vm_pageout.c revision 137168
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 *	The proverbial page-out daemon.
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: head/sys/vm/vm_pageout.c 137168 2004-11-03 20:17:31Z alc $");
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/kthread.h>
85#include <sys/ktr.h>
86#include <sys/resourcevar.h>
87#include <sys/sched.h>
88#include <sys/signalvar.h>
89#include <sys/vnode.h>
90#include <sys/vmmeter.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_pager.h>
101#include <vm/swap_pager.h>
102#include <vm/vm_extern.h>
103#include <vm/uma.h>
104
105#include <machine/mutex.h>
106
107/*
108 * System initialization
109 */
110
111/* the kernel process "vm_pageout"*/
112static void vm_pageout(void);
113static int vm_pageout_clean(vm_page_t);
114static void vm_pageout_pmap_collect(void);
115static void vm_pageout_scan(int pass);
116
117struct proc *pageproc;
118
119static struct kproc_desc page_kp = {
120	"pagedaemon",
121	vm_pageout,
122	&pageproc
123};
124SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125
126#if !defined(NO_SWAPPING)
127/* the kernel process "vm_daemon"*/
128static void vm_daemon(void);
129static struct	proc *vmproc;
130
131static struct kproc_desc vm_kp = {
132	"vmdaemon",
133	vm_daemon,
134	&vmproc
135};
136SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137#endif
138
139
140int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141int vm_pageout_deficit;		/* Estimated number of pages deficit */
142int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143
144#if !defined(NO_SWAPPING)
145static int vm_pageout_req_swapout;	/* XXX */
146static int vm_daemon_needed;
147#endif
148static int vm_max_launder = 32;
149static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150static int vm_pageout_full_stats_interval = 0;
151static int vm_pageout_algorithm=0;
152static int defer_swap_pageouts=0;
153static int disable_swap_pageouts=0;
154
155#if defined(NO_SWAPPING)
156static int vm_swap_enabled=0;
157static int vm_swap_idle_enabled=0;
158#else
159static int vm_swap_enabled=1;
160static int vm_swap_idle_enabled=0;
161#endif
162
163SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165
166SYSCTL_INT(_vm, OID_AUTO, max_launder,
167	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168
169SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171
172SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174
175SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177
178#if defined(NO_SWAPPING)
179SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183#else
184SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188#endif
189
190SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192
193SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195
196static int pageout_lock_miss;
197SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199
200#define VM_PAGEOUT_PAGE_COUNT 16
201int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202
203int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204
205#if !defined(NO_SWAPPING)
206static void vm_pageout_map_deactivate_pages(vm_map_t, long);
207static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
208static void vm_req_vmdaemon(void);
209#endif
210static void vm_pageout_page_stats(void);
211
212/*
213 * vm_pageout_clean:
214 *
215 * Clean the page and remove it from the laundry.
216 *
217 * We set the busy bit to cause potential page faults on this page to
218 * block.  Note the careful timing, however, the busy bit isn't set till
219 * late and we cannot do anything that will mess with the page.
220 */
221static int
222vm_pageout_clean(m)
223	vm_page_t m;
224{
225	vm_object_t object;
226	vm_page_t mc[2*vm_pageout_page_count];
227	int pageout_count;
228	int ib, is, page_base;
229	vm_pindex_t pindex = m->pindex;
230
231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
232	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
233
234	/*
235	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
236	 * with the new swapper, but we could have serious problems paging
237	 * out other object types if there is insufficient memory.
238	 *
239	 * Unfortunately, checking free memory here is far too late, so the
240	 * check has been moved up a procedural level.
241	 */
242
243	/*
244	 * Don't mess with the page if it's busy, held, or special
245	 */
246	if ((m->hold_count != 0) ||
247	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
248		return 0;
249	}
250
251	mc[vm_pageout_page_count] = m;
252	pageout_count = 1;
253	page_base = vm_pageout_page_count;
254	ib = 1;
255	is = 1;
256
257	/*
258	 * Scan object for clusterable pages.
259	 *
260	 * We can cluster ONLY if: ->> the page is NOT
261	 * clean, wired, busy, held, or mapped into a
262	 * buffer, and one of the following:
263	 * 1) The page is inactive, or a seldom used
264	 *    active page.
265	 * -or-
266	 * 2) we force the issue.
267	 *
268	 * During heavy mmap/modification loads the pageout
269	 * daemon can really fragment the underlying file
270	 * due to flushing pages out of order and not trying
271	 * align the clusters (which leave sporatic out-of-order
272	 * holes).  To solve this problem we do the reverse scan
273	 * first and attempt to align our cluster, then do a
274	 * forward scan if room remains.
275	 */
276	object = m->object;
277more:
278	while (ib && pageout_count < vm_pageout_page_count) {
279		vm_page_t p;
280
281		if (ib > pindex) {
282			ib = 0;
283			break;
284		}
285
286		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
287			ib = 0;
288			break;
289		}
290		if (((p->queue - p->pc) == PQ_CACHE) ||
291		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
292			ib = 0;
293			break;
294		}
295		vm_page_test_dirty(p);
296		if ((p->dirty & p->valid) == 0 ||
297		    p->queue != PQ_INACTIVE ||
298		    p->wire_count != 0 ||	/* may be held by buf cache */
299		    p->hold_count != 0) {	/* may be undergoing I/O */
300			ib = 0;
301			break;
302		}
303		mc[--page_base] = p;
304		++pageout_count;
305		++ib;
306		/*
307		 * alignment boundry, stop here and switch directions.  Do
308		 * not clear ib.
