			 * and try again.
1431			 */
1432			++pass;
1433			if (pass > 1)
1434				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1435				       "psleep", hz/2);
1436		} else {
1437			/*
1438			 * Good enough, sleep & handle stats.  Prime the pass
1439			 * for the next run.
1440			 */
1441			if (pass > 1)
1442				pass = 1;
1443			else
1444				pass = 0;
1445			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1446				    "psleep", vm_pageout_stats_interval * hz);
1447			if (error && !vm_pages_needed) {
1448				pass = 0;
1449				vm_pageout_page_stats();
1450				vm_page_unlock_queues();
1451				continue;
1452			}
1453		}
1454		if (vm_pages_needed)
1455			cnt.v_pdwakeups++;
1456		vm_page_unlock_queues();
1457		vm_pageout_scan(pass);
1458	}
1459}
1460
1461/*
1462 * Unless the page queue lock is held by the caller, this function
1463 * should be regarded as advisory.  Specifically, the caller should
1464 * not msleep() on &cnt.v_free_count following this function unless
1465 * the page queue lock is held until the msleep() is performed.
1466 */
1467void
1468pagedaemon_wakeup()
1469{
1470
1471	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1472		vm_pages_needed = 1;
1473		wakeup(&vm_pages_needed);
1474	}
1475}
1476
1477#if !defined(NO_SWAPPING)
1478static void
1479vm_req_vmdaemon()
1480{
1481	static int lastrun = 0;
1482
1483	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1484		wakeup(&vm_daemon_needed);
1485		lastrun = ticks;
1486	}
1487}
1488
1489static void
1490vm_daemon()
1491{
1492	struct rlimit rsslim;
1493	struct proc *p;
1494	struct thread *td;
1495	int breakout;
1496
1497	mtx_lock(&Giant);
1498	while (TRUE) {
1499		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1500		if (vm_pageout_req_swapout) {
1501			swapout_procs(vm_pageout_req_swapout);
1502			vm_pageout_req_swapout = 0;
1503		}
1504		/*
1505		 * scan the processes for exceeding their rlimits or if
1506		 * process is swapped out -- deactivate pages
1507		 */
1508		sx_slock(&allproc_lock);
1509		LIST_FOREACH(p, &allproc, p_list) {
1510			vm_pindex_t limit, size;
1511
1512			/*
1513			 * if this is a system process or if we have already
1514			 * looked at this process, skip it.
1515			 */
1516			PROC_LOCK(p);
1517			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1518				PROC_UNLOCK(p);
1519				continue;
1520			}
1521			/*
1522			 * if the process is in a non-running type state,
1523			 * don't touch it.
1524			 */
1525			mtx_lock_spin(&sched_lock);
1526			breakout = 0;
1527			FOREACH_THREAD_IN_PROC(p, td) {
1528				if (!TD_ON_RUNQ(td) &&
1529				    !TD_IS_RUNNING(td) &&
1530				    !TD_IS_SLEEPING(td)) {
1531					breakout = 1;
1532					break;
1533				}
1534			}
1535			mtx_unlock_spin(&sched_lock);
1536			if (breakout) {
1537				PROC_UNLOCK(p);
1538				continue;
1539			}
1540			/*
1541			 * get a limit
1542			 */
1543			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1544			limit = OFF_TO_IDX(
1545			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1546
1547			/*
1548			 * let processes that are swapped out really be
1549			 * swapped out set the limit to nothing (will force a
1550			 * swap-out.)
1551			 */
1552			if ((p->p_sflag & PS_INMEM) == 0)
1553				limit = 0;	/* XXX */
1554			PROC_UNLOCK(p);
1555
1556			size = vmspace_resident_count(p->p_vmspace);
1557			if (limit >= 0 && size >= limit) {
1558				vm_pageout_map_deactivate_pages(
1559				    &p->p_vmspace->vm_map, limit);
1560			}
1561		}
1562		sx_sunlock(&allproc_lock);
1563	}
1564}
1565#endif			/* !defined(NO_SWAPPING) */
1566