vm_pageout.c revision 13490
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $Id: vm_pageout.c,v 1.63 1995/12/14 09:55:09 phk Exp $
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/proc.h>
79#include <sys/resourcevar.h>
80#include <sys/malloc.h>
81#include <sys/kernel.h>
82#include <sys/signalvar.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/vm_prot.h>
89#include <vm/lock.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_map.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/vm_extern.h>
98
99/*
100 * System initialization
101 */
102
103/* the kernel process "vm_pageout"*/
104static void vm_pageout __P((void));
105static int vm_pageout_clean __P((vm_page_t, int));
106static int vm_pageout_scan __P((void));
107struct proc *pageproc;
108
109static struct kproc_desc page_kp = {
110	"pagedaemon",
111	vm_pageout,
112	&pageproc
113};
114SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
115
116/* the kernel process "vm_daemon"*/
117static void vm_daemon __P((void));
118static struct	proc *vmproc;
119
120static struct kproc_desc vm_kp = {
121	"vmdaemon",
122	vm_daemon,
123	&vmproc
124};
125SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126
127
128int vm_pages_needed;		/* Event on which pageout daemon sleeps */
129
130int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
131
132extern int npendingio;
133static int vm_pageout_req_swapout;	/* XXX */
134static int vm_daemon_needed;
135extern int nswiodone;
136extern int vm_swap_size;
137extern int vfs_update_wakeup;
138
139#define MAXSCAN 1024		/* maximum number of pages to scan in queues */
140
141#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
142
143#define VM_PAGEOUT_PAGE_COUNT 16
144int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
145
146int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
147
148typedef int freeer_fcn_t __P((vm_map_t, vm_object_t, int, int));
149static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_map_entry_t,
150						 int *, freeer_fcn_t *));
151static freeer_fcn_t vm_pageout_object_deactivate_pages;
152static void vm_req_vmdaemon __P((void));
153
154/*
155 * vm_pageout_clean:
156 *
157 * Clean the page and remove it from the laundry.
158 *
159 * We set the busy bit to cause potential page faults on this page to
160 * block.
161 *
162 * And we set pageout-in-progress to keep the object from disappearing
163 * during pageout.  This guarantees that the page won't move from the
164 * inactive queue.  (However, any other page on the inactive queue may
165 * move!)
166 */
167static int
168vm_pageout_clean(m, sync)
169	vm_page_t m;
170	int sync;
171{
172	register vm_object_t object;
173	vm_page_t mc[2*VM_PAGEOUT_PAGE_COUNT];
174	int pageout_count;
175	int i, forward_okay, backward_okay, page_base;
176	vm_pindex_t pindex = m->pindex;
177
178	object = m->object;
179
180	/*
181	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
182	 * Try to avoid the deadlock.
183	 */
184	if ((sync != VM_PAGEOUT_FORCE) &&
185	    (object->type != OBJT_SWAP) &&
186	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
187		return 0;
188
189	/*
190	 * Don't mess with the page if it's busy.
191	 */
192	if ((!sync && m->hold_count != 0) ||
193	    ((m->busy != 0) || (m->flags & PG_BUSY)))
194		return 0;
195
196	/*
197	 * Try collapsing before it's too late.
198	 */
199	if (!sync && object->backing_object) {
200		vm_object_collapse(object);
201	}
202	mc[VM_PAGEOUT_PAGE_COUNT] = m;
203	pageout_count = 1;
204	page_base = VM_PAGEOUT_PAGE_COUNT;
205	forward_okay = TRUE;
206	if (pindex != 0)
207		backward_okay = TRUE;
208	else
209		backward_okay = FALSE;
210	/*
211	 * Scan object for clusterable pages.
212	 *
213	 * We can cluster ONLY if: ->> the page is NOT
214	 * clean, wired, busy, held, or mapped into a
215	 * buffer, and one of the following:
216	 * 1) The page is inactive, or a seldom used
217	 *    active page.
218	 * -or-
219	 * 2) we force the issue.
220	 */
221	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
222		vm_page_t p;
223
224		/*
225		 * See if forward page is clusterable.
226		 */
227		if (forward_okay) {
228			/*
229			 * Stop forward scan at end of object.