309		 */
310		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
311			break;
312	}
313
314	while (pageout_count < vm_pageout_page_count &&
315	    pindex + is < object->size) {
316		vm_page_t p;
317
318		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
319			break;
320		if (((p->queue - p->pc) == PQ_CACHE) ||
321		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322			break;
323		}
324		vm_page_test_dirty(p);
325		if ((p->dirty & p->valid) == 0 ||
326		    p->queue != PQ_INACTIVE ||
327		    p->wire_count != 0 ||	/* may be held by buf cache */
328		    p->hold_count != 0) {	/* may be undergoing I/O */
329			break;
330		}
331		mc[page_base + pageout_count] = p;
332		++pageout_count;
333		++is;
334	}
335
336	/*
337	 * If we exhausted our forward scan, continue with the reverse scan
338	 * when possible, even past a page boundry.  This catches boundry
339	 * conditions.
340	 */
341	if (ib && pageout_count < vm_pageout_page_count)
342		goto more;
343
344	/*
345	 * we allow reads during pageouts...
346	 */
347	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
348}
349
350/*
351 * vm_pageout_flush() - launder the given pages
352 *
353 *	The given pages are laundered.  Note that we setup for the start of
354 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
355 *	reference count all in here rather then in the parent.  If we want
356 *	the parent to do more sophisticated things we may have to change
357 *	the ordering.
358 */
359int
360vm_pageout_flush(vm_page_t *mc, int count, int flags)
361{
362	vm_object_t object = mc[0]->object;
363	int pageout_status[count];
364	int numpagedout = 0;
365	int i;
366
367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
368	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
369	/*
370	 * Initiate I/O.  Bump the vm_page_t->busy counter and
371	 * mark the pages read-only.
372	 *
373	 * We do not have to fixup the clean/dirty bits here... we can
374	 * allow the pager to do it after the I/O completes.
375	 *
376	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
377	 * edge case with file fragments.
378	 */
379	for (i = 0; i < count; i++) {
380		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
381		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
382			mc[i], i, count));
383		vm_page_io_start(mc[i]);
384		pmap_page_protect(mc[i], VM_PROT_READ);
385	}
386	vm_page_unlock_queues();
387	vm_object_pip_add(object, count);
388
389	vm_pager_put_pages(object, mc, count,
390	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
391	    pageout_status);
392
393	vm_page_lock_queues();
394	for (i = 0; i < count; i++) {
395		vm_page_t mt = mc[i];
396
397		KASSERT((mt->flags & PG_WRITEABLE) == 0,
398		    ("vm_pageout_flush: page %p is not write protected", mt));
399		switch (pageout_status[i]) {
400		case VM_PAGER_OK:
401		case VM_PAGER_PEND:
402			numpagedout++;
403			break;
404		case VM_PAGER_BAD:
405			/*
406			 * Page outside of range of object. Right now we
407			 * essentially lose the changes by pretending it
408			 * worked.
409			 */
410			pmap_clear_modify(mt);
411			vm_page_undirty(mt);
412			break;
413		case VM_PAGER_ERROR:
414		case VM_PAGER_FAIL:
415			/*
416			 * If page couldn't be paged out, then reactivate the
417			 * page so it doesn't clog the inactive list.  (We
418			 * will try paging out it again later).
419			 */
420			vm_page_activate(mt);
421			break;
422		case VM_PAGER_AGAIN:
423			break;
424		}
425
426		/*
427		 * If the operation is still going, leave the page busy to
428		 * block all other accesses. Also, leave the paging in
429		 * progress indicator set so that we don't attempt an object
430		 * collapse.
431		 */
432		if (pageout_status[i] != VM_PAGER_PEND) {
433			vm_object_pip_wakeup(object);
434			vm_page_io_finish(mt);
435			if (vm_page_count_severe())
436				vm_page_try_to_cache(mt);
437		}
438	}
439	return numpagedout;
440}
441
442#if !defined(NO_SWAPPING)
443/*
444 *	vm_pageout_object_deactivate_pages
445 *
446 *	deactivate enough pages to satisfy the inactive target
447 *	requirements or if vm_page_proc_limit is set, then
448 *	deactivate all of the pages in the object and its
449 *	backing_objects.
450 *
451 *	The object and map must be locked.
452 */
453static void
454vm_pageout_object_deactivate_pages(pmap, first_object, desired)
455	pmap_t pmap;
456	vm_object_t first_object;
457	long desired;
458{
459	vm_object_t backing_object, object;
460	vm_page_t p, next;
461	int actcount, rcount, remove_mode;
462
463	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
464	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
465		return;
466	for (object = first_object;; object = backing_object) {
467		if (pmap_resident_count(pmap) <= desired)
468			goto unlock_return;
469		if (object->paging_in_progress)
470			goto unlock_return;
471
472		remove_mode = 0;
473		if (object->shadow_count > 1)
474			remove_mode = 1;
475		/*
476		 * scan the objects entire memory queue
477		 */
478		rcount = object->resident_page_count;
479		p = TAILQ_FIRST(&object->memq);
480		vm_page_lock_queues();
481		while (p && (rcount-- > 0)) {
482			if (pmap_resident_count(pmap) <= desired) {
483				vm_page_unlock_queues();
484				goto unlock_return;
485			}
486			next = TAILQ_NEXT(p, listq);
487			cnt.v_pdpages++;
488			if (p->wire_count != 0 ||
489			    p->hold_count != 0 ||
490			    p->busy != 0 ||
491			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
492			    !pmap_page_exists_quick(pmap, p)) {
493				p = next;
494				continue;
495			}
496			actcount = pmap_ts_referenced(p);
497			if (actcount) {
498				vm_page_flag_set(p, PG_REFERENCED);
499			} else if (p->flags & PG_REFERENCED) {
500				actcount = 1;
501			}
502			if ((p->queue != PQ_ACTIVE) &&
503				(p->flags & PG_REFERENCED)) {
504				vm_page_activate(p);
505				p->act_count += actcount;
506				vm_page_flag_clear(p, PG_REFERENCED);
507			} else if (p->queue == PQ_ACTIVE) {
508				if ((p->flags & PG_REFERENCED) == 0) {
509					p->act_count -= min(p->act_count, ACT_DECLINE);
510					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
511						pmap_remove_all(p);
512						vm_page_deactivate(p);
513					} else {
514						vm_pageq_requeue(p);
515					}
516				} else {
517					vm_page_activate(p);
518					vm_page_flag_clear(p, PG_REFERENCED);
519					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520						p->act_count += ACT_ADVANCE;
521					vm_pageq_requeue(p);
522				}
523			} else if (p->queue == PQ_INACTIVE) {
524				pmap_remove_all(p);
525			}
526			p = next;
527		}
528		vm_page_unlock_queues();
529		if ((backing_object = object->backing_object) == NULL)
530			goto unlock_return;
531		VM_OBJECT_LOCK(backing_object);
532		if (object != first_object)
533			VM_OBJECT_UNLOCK(object);
534	}
535unlock_return:
536	if (object != first_object)
537		VM_OBJECT_UNLOCK(object);
538}
539
540/*
541 * deactivate some number of pages in a map, try to do it fairly, but
542 * that is really hard to do.
543 */
544static void
545vm_pageout_map_deactivate_pages(map, desired)
546	vm_map_t map;
547	long desired;
548{
549	vm_map_entry_t tmpe;
550	vm_object_t obj, bigobj;
551	int nothingwired;
552
553	if (!vm_map_trylock(map))
554		return;
555
556	bigobj = NULL;
557	nothingwired = TRUE;
558
559	/*
560	 * first, search out the biggest object, and try to free pages from
561	 * that.
562	 */
563	tmpe = map->header.next;
564	while (tmpe != &map->header) {
565		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566			obj = tmpe->object.vm_object;
567			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
568				if (obj->shadow_count <= 1 &&
569				    (bigobj == NULL ||
570				     bigobj->resident_page_count < obj->resident_page_count)) {
571					if (bigobj != NULL)
572						VM_OBJECT_UNLOCK(bigobj);
573					bigobj = obj;
574				} else
575					VM_OBJECT_UNLOCK(obj);
576			}
577		}
578		if (tmpe->wired_count > 0)
579			nothingwired = FALSE;
580		tmpe = tmpe->next;
581	}
582
583	if (bigobj != NULL) {
584		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
585		VM_OBJECT_UNLOCK(bigobj);
586	}
587	/*
588	 * Next, hunt around for other pages to deactivate.  We actually
589	 * do this search sort of wrong -- .text first is not the best idea.
590	 */
591	tmpe = map->header.next;
592	while (tmpe != &map->header) {
593		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
594			break;
595		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
596			obj = tmpe->object.vm_object;
597			if (obj != NULL) {
598				VM_OBJECT_LOCK(obj);
599				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
600				VM_OBJECT_UNLOCK(obj);
601			}
602		}
603		tmpe = tmpe->next;
604	}
605
606	/*
607	 * Remove all mappings if a process is swapped out, this will free page
608	 * table pages.
609	 */
610	if (desired == 0 && nothingwired) {
611		pmap_remove(vm_map_pmap(map), vm_map_min(map),
612		    vm_map_max(map));
613	}
614	vm_map_unlock(map);
615}
616#endif		/* !defined(NO_SWAPPING) */
617
618/*
619 * This routine is very drastic, but can save the system
620 * in a pinch.
621 */
622static void
623vm_pageout_pmap_collect(void)
624{
625	int i;
626	vm_page_t m;
627	static int warningdone;
628
629	if (pmap_pagedaemon_waken == 0)
630		return;
631	if (warningdone < 5) {
632		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
633		warningdone++;
634	}
635	vm_page_lock_queues();
636	for (i = 0; i < vm_page_array_size; i++) {
637		m = &vm_page_array[i];
638		if (m->wire_count || m->hold_count || m->busy ||
639		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
640			continue;
641		pmap_remove_all(m);
642	}
643	vm_page_unlock_queues();
644	pmap_pagedaemon_waken = 0;
645}
646
647/*
648 *	vm_pageout_scan does the dirty work for the pageout daemon.
649 */
650static void
651vm_pageout_scan(int pass)
652{
653	vm_page_t m, next;
654	struct vm_page marker;
655	int page_shortage, maxscan, pcount;
656	int addl_page_shortage, addl_page_shortage_init;
657	struct proc *p, *bigproc;
658	struct thread *td;
659	vm_offset_t size, bigsize;
660	vm_object_t object;
661	int actcount;
662	int vnodes_skipped = 0;
663	int maxlaunder;
664
665	mtx_lock(&Giant);
666	/*
667	 * Decrease registered cache sizes.
668	 */
669	EVENTHANDLER_INVOKE(vm_lowmem, 0);
670	/*
671	 * We do this explicitly after the caches have been drained above.
672	 */
673	uma_reclaim();
674	/*
675	 * Do whatever cleanup that the pmap code can.
676	 */
677	vm_pageout_pmap_collect();
678
679	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
680
681	/*
682	 * Calculate the number of pages we want to either free or move
683	 * to the cache.
684	 */
685	page_shortage = vm_paging_target() + addl_page_shortage_init;
686
687	/*
688	 * Initialize our marker
689	 */
690	bzero(&marker, sizeof(marker));
691	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
692	marker.queue = PQ_INACTIVE;
693	marker.wire_count = 1;
694
695	/*
696	 * Start scanning the inactive queue for pages we can move to the
697	 * cache or free.  The scan will stop when the target is reached or
698	 * we have scanned the entire inactive queue.  Note that m->act_count
699	 * is not used to form decisions for the inactive queue, only for the
700	 * active queue.