230			 */
231			if ((pindex + i) > object->size) {
232				forward_okay = FALSE;
233				goto do_backward;
234			}
235			p = vm_page_lookup(object, pindex + i);
236			if (p) {
237				if ((p->queue == PQ_CACHE) || (p->flags & PG_BUSY) || p->busy) {
238					forward_okay = FALSE;
239					goto do_backward;
240				}
241				vm_page_test_dirty(p);
242				if ((p->dirty & p->valid) != 0 &&
243				    ((p->queue == PQ_INACTIVE) ||
244				     (sync == VM_PAGEOUT_FORCE)) &&
245				    (p->wire_count == 0) &&
246				    (p->hold_count == 0)) {
247					mc[VM_PAGEOUT_PAGE_COUNT + i] = p;
248					pageout_count++;
249					if (pageout_count == vm_pageout_page_count)
250						break;
251				} else {
252					forward_okay = FALSE;
253				}
254			} else {
255				forward_okay = FALSE;
256			}
257		}
258do_backward:
259		/*
260		 * See if backward page is clusterable.
261		 */
262		if (backward_okay) {
263			/*
264			 * Stop backward scan at beginning of object.
265			 */
266			if ((pindex - i) == 0) {
267				backward_okay = FALSE;
268			}
269			p = vm_page_lookup(object, pindex - i);
270			if (p) {
271				if ((p->queue == PQ_CACHE) || (p->flags & PG_BUSY) || p->busy) {
272					backward_okay = FALSE;
273					continue;
274				}
275				vm_page_test_dirty(p);
276				if ((p->dirty & p->valid) != 0 &&
277				    ((p->queue == PQ_INACTIVE) ||
278				     (sync == VM_PAGEOUT_FORCE)) &&
279				    (p->wire_count == 0) &&
280				    (p->hold_count == 0)) {
281					mc[VM_PAGEOUT_PAGE_COUNT - i] = p;
282					pageout_count++;
283					page_base--;
284					if (pageout_count == vm_pageout_page_count)
285						break;
286				} else {
287					backward_okay = FALSE;
288				}
289			} else {
290				backward_okay = FALSE;
291			}
292		}
293	}
294
295	/*
296	 * we allow reads during pageouts...
297	 */
298	for (i = page_base; i < (page_base + pageout_count); i++) {
299		mc[i]->flags |= PG_BUSY;
300		vm_page_protect(mc[i], VM_PROT_READ);
301	}
302
303	return vm_pageout_flush(&mc[page_base], pageout_count, sync);
304}
305
306int
307vm_pageout_flush(mc, count, sync)
308	vm_page_t *mc;
309	int count;
310	int sync;
311{
312	register vm_object_t object;
313	int pageout_status[count];
314	int anyok = 0;
315	int i;
316
317	object = mc[0]->object;
318	object->paging_in_progress += count;
319
320	vm_pager_put_pages(object, mc, count,
321	    ((sync || (object == kernel_object)) ? TRUE : FALSE),
322	    pageout_status);
323
324
325	for (i = 0; i < count; i++) {
326		vm_page_t mt = mc[i];
327
328		switch (pageout_status[i]) {
329		case VM_PAGER_OK:
330			++anyok;
331			break;
332		case VM_PAGER_PEND:
333			++anyok;
334			break;
335		case VM_PAGER_BAD:
336			/*
337			 * Page outside of range of object. Right now we
338			 * essentially lose the changes by pretending it
339			 * worked.
340			 */
341			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
342			mt->dirty = 0;
343			break;
344		case VM_PAGER_ERROR:
345		case VM_PAGER_FAIL:
346			/*
347			 * If page couldn't be paged out, then reactivate the
348			 * page so it doesn't clog the inactive list.  (We
349			 * will try paging out it again later).
350			 */
351			if (mt->queue == PQ_INACTIVE)
352				vm_page_activate(mt);
353			break;
354		case VM_PAGER_AGAIN:
355			break;
356		}
357
358
359		/*
360		 * If the operation is still going, leave the page busy to
361		 * block all other accesses. Also, leave the paging in
362		 * progress indicator set so that we don't attempt an object
363		 * collapse.
364		 */
365		if (pageout_status[i] != VM_PAGER_PEND) {
366			vm_object_pip_wakeup(object);
367			PAGE_WAKEUP(mt);
368		}
369	}
370	return anyok;
371}
372
373/*
374 *	vm_pageout_object_deactivate_pages
375 *
376 *	deactivate enough pages to satisfy the inactive target
377 *	requirements or if vm_page_proc_limit is set, then
378 *	deactivate all of the pages in the object and its
379 *	backing_objects.
380 *
381 *	The object and map must be locked.