701	 *
702	 * maxlaunder limits the number of dirty pages we flush per scan.
703	 * For most systems a smaller value (16 or 32) is more robust under
704	 * extreme memory and disk pressure because any unnecessary writes
705	 * to disk can result in extreme performance degredation.  However,
706	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
707	 * used) will die horribly with limited laundering.  If the pageout
708	 * daemon cannot clean enough pages in the first pass, we let it go
709	 * all out in succeeding passes.
710	 */
711	if ((maxlaunder = vm_max_launder) <= 1)
712		maxlaunder = 1;
713	if (pass)
714		maxlaunder = 10000;
715	vm_page_lock_queues();
716rescan0:
717	addl_page_shortage = addl_page_shortage_init;
718	maxscan = cnt.v_inactive_count;
719
720	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
721	     m != NULL && maxscan-- > 0 && page_shortage > 0;
722	     m = next) {
723
724		cnt.v_pdpages++;
725
726		if (m->queue != PQ_INACTIVE) {
727			goto rescan0;
728		}
729
730		next = TAILQ_NEXT(m, pageq);
731
732		/*
733		 * skip marker pages
734		 */
735		if (m->flags & PG_MARKER)
736			continue;
737
738		/*
739		 * A held page may be undergoing I/O, so skip it.
740		 */
741		if (m->hold_count) {
742			vm_pageq_requeue(m);
743			addl_page_shortage++;
744			continue;
745		}
746		/*
747		 * Don't mess with busy pages, keep in the front of the
748		 * queue, most likely are being paged out.
749		 */
750		if (m->busy || (m->flags & PG_BUSY)) {
751			addl_page_shortage++;
752			continue;
753		}
754
755		/*
756		 * If the object is not being used, we ignore previous
757		 * references.
758		 */
759		if (m->object->ref_count == 0) {
760			vm_page_flag_clear(m, PG_REFERENCED);
761			pmap_clear_reference(m);
762
763		/*
764		 * Otherwise, if the page has been referenced while in the
765		 * inactive queue, we bump the "activation count" upwards,
766		 * making it less likely that the page will be added back to
767		 * the inactive queue prematurely again.  Here we check the
768		 * page tables (or emulated bits, if any), given the upper
769		 * level VM system not knowing anything about existing
770		 * references.
771		 */
772		} else if (((m->flags & PG_REFERENCED) == 0) &&
773			(actcount = pmap_ts_referenced(m))) {
774			vm_page_activate(m);
775			m->act_count += (actcount + ACT_ADVANCE);
776			continue;
777		}
778
779		/*
780		 * If the upper level VM system knows about any page
781		 * references, we activate the page.  We also set the
782		 * "activation count" higher than normal so that we will less
783		 * likely place pages back onto the inactive queue again.
784		 */
785		if ((m->flags & PG_REFERENCED) != 0) {
786			vm_page_flag_clear(m, PG_REFERENCED);
787			actcount = pmap_ts_referenced(m);
788			vm_page_activate(m);
789			m->act_count += (actcount + ACT_ADVANCE + 1);
790			continue;
791		}
792
793		/*
794		 * If the upper level VM system doesn't know anything about
795		 * the page being dirty, we have to check for it again.  As
796		 * far as the VM code knows, any partially dirty pages are
797		 * fully dirty.
798		 */
799		if (m->dirty == 0 && !pmap_is_modified(m)) {
800			/*
801			 * Avoid a race condition: Unless write access is
802			 * removed from the page, another processor could
803			 * modify it before all access is removed by the call
804			 * to vm_page_cache() below.  If vm_page_cache() finds
805			 * that the page has been modified when it removes all
806			 * access, it panics because it cannot cache dirty
807			 * pages.  In principle, we could eliminate just write
808			 * access here rather than all access.  In the expected
809			 * case, when there are no last instant modifications
810			 * to the page, removing all access will be cheaper
811			 * overall.
812			 */
813			if ((m->flags & PG_WRITEABLE) != 0)
814				pmap_remove_all(m);
815		} else {
816			vm_page_dirty(m);
817		}
818
819		object = m->object;
820		if (!VM_OBJECT_TRYLOCK(object))
821			continue;
822		if (m->valid == 0) {
823			/*
824			 * Invalid pages can be easily freed
825			 */
826			pmap_remove_all(m);
827			vm_page_free(m);
828			cnt.v_dfree++;
829			--page_shortage;
830		} else if (m->dirty == 0) {
831			/*
832			 * Clean pages can be placed onto the cache queue.
833			 * This effectively frees them.
834			 */
835			vm_page_cache(m);
836			--page_shortage;
837		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
838			/*
839			 * Dirty pages need to be paged out, but flushing
840			 * a page is extremely expensive verses freeing
841			 * a clean page.  Rather then artificially limiting
842			 * the number of pages we can flush, we instead give
843			 * dirty pages extra priority on the inactive queue
844			 * by forcing them to be cycled through the queue
845			 * twice before being flushed, after which the
846			 * (now clean) page will cycle through once more
847			 * before being freed.  This significantly extends
848			 * the thrash point for a heavily loaded machine.
849			 */
850			vm_page_flag_set(m, PG_WINATCFLS);
851			vm_pageq_requeue(m);
852		} else if (maxlaunder > 0) {
853			/*
854			 * We always want to try to flush some dirty pages if
855			 * we encounter them, to keep the system stable.
856			 * Normally this number is small, but under extreme
857			 * pressure where there are insufficient clean pages
858			 * on the inactive queue, we may have to go all out.
859			 */
860			int swap_pageouts_ok;
861			struct vnode *vp = NULL;
862			struct mount *mp;
863
864			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
865				swap_pageouts_ok = 1;
866			} else {
867				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
868				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
869				vm_page_count_min());
870
871			}
872
873			/*
874			 * We don't bother paging objects that are "dead".
875			 * Those objects are in a "rundown" state.
876			 */
877			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
878				VM_OBJECT_UNLOCK(object);
879				vm_pageq_requeue(m);
880				continue;
881			}
882
883			/*
884			 * The object is already known NOT to be dead.   It
885			 * is possible for the vget() to block the whole
886			 * pageout daemon, but the new low-memory handling
887			 * code should prevent it.
888			 *
889			 * The previous code skipped locked vnodes and, worse,
890			 * reordered pages in the queue.  This results in
891			 * completely non-deterministic operation and, on a
892			 * busy system, can lead to extremely non-optimal
893			 * pageouts.  For example, it can cause clean pages
894			 * to be freed and dirty pages to be moved to the end
895			 * of the queue.  Since dirty pages are also moved to
896			 * the end of the queue once-cleaned, this gives
897			 * way too large a weighting to defering the freeing
898			 * of dirty pages.
899			 *
900			 * We can't wait forever for the vnode lock, we might
901			 * deadlock due to a vn_read() getting stuck in
902			 * vm_wait while holding this vnode.  We skip the
903			 * vnode if we can't get it in a reasonable amount
904			 * of time.
905			 */
906			if (object->type == OBJT_VNODE) {
907				vp = object->handle;
908				mp = NULL;
909				if (vp->v_type == VREG)
910					vn_start_write(vp, &mp, V_NOWAIT);
911				vm_page_unlock_queues();
912				VI_LOCK(vp);
913				VM_OBJECT_UNLOCK(object);
914				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
915				    LK_TIMELOCK, curthread)) {
916					VM_OBJECT_LOCK(object);
917					vm_page_lock_queues();
918					++pageout_lock_miss;
919					vn_finished_write(mp);
920					if (object->flags & OBJ_MIGHTBEDIRTY)
921						vnodes_skipped++;
922					VM_OBJECT_UNLOCK(object);
923					continue;
924				}
925				VM_OBJECT_LOCK(object);
926				vm_page_lock_queues();
927				/*
928				 * The page might have been moved to another
929				 * queue during potential blocking in vget()
930				 * above.  The page might have been freed and
931				 * reused for another vnode.  The object might
932				 * have been reused for another vnode.
933				 */
934				if (m->queue != PQ_INACTIVE ||
935				    m->object != object ||
936				    object->handle != vp) {
937					if (object->flags & OBJ_MIGHTBEDIRTY)
938						vnodes_skipped++;
939					goto unlock_and_continue;
940				}
941
942				/*
943				 * The page may have been busied during the
944				 * blocking in vput();  We don't move the
945				 * page back onto the end of the queue so that
946				 * statistics are more correct if we don't.
947				 */
948				if (m->busy || (m->flags & PG_BUSY)) {
949					goto unlock_and_continue;
950				}
951
952				/*
953				 * If the page has become held it might
954				 * be undergoing I/O, so skip it
955				 */
956				if (m->hold_count) {
957					vm_pageq_requeue(m);
958					if (object->flags & OBJ_MIGHTBEDIRTY)
959						vnodes_skipped++;
960					goto unlock_and_continue;
961				}
962			}
963
964			/*
965			 * If a page is dirty, then it is either being washed
966			 * (but not yet cleaned) or it is still in the
967			 * laundry.  If it is still in the laundry, then we
968			 * start the cleaning operation.
969			 *
970			 * This operation may cluster, invalidating the 'next'
971			 * pointer.  To prevent an inordinate number of
972			 * restarts we use our marker to remember our place.
973			 *
974			 * decrement page_shortage on success to account for
975			 * the (future) cleaned page.  Otherwise we could wind
976			 * up laundering or cleaning too many pages.
977			 */
978			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
979			if (vm_pageout_clean(m) != 0) {
980				--page_shortage;
981				--maxlaunder;
982			}
983			next = TAILQ_NEXT(&marker, pageq);
984			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
985unlock_and_continue:
986			VM_OBJECT_UNLOCK(object);
987			if (vp) {
988				vm_page_unlock_queues();
989				vput(vp);
990				vn_finished_write(mp);
991				vm_page_lock_queues();
992			}
993			continue;
994		}
995		VM_OBJECT_UNLOCK(object);
996	}
997
998	/*
999	 * Compute the number of pages we want to try to move from the
1000	 * active queue to the inactive queue.
1001	 */
1002	page_shortage = vm_paging_target() +
1003		cnt.v_inactive_target - cnt.v_inactive_count;
1004	page_shortage += addl_page_shortage;
1005
1006	/*
1007	 * Scan the active queue for things we can deactivate. We nominally
1008	 * track the per-page activity counter and use it to locate
1009	 * deactivation candidates.
1010	 */
1011	pcount = cnt.v_active_count;
1012	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1013
1014	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1015
1016		KASSERT(m->queue == PQ_ACTIVE,
1017		    ("vm_pageout_scan: page %p isn't active", m));
1018
1019		next = TAILQ_NEXT(m, pageq);
1020		object = m->object;
1021		if (!VM_OBJECT_TRYLOCK(object)) {
1022			vm_pageq_requeue(m);
1023			m = next;
1024			continue;
1025		}
1026
1027		/*
1028		 * Don't deactivate pages that are busy.
1029		 */
1030		if ((m->busy != 0) ||
1031		    (m->flags & PG_BUSY) ||
1032		    (m->hold_count != 0)) {
1033			VM_OBJECT_UNLOCK(object);
1034			vm_pageq_requeue(m);
1035			m = next;
1036			continue;
1037		}
1038
1039		/*
1040		 * The count for pagedaemon pages is done after checking the
1041		 * page for eligibility...