382 */
383static int
384vm_pageout_object_deactivate_pages(map, object, count, map_remove_only)
385	vm_map_t map;
386	vm_object_t object;
387	int count;
388	int map_remove_only;
389{
390	register vm_page_t p, next;
391	int rcount;
392	int dcount;
393
394	dcount = 0;
395	if (count == 0)
396		count = 1;
397
398	if (object->type == OBJT_DEVICE)
399		return 0;
400
401	if (object->backing_object) {
402		if (object->backing_object->ref_count == 1)
403			dcount += vm_pageout_object_deactivate_pages(map,
404			    object->backing_object, count / 2 + 1, map_remove_only);
405		else
406			vm_pageout_object_deactivate_pages(map,
407			    object->backing_object, count, 1);
408	}
409	if (object->paging_in_progress)
410		return dcount;
411
412	/*
413	 * scan the objects entire memory queue
414	 */
415	rcount = object->resident_page_count;
416	p = object->memq.tqh_first;
417	while (p && (rcount-- > 0)) {
418		next = p->listq.tqe_next;
419		cnt.v_pdpages++;
420		if (p->wire_count != 0 ||
421		    p->hold_count != 0 ||
422		    p->busy != 0 ||
423		    (p->flags & PG_BUSY) ||
424		    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
425			p = next;
426			continue;
427		}
428		/*
429		 * if a page is active, not wired and is in the processes
430		 * pmap, then deactivate the page.
431		 */
432		if (p->queue == PQ_ACTIVE) {
433			if (!pmap_is_referenced(VM_PAGE_TO_PHYS(p)) &&
434			    (p->flags & PG_REFERENCED) == 0) {
435				p->act_count -= min(p->act_count, ACT_DECLINE);
436				/*
437				 * if the page act_count is zero -- then we
438				 * deactivate
439				 */
440				if (!p->act_count) {
441					if (!map_remove_only)
442						vm_page_deactivate(p);
443					vm_page_protect(p, VM_PROT_NONE);
444					/*
445					 * else if on the next go-around we
446					 * will deactivate the page we need to
447					 * place the page on the end of the
448					 * queue to age the other pages in
449					 * memory.
450					 */
451				} else {
452					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
453					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
454				}
455				/*
456				 * see if we are done yet
457				 */
458				if (p->queue == PQ_INACTIVE) {
459					--count;
460					++dcount;
461					if (count <= 0 &&
462					    cnt.v_inactive_count > cnt.v_inactive_target) {
463						return dcount;
464					}
465				}
466			} else {
467				/*
468				 * Move the page to the bottom of the queue.
469				 */
470				pmap_clear_reference(VM_PAGE_TO_PHYS(p));
471				p->flags &= ~PG_REFERENCED;
472				if (p->act_count < ACT_MAX)
473					p->act_count += ACT_ADVANCE;
474
475				TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
476				TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
477			}
478		} else if (p->queue == PQ_INACTIVE) {
479			vm_page_protect(p, VM_PROT_NONE);
480		}
481		p = next;
482	}
483	return dcount;
484}
485
486/*
487 * deactivate some number of pages in a map, try to do it fairly, but
488 * that is really hard to do.
489 */
490
491static void
492vm_pageout_map_deactivate_pages(map, entry, count, freeer)
493	vm_map_t map;
494	vm_map_entry_t entry;
495	int *count;
496	freeer_fcn_t *freeer;
497{
498	vm_map_t tmpm;
499	vm_map_entry_t tmpe;
500	vm_object_t obj;
501
502	if (*count <= 0)
503		return;
504	vm_map_reference(map);
505	if (!lock_try_read(&map->lock)) {
506		vm_map_deallocate(map);
507		return;
508	}
509	if (entry == 0) {
510		tmpe = map->header.next;
511		while (tmpe != &map->header && *count > 0) {
512			vm_pageout_map_deactivate_pages(map, tmpe, count, freeer);
513			tmpe = tmpe->next;
514		};
515	} else if (entry->is_sub_map || entry->is_a_map) {
516		tmpm = entry->object.share_map;
517		tmpe = tmpm->header.next;
518		while (tmpe != &tmpm->header && *count > 0) {
519			vm_pageout_map_deactivate_pages(tmpm, tmpe, count, freeer);
520			tmpe = tmpe->next;
521		};
522	} else if ((obj = entry->object.vm_object) != 0) {
523		*count -= (*freeer) (map, obj, *count, TRUE);
524	}
525	lock_read_done(&map->lock);
526	vm_map_deallocate(map);
527	return;
528}
529
530static void
531vm_req_vmdaemon()
532{
533	static int lastrun = 0;
534
535	if ((ticks > (lastrun + hz / 10)) || (ticks < lastrun)) {
536		wakeup(&vm_daemon_needed);
537		lastrun = ticks;
538	}
539}
540
541/*
542 *	vm_pageout_scan does the dirty work for the pageout daemon.
543 */
544static int
545vm_pageout_scan()
546{
547	vm_page_t m;
548	int page_shortage, maxscan, maxlaunder, pcount;
549	int pages_freed;
550	vm_page_t next;
551	struct proc *p, *bigproc;
552	vm_offset_t size, bigsize;
553	vm_object_t object;
554	int force_wakeup = 0;
555	int vnodes_skipped = 0;
556
557	pages_freed = 0;
558
559	/*
560	 * Start scanning the inactive queue for pages we can free. We keep
561	 * scanning until we have enough free pages or we have scanned through
562	 * the entire queue.  If we encounter dirty pages, we start cleaning
563	 * them.
564	 */
565
566	maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
567	    MAXLAUNDER : cnt.v_inactive_target;
568
569rescan1:
570	maxscan = cnt.v_inactive_count;
571	m = vm_page_queue_inactive.tqh_first;
572	while ((m != NULL) && (maxscan-- > 0) &&
573	    ((cnt.v_cache_count + cnt.v_free_count) < (cnt.v_cache_min + cnt.v_free_target))) {
574		vm_page_t next;
575
576		cnt.v_pdpages++;
577		next = m->pageq.tqe_next;
578
579#if defined(VM_DIAGNOSE)
580		if (m->queue != PQ_INACTIVE) {
581			printf("vm_pageout_scan: page not inactive?\n");
582			break;
583		}
584#endif
585
586		/*
587		 * dont mess with busy pages
588		 */
589		if (m->busy || (m->flags & PG_BUSY)) {
590			m = next;
591			continue;
592		}
593		if (m->hold_count) {
594			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
595			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
596			m = next;
597			continue;
598		}
599
600		if (((m->flags & PG_REFERENCED) == 0) &&
601		    pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
602			m->flags |= PG_REFERENCED;
603		}
604		if (m->object->ref_count == 0) {
605			m->flags &= ~PG_REFERENCED;
606			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
607		}
608		if ((m->flags & PG_REFERENCED) != 0) {
609			m->flags &= ~PG_REFERENCED;
610			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
611			vm_page_activate(m);
612			if (m->act_count < ACT_MAX)
613				m->act_count += ACT_ADVANCE;
614			m = next;
615			continue;
616		}
617
618		if (m->dirty == 0) {
619			vm_page_test_dirty(m);
620		} else if (m->dirty != 0)
621			m->dirty = VM_PAGE_BITS_ALL;
622		if (m->valid == 0) {
623			vm_page_protect(m, VM_PROT_NONE);
624			vm_page_free(m);
625			cnt.v_dfree++;
626			++pages_freed;
627		} else if (m->dirty == 0) {
628			vm_page_cache(m);
629			++pages_freed;
630		} else if (maxlaunder > 0) {
631			int written;
632			struct vnode *vp = NULL;
633
634			object = m->object;
635			if (object->flags & OBJ_DEAD) {
636				m = next;
637				continue;
638			}
639
640			if (object->type == OBJT_VNODE) {
641				vp = object->handle;
642				if (VOP_ISLOCKED(vp) || vget(vp, 1)) {
643					if (object->flags & OBJ_MIGHTBEDIRTY)
644						++vnodes_skipped;
645					m = next;
646					continue;
647				}
648			}
649
650			/*
651			 * If a page is dirty, then it is either being washed
652			 * (but not yet cleaned) or it is still in the
653			 * laundry.  If it is still in the laundry, then we
654			 * start the cleaning operation.
655			 */
656			written = vm_pageout_clean(m, 0);
657
658			if (vp)
659				vput(vp);
660
661			if (!next) {
662				break;
663			}
664			maxlaunder -= written;
665			/*
666			 * if the next page has been re-activated, start
667			 * scanning again
668			 */
669			if (next->queue != PQ_INACTIVE) {
670				vm_pager_sync();
671				goto rescan1;
672			}
673		}
674		m = next;
675	}
676
677	/*
678	 * Compute the page shortage.  If we are still very low on memory be
679	 * sure that we will move a minimal amount of pages from active to
680	 * inactive.