1042		 */
1043		cnt.v_pdpages++;
1044
1045		/*
1046		 * Check to see "how much" the page has been used.
1047		 */
1048		actcount = 0;
1049		if (object->ref_count != 0) {
1050			if (m->flags & PG_REFERENCED) {
1051				actcount += 1;
1052			}
1053			actcount += pmap_ts_referenced(m);
1054			if (actcount) {
1055				m->act_count += ACT_ADVANCE + actcount;
1056				if (m->act_count > ACT_MAX)
1057					m->act_count = ACT_MAX;
1058			}
1059		}
1060
1061		/*
1062		 * Since we have "tested" this bit, we need to clear it now.
1063		 */
1064		vm_page_flag_clear(m, PG_REFERENCED);
1065
1066		/*
1067		 * Only if an object is currently being used, do we use the
1068		 * page activation count stats.
1069		 */
1070		if (actcount && (object->ref_count != 0)) {
1071			vm_pageq_requeue(m);
1072		} else {
1073			m->act_count -= min(m->act_count, ACT_DECLINE);
1074			if (vm_pageout_algorithm ||
1075			    object->ref_count == 0 ||
1076			    m->act_count == 0) {
1077				page_shortage--;
1078				if (object->ref_count == 0) {
1079					pmap_remove_all(m);
1080					if (m->dirty == 0)
1081						vm_page_cache(m);
1082					else
1083						vm_page_deactivate(m);
1084				} else {
1085					vm_page_deactivate(m);
1086				}
1087			} else {
1088				vm_pageq_requeue(m);
1089			}
1090		}
1091		VM_OBJECT_UNLOCK(object);
1092		m = next;
1093	}
1094
1095	/*
1096	 * We try to maintain some *really* free pages, this allows interrupt
1097	 * code to be guaranteed space.  Since both cache and free queues
1098	 * are considered basically 'free', moving pages from cache to free
1099	 * does not effect other calculations.
1100	 */
1101	while (cnt.v_free_count < cnt.v_free_reserved) {
1102		static int cache_rover = 0;
1103
1104		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1105			break;
1106		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1107		object = m->object;
1108		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1109		vm_page_free(m);
1110		VM_OBJECT_UNLOCK(object);
1111		cnt.v_dfree++;
1112	}
1113	vm_page_unlock_queues();
1114#if !defined(NO_SWAPPING)
1115	/*
1116	 * Idle process swapout -- run once per second.
1117	 */
1118	if (vm_swap_idle_enabled) {
1119		static long lsec;
1120		if (time_second != lsec) {
1121			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1122			vm_req_vmdaemon();
1123			lsec = time_second;
1124		}
1125	}
1126#endif
1127
1128	/*
1129	 * If we didn't get enough free pages, and we have skipped a vnode
1130	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1131	 * if we did not get enough free pages.
1132	 */
1133	if (vm_paging_target() > 0) {
1134		if (vnodes_skipped && vm_page_count_min())
1135			(void) speedup_syncer();
1136#if !defined(NO_SWAPPING)
1137		if (vm_swap_enabled && vm_page_count_target()) {
1138			vm_req_vmdaemon();
1139			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1140		}
1141#endif
1142	}
1143
1144	/*
1145	 * If we are critically low on one of RAM or swap and low on
1146	 * the other, kill the largest process.  However, we avoid
1147	 * doing this on the first pass in order to give ourselves a
1148	 * chance to flush out dirty vnode-backed pages and to allow
1149	 * active pages to be moved to the inactive queue and reclaimed.
1150	 *
1151	 * We keep the process bigproc locked once we find it to keep anyone
1152	 * from messing with it; however, there is a possibility of
1153	 * deadlock if process B is bigproc and one of it's child processes
1154	 * attempts to propagate a signal to B while we are waiting for A's
1155	 * lock while walking this list.  To avoid this, we don't block on
1156	 * the process lock but just skip a process if it is already locked.
1157	 */
1158	if (pass != 0 &&
1159	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1160	     (swap_pager_full && vm_paging_target() > 0))) {
1161		bigproc = NULL;
1162		bigsize = 0;
1163		sx_slock(&allproc_lock);
1164		FOREACH_PROC_IN_SYSTEM(p) {
1165			int breakout;
1166
1167			if (PROC_TRYLOCK(p) == 0)
1168				continue;
1169			/*
1170			 * If this is a system or protected process, skip it.
1171			 */
1172			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1173			    (p->p_flag & P_PROTECTED) ||
1174			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1175				PROC_UNLOCK(p);
1176				continue;
1177			}
1178			/*
1179			 * If the process is in a non-running type state,
1180			 * don't touch it.  Check all the threads individually.
1181			 */
1182			mtx_lock_spin(&sched_lock);
1183			breakout = 0;
1184			FOREACH_THREAD_IN_PROC(p, td) {
1185				if (!TD_ON_RUNQ(td) &&
1186				    !TD_IS_RUNNING(td) &&
1187				    !TD_IS_SLEEPING(td)) {
1188					breakout = 1;
1189					break;
1190				}
1191			}
1192			if (breakout) {
1193				mtx_unlock_spin(&sched_lock);
1194				PROC_UNLOCK(p);
1195				continue;
1196			}
1197			mtx_unlock_spin(&sched_lock);
1198			/*
1199			 * get the process size
1200			 */
1201			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1202				PROC_UNLOCK(p);
1203				continue;
1204			}
1205			size = vmspace_swap_count(p->p_vmspace);
1206			vm_map_unlock_read(&p->p_vmspace->vm_map);
1207			size += vmspace_resident_count(p->p_vmspace);
1208			/*
1209			 * if the this process is bigger than the biggest one
1210			 * remember it.