681	 */
682
683	page_shortage = cnt.v_inactive_target -
684	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
685	if (page_shortage <= 0) {
686		if (pages_freed == 0) {
687			page_shortage = cnt.v_free_min - cnt.v_free_count;
688		} else {
689			page_shortage = 1;
690		}
691	}
692	maxscan = MAXSCAN;
693	pcount = cnt.v_active_count;
694	m = vm_page_queue_active.tqh_first;
695	while ((m != NULL) && (maxscan > 0) &&
696		(pcount-- > 0) && (page_shortage > 0)) {
697
698		cnt.v_pdpages++;
699		next = m->pageq.tqe_next;
700
701		/*
702		 * Don't deactivate pages that are busy.
703		 */
704		if ((m->busy != 0) ||
705		    (m->flags & PG_BUSY) ||
706		    (m->hold_count != 0)) {
707			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
708			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
709			m = next;
710			continue;
711		}
712		if (m->object->ref_count &&
713			((m->flags & PG_REFERENCED) ||
714			pmap_is_referenced(VM_PAGE_TO_PHYS(m))) ) {
715			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
716			m->flags &= ~PG_REFERENCED;
717			if (m->act_count < ACT_MAX) {
718				m->act_count += ACT_ADVANCE;
719			}
720			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
721			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
722		} else {
723			m->flags &= ~PG_REFERENCED;
724			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
725			m->act_count -= min(m->act_count, ACT_DECLINE);
726
727			/*
728			 * if the page act_count is zero -- then we deactivate
729			 */
730			if (!m->act_count && (page_shortage > 0)) {
731				if (m->object->ref_count == 0) {
732					--page_shortage;
733					vm_page_test_dirty(m);
734					if (m->dirty == 0) {
735						m->act_count = 0;
736						vm_page_cache(m);
737					} else {
738						vm_page_deactivate(m);
739					}
740				} else {
741					vm_page_deactivate(m);
742					--page_shortage;
743				}
744			} else if (m->act_count) {
745				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
746				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
747			}
748		}
749		maxscan--;
750		m = next;
751	}
752
753	/*
754	 * We try to maintain some *really* free pages, this allows interrupt
755	 * code to be guaranteed space.
756	 */
757	while (cnt.v_free_count < cnt.v_free_reserved) {
758		m = vm_page_queue_cache.tqh_first;
759		if (!m)
760			break;
761		vm_page_free(m);
762		cnt.v_dfree++;
763	}
764
765	/*
766	 * If we didn't get enough free pages, and we have skipped a vnode
767	 * in a writeable object, wakeup the sync daemon.  And kick swapout
768	 * if we did not get enough free pages.
769	 */
770	if ((cnt.v_cache_count + cnt.v_free_count) <
771		(cnt.v_free_target + cnt.v_cache_min) ) {
772		if (vnodes_skipped &&
773		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
774			if (!vfs_update_wakeup) {
775				vfs_update_wakeup = 1;
776				wakeup(&vfs_update_wakeup);
777			}
778		}
779		/*
780		 * now swap processes out if we are in low memory conditions
781		 */
782		if (!swap_pager_full && vm_swap_size &&
783			vm_pageout_req_swapout == 0) {
784			vm_pageout_req_swapout = 1;
785			vm_req_vmdaemon();
786		}
787	}
788
789	if ((cnt.v_inactive_count + cnt.v_free_count + cnt.v_cache_count) <
790	    (cnt.v_inactive_target + cnt.v_free_min)) {
791		vm_req_vmdaemon();
792	}
793
794	/*
795	 * make sure that we have swap space -- if we are low on memory and
796	 * swap -- then kill the biggest process.
797	 */
798	if ((vm_swap_size == 0 || swap_pager_full) &&
799	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
800		bigproc = NULL;
801		bigsize = 0;
802		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
803			/*
804			 * if this is a system process, skip it
805			 */
806			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
807			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
808				continue;
809			}
810			/*
811			 * if the process is in a non-running type state,
812			 * don't touch it.
813			 */
814			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
815				continue;
816			}
817			/*
818			 * get the process size
819			 */
820			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
821			/*
822			 * if the this process is bigger than the biggest one
823			 * remember it.