1211			 */
1212			if (size > bigsize) {
1213				if (bigproc != NULL)
1214					PROC_UNLOCK(bigproc);
1215				bigproc = p;
1216				bigsize = size;
1217			} else
1218				PROC_UNLOCK(p);
1219		}
1220		sx_sunlock(&allproc_lock);
1221		if (bigproc != NULL) {
1222			killproc(bigproc, "out of swap space");
1223			mtx_lock_spin(&sched_lock);
1224			sched_nice(bigproc, PRIO_MIN);
1225			mtx_unlock_spin(&sched_lock);
1226			PROC_UNLOCK(bigproc);
1227			wakeup(&cnt.v_free_count);
1228		}
1229	}
1230	mtx_unlock(&Giant);
1231}
1232
1233/*
1234 * This routine tries to maintain the pseudo LRU active queue,
1235 * so that during long periods of time where there is no paging,
1236 * that some statistic accumulation still occurs.  This code
1237 * helps the situation where paging just starts to occur.
1238 */
1239static void
1240vm_pageout_page_stats()
1241{
1242	vm_object_t object;
1243	vm_page_t m,next;
1244	int pcount,tpcount;		/* Number of pages to check */
1245	static int fullintervalcount = 0;
1246	int page_shortage;
1247
1248	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1249	page_shortage =
1250	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1251	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1252
1253	if (page_shortage <= 0)
1254		return;
1255
1256	pcount = cnt.v_active_count;
1257	fullintervalcount += vm_pageout_stats_interval;
1258	if (fullintervalcount < vm_pageout_full_stats_interval) {
1259		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1260		if (pcount > tpcount)
1261			pcount = tpcount;
1262	} else {
1263		fullintervalcount = 0;
1264	}
1265
1266	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1267	while ((m != NULL) && (pcount-- > 0)) {
1268		int actcount;
1269
1270		KASSERT(m->queue == PQ_ACTIVE,
1271		    ("vm_pageout_page_stats: page %p isn't active", m));
1272
1273		next = TAILQ_NEXT(m, pageq);
1274		object = m->object;
1275		if (!VM_OBJECT_TRYLOCK(object)) {
1276			vm_pageq_requeue(m);
1277			m = next;
1278			continue;
1279		}
1280
1281		/*
1282		 * Don't deactivate pages that are busy.
1283		 */
1284		if ((m->busy != 0) ||
1285		    (m->flags & PG_BUSY) ||
1286		    (m->hold_count != 0)) {
1287			VM_OBJECT_UNLOCK(object);
1288			vm_pageq_requeue(m);
1289			m = next;
1290			continue;
1291		}
1292
1293		actcount = 0;
1294		if (m->flags & PG_REFERENCED) {
1295			vm_page_flag_clear(m, PG_REFERENCED);
1296			actcount += 1;
1297		}
1298
1299		actcount += pmap_ts_referenced(m);
1300		if (actcount) {
1301			m->act_count += ACT_ADVANCE + actcount;
1302			if (m->act_count > ACT_MAX)
1303				m->act_count = ACT_MAX;
1304			vm_pageq_requeue(m);
1305		} else {
1306			if (m->act_count == 0) {
1307				/*
1308				 * We turn off page access, so that we have
1309				 * more accurate RSS stats.  We don't do this
1310				 * in the normal page deactivation when the
1311				 * system is loaded VM wise, because the
1312				 * cost of the large number of page protect
1313				 * operations would be higher than the value
1314				 * of doing the operation.
1315				 */
1316				pmap_remove_all(m);
1317				vm_page_deactivate(m);
1318			} else {
1319				m->act_count -= min(m->act_count, ACT_DECLINE);
1320				vm_pageq_requeue(m);
1321			}
1322		}
1323		VM_OBJECT_UNLOCK(object);
1324		m = next;
1325	}
1326}
1327
1328/*
1329 *	vm_pageout is the high level pageout daemon.
1330 */
1331static void
1332vm_pageout()
1333{
1334	int error, pass;
1335
1336	/*
1337	 * Initialize some paging parameters.
1338	 */
1339	cnt.v_interrupt_free_min = 2;
1340	if (cnt.v_page_count < 2000)
1341		vm_pageout_page_count = 8;
1342
1343	/*
1344	 * v_free_reserved needs to include enough for the largest
1345	 * swap pager structures plus enough for any pv_entry structs
1346	 * when paging.
1347	 */
1348	if (cnt.v_page_count > 1024)
1349		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1350	else
1351		cnt.v_free_min = 4;
1352	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1353	    cnt.v_interrupt_free_min;
1354	cnt.v_free_reserved = vm_pageout_page_count +
1355	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1356	cnt.v_free_severe = cnt.v_free_min / 2;
1357	cnt.v_free_min += cnt.v_free_reserved;
1358	cnt.v_free_severe += cnt.v_free_reserved;
1359
1360	/*
1361	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1362	 * that these are more a measure of the VM cache queue hysteresis
1363	 * then the VM free queue.  Specifically, v_free_target is the
1364	 * high water mark (free+cache pages).
1365	 *
1366	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1367	 * low water mark, while v_free_min is the stop.  v_cache_min must
1368	 * be big enough to handle memory needs while the pageout daemon
1369	 * is signalled and run to free more pages.
1370	 */
1371	if (cnt.v_free_count > 6144)
1372		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1373	else
1374		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1375
1376	if (cnt.v_free_count > 2048) {
1377		cnt.v_cache_min = cnt.v_free_target;
1378		cnt.v_cache_max = 2 * cnt.v_cache_min;
1379		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1380	} else {
1381		cnt.v_cache_min = 0;
1382		cnt.v_cache_max = 0;
1383		cnt.v_inactive_target = cnt.v_free_count / 4;
1384	}
1385	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1386		cnt.v_inactive_target = cnt.v_free_count / 3;
1387
1388	/* XXX does not really belong here */
1389	if (vm_page_max_wired == 0)
1390		vm_page_max_wired = cnt.v_free_count / 3;
1391
1392	if (vm_pageout_stats_max == 0)
1393		vm_pageout_stats_max = cnt.v_free_target;
1394
1395	/*
1396	 * Set interval in seconds for stats scan.
1397	 */
1398	if (vm_pageout_stats_interval == 0)
1399		vm_pageout_stats_interval = 5;
1400	if (vm_pageout_full_stats_interval == 0)
1401		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1402
1403	swap_pager_swap_init();
1404	pass = 0;
1405	/*
1406	 * The pageout daemon is never done, so loop forever.
1407	 */
1408	while (TRUE) {
1409		vm_page_lock_queues();
1410		/*
1411		 * If we have enough free memory, wakeup waiters.  Do
1412		 * not clear vm_pages_needed until we reach our target,
1413		 * otherwise we may be woken up over and over again and
1414		 * waste a lot of cpu.
1415		 */
1416		if (vm_pages_needed && !vm_page_count_min()) {
1417			if (!vm_paging_needed())
1418				vm_pages_needed = 0;
1419			wakeup(&cnt.v_free_count);
1420		}
1421		if (vm_pages_needed) {
1422			/*
1423			 * Still not done, take a second pass without waiting
1424			 * (unlimited dirty cleaning), otherwise sleep a bit
1425			 * and try again.
1426			 */
1427			++pass;
1428			if (pass > 1)
1429				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1430				       "psleep", hz/2);
1431		} else {
1432			/*
1433			 * Good enough, sleep & handle stats.  Prime the pass
1434			 * for the next run.
1435			 */
1436			if (pass > 1)
1437				pass = 1;
1438			else
1439				pass = 0;
1440			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1441				    "psleep", vm_pageout_stats_interval * hz);
1442			if (error && !vm_pages_needed) {
1443				pass = 0;
1444				vm_pageout_page_stats();
1445				vm_page_unlock_queues();
1446				continue;
1447			}
1448		}
1449		if (vm_pages_needed)
1450			cnt.v_pdwakeups++;
1451		vm_page_unlock_queues();
1452		vm_pageout_scan(pass);
1453	}
1454}
1455
1456/*
1457 * Unless the page queue lock is held by the caller, this function
1458 * should be regarded as advisory.  Specifically, the caller should
1459 * not msleep() on &cnt.v_free_count following this function unless
1460 * the page queue lock is held until the msleep() is performed.
1461 */
1462void
1463pagedaemon_wakeup()
1464{
1465
1466	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1467		vm_pages_needed = 1;
1468		wakeup(&vm_pages_needed);
1469	}
1470}
1471
1472#if !defined(NO_SWAPPING)
1473static void
1474vm_req_vmdaemon()
1475{
1476	static int lastrun = 0;
1477
1478	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1479		wakeup(&vm_daemon_needed);
1480		lastrun = ticks;
1481	}
1482}
1483
1484static void
1485vm_daemon()
1486{
1487	struct rlimit rsslim;
1488	struct proc *p;
1489	struct thread *td;
1490	int breakout;
1491
1492	mtx_lock(&Giant);
1493	while (TRUE) {
1494		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1495		if (vm_pageout_req_swapout) {
1496			swapout_procs(vm_pageout_req_swapout);
1497			vm_pageout_req_swapout = 0;
1498		}
1499		/*
1500		 * scan the processes for exceeding their rlimits or if
1501		 * process is swapped out -- deactivate pages
1502		 */
1503		sx_slock(&allproc_lock);
1504		LIST_FOREACH(p, &allproc, p_list) {
1505			vm_pindex_t limit, size;
1506
1507			/*
1508			 * if this is a system process or if we have already
1509			 * looked at this process, skip it.
1510			 */
1511			PROC_LOCK(p);
1512			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1513				PROC_UNLOCK(p);
1514				continue;
1515			}
1516			/*
1517			 * if the process is in a non-running type state,
1518			 * don't touch it.
1519			 */
1520			mtx_lock_spin(&sched_lock);
1521			breakout = 0;
1522			FOREACH_THREAD_IN_PROC(p, td) {
1523				if (!TD_ON_RUNQ(td) &&
1524				    !TD_IS_RUNNING(td) &&
1525				    !TD_IS_SLEEPING(td)) {
1526					breakout = 1;
1527					break;
1528				}
1529			}
1530			mtx_unlock_spin(&sched_lock);
1531			if (breakout) {
1532				PROC_UNLOCK(p);
1533				continue;
1534			}
1535			/*
1536			 * get a limit
1537			 */
1538			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1539			limit = OFF_TO_IDX(
1540			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1541
1542			/*
1543			 * let processes that are swapped out really be
1544			 * swapped out set the limit to nothing (will force a
1545			 * swap-out.)
1546			 */
1547			if ((p->p_sflag & PS_INMEM) == 0)
1548				limit = 0;	/* XXX */
1549			PROC_UNLOCK(p);
1550
1551			size = vmspace_resident_count(p->p_vmspace);
1552			if (limit >= 0 && size >= limit) {
1553				vm_pageout_map_deactivate_pages(
1554				    &p->p_vmspace->vm_map, limit);
1555			}
1556		}
1557		sx_sunlock(&allproc_lock);
1558	}
1559}
1560#endif			/* !defined(NO_SWAPPING) */
1561