824			 */
825			if (size > bigsize) {
826				bigproc = p;
827				bigsize = size;
828			}
829		}
830		if (bigproc != NULL) {
831			printf("Process %lu killed by vm_pageout -- out of swap\n", (u_long) bigproc->p_pid);
832			psignal(bigproc, SIGKILL);
833			bigproc->p_estcpu = 0;
834			bigproc->p_nice = PRIO_MIN;
835			resetpriority(bigproc);
836			wakeup(&cnt.v_free_count);
837		}
838	}
839	return force_wakeup;
840}
841
842/*
843 *	vm_pageout is the high level pageout daemon.
844 */
845static void
846vm_pageout()
847{
848	(void) spl0();
849
850	/*
851	 * Initialize some paging parameters.
852	 */
853
854	cnt.v_interrupt_free_min = 2;
855
856	if (cnt.v_page_count > 1024)
857		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
858	else
859		cnt.v_free_min = 4;
860	/*
861	 * free_reserved needs to include enough for the largest swap pager
862	 * structures plus enough for any pv_entry structs when paging.
863	 */
864	cnt.v_pageout_free_min = 6 + cnt.v_page_count / 1024 +
865				cnt.v_interrupt_free_min;
866	cnt.v_free_reserved = cnt.v_pageout_free_min + 6;
867	cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
868	cnt.v_free_min += cnt.v_free_reserved;
869
870	if (cnt.v_page_count > 1024) {
871		cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
872		cnt.v_cache_min = (cnt.v_free_count - 1024) / 8;
873		cnt.v_inactive_target = 2*cnt.v_cache_min + 192;
874	} else {
875		cnt.v_cache_min = 0;
876		cnt.v_cache_max = 0;
877		cnt.v_inactive_target = cnt.v_free_count / 4;
878	}
879
880	/* XXX does not really belong here */
881	if (vm_page_max_wired == 0)
882		vm_page_max_wired = cnt.v_free_count / 3;
883
884
885	swap_pager_swap_init();
886	/*
887	 * The pageout daemon is never done, so loop forever.
888	 */
889	while (TRUE) {
890		int s = splhigh();
891
892		if (!vm_pages_needed ||
893			((cnt.v_free_count >= cnt.v_free_reserved) &&
894			 (cnt.v_free_count + cnt.v_cache_count >= cnt.v_free_min))) {
895			vm_pages_needed = 0;
896			tsleep(&vm_pages_needed, PVM, "psleep", 0);
897		}
898		vm_pages_needed = 0;
899		splx(s);
900		cnt.v_pdwakeups++;
901		vm_pager_sync();
902		vm_pageout_scan();
903		vm_pager_sync();
904		wakeup(&cnt.v_free_count);
905		wakeup(kmem_map);
906	}
907}
908
909static void
910vm_daemon()
911{
912	vm_object_t object;
913	struct proc *p;
914
915	while (TRUE) {
916		tsleep(&vm_daemon_needed, PUSER, "psleep", 0);
917		if (vm_pageout_req_swapout) {
918			swapout_procs();
919			vm_pageout_req_swapout = 0;
920		}
921		/*
922		 * scan the processes for exceeding their rlimits or if
923		 * process is swapped out -- deactivate pages
924		 */
925
926		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
927			int overage;
928			quad_t limit;
929			vm_offset_t size;
930
931			/*
932			 * if this is a system process or if we have already
933			 * looked at this process, skip it.
934			 */
935			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
936				continue;
937			}
938			/*
939			 * if the process is in a non-running type state,
940			 * don't touch it.
941			 */
942			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
943				continue;
944			}
945			/*
946			 * get a limit
947			 */
948			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
949			    p->p_rlimit[RLIMIT_RSS].rlim_max);
950
951			/*
952			 * let processes that are swapped out really be
953			 * swapped out set the limit to nothing (will force a
954			 * swap-out.)
955			 */
956			if ((p->p_flag & P_INMEM) == 0)
957				limit = 0;	/* XXX */
958
959			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
960			if (limit >= 0 && size >= limit) {
961				overage = (size - limit) >> PAGE_SHIFT;
962				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
963				    (vm_map_entry_t) 0, &overage, vm_pageout_object_deactivate_pages);
964			}
965		}
966
967		/*
968		 * we remove cached objects that have no RSS...
969		 */
970restart:
971		object = vm_object_cached_list.tqh_first;
972		while (object) {
973			/*
974			 * if there are no resident pages -- get rid of the object
975			 */
976			if (object->resident_page_count == 0) {
977				vm_object_reference(object);
978				pager_cache(object, FALSE);
979				goto restart;
980			}
981			object = object->cached_list.tqe_next;
982		}
983	}
984}
